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Abstract: In low speed gearboxes, shaft rotation and Gear Mesh Frequencies are lower and closer requiring 
higher spectral resolution in order to identify each one. Normally this problem is avoided increasing the 
acquisition time. Nevertheless, sometimes load and speed are variables, so the working period on stationary 
conditions is shorter. In these cases, it is useful to apply other kinds of tools such as the high resolution 
parametric methods. In this work a parametric method is applied in the misalignment detection of low-speed 
gears. 
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1 Introduction  
The main objective of the predictive machinery 
maintenance is obtaining information about the 
operative state of the equipment, giving warning 
information about the development of a breakdown 
and indicating the position of the element 
responsible for that effect. The vibratory signal of 
the system is one of the most important tool for the 
detection and monitoring of machine failures. There 
are many different techniques for processing this 
information, frequency decomposition being the 
most used. Frequency decomposition permits the 
analysis of the appearance or modification of 
specific amplitudes that are related to defect 
characteristic frequency. 
     Gearmesh frequency (GMF) and their harmonics 
characterize the vibration signal in the gearbox. 
These gearmesh frequencies are modulated by the 
angular velocity of the shaft, as a consequence of the 
pitch and profile errors and the variation of the 
stiffness in the tooth contact. Lateral bands in the 
frequency spectrum appear as a consequence of the 
presence of a modulation. This frequency bands are 
situated around the carrier frequency, and located at  
a distance equal to the modulating frequency. 
     The appearance of a fault in a wheel of a gearbox, 
such as cracks, tooth breakdown, wear, misalignment 
or bad contact, implies a change in the amplitude and 
in the number of these lateral bands. Some different 

phenomena of modulation could be present at the 
same time, and each one of them produces a different 
family of lateral bands characterized by the same 
frequency distance in the spectrum. This is related to 
the modulating frequency and contains information 
about the machine diagnostic [1]. 
     When the mechanical system is working at very 
low angular speed, all these frequencies are very 
close in the spectrum, and in this case a very high 
spectral resolution is necessary for the detection and 
diagnostic. This implies a long acquisition time of 
vibratory signals in order to achieve the desired 
resolution. Nevertheless, in some applications, that is 
not possible because the machinery only works in 
stationary conditions during a short period of time. 
Some examples of this kind of situation can be wind 
power generators, or the firs stages equipment in 
roller mills. In these cases conventional spectral 
analysis tools are not more useful because the 
frequency resolution is not enough to discern the side 
bands. Therefore it is necessary to apply other kinds 
of spectral analysis tools which provide a good 
frequency resolution but using shorter acquisition 
periods [2]. 
     In this work, parametric methods are applied to 
detection of gear misalignment. In first place the 
main features of the periodogram method for spectral 
estimation that is the most common tool used in the 
spectral estimation are presented. Following, 
parametric methods will be introduced paying 



attention to the two more important aspects 
characterising their application, that is, the model 
type and the corresponding order. Finally these 
methods have been applied to real signals analysing 
their utility in low-velocity equipment monitoring. 
 
 
2 Spectral Analyses  
The Fast Fourier Transform (FFT) algorithm [3] has 
been used for the vibratory signal frequency 
decomposition. As each kind of failure has its own 
specific spectral signature in the frequency domain, 
therefore it is possible to identify the failure origin 
by following the influence of each individual 
component. 
     Practical application of the FFT algorithm 
requires signals of finite length. So, a temporal 
windowing is carried out before the analysis is done. 
However, as the window is shorter, the capacity to 
distinguish close frequencies by the spectrum 
estimation decreases. A second effect has to be 
considered, the discrete character of the spectrum. A 
discrete spectrum implies to do a careful 
interpretation, in order to avoid some confusion. It is 
possible that some characteristics will be located in 
the closest discrete frequencies, or do not appear in 
the spectrum. 
     An adequate procedure to carry out the random 
signal power spectrum estimations is to divide the 
sequence of the available signal in smaller segments, 
and to calculate for each segment the square of the 
modulus of the Discrete Fourier Transform (DFT), 
called periodogram, and then to average all these 
periodograms. The main drawbacks of this procedure 
[4] are: 
a) Usually, there is always some residual energy 

present on the fault frequencies due the 
manufacturing tolerances and mounting errors. 
Therefore side bands are difficult to distinguish, 
because there are many different families of 
lateral bands and other effects at the same time. 

b) The signal of interest could be shaded by the 
background noise. 

c) It is necessary to have a large enough signal 
register time duration in order to permit 
averaging of some periodograms. 

 
 
3 Parametric spectral estimation 
The low frequency bandwidth study implies data 
analysis during some minutes, in order to obtain a 
good resolution to distinguish the different 

frequencies involved. In these cases a parametric 
model permits the reduction of the data acquisition 
period drastically. 
    Parametric models are based on modelling 
vibratory signals as generated from a random process 
of infinite temporal series xn [5-7]. Three different 
types o models can be distinguished: Autoregressive 
(AR), Moving Average (MA) and combined 
(ARMA).  
     The most general model an ARMA(p,q) is 
defined by, 
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ˆ ˆˆ ˆ ˆˆ ˆn n p n p n n q n qx a x a x b bε ε ε− − − −+ + + = + + +L L    (1) 

where n

∧

ε  is a noise signal that normally is not pure 
random. p and q could be arbitrary. If q = 0, the 
model is AR and if p = 0, the model is MA. The AR 
models lead to linear equations whereas the other 
two yield to highly non-linear equations. 
     The first step, in order to calculate the estimation 
of the power spectral density, is select the type of 
parametric model. An adequate model selection has a 
great importance because the better is the selection 
the fewer parameters will be necessary to calculate. 
The model order must be specified once the model 
type is defined. Maybe this task is the most 
important on the application of this kind of tools. A 
too high order can lead to a spectral estimation with 
no reliable frequency peaks because the signal noise 
will be also modelled, on the contrary too low order 
yield to a low frequency resolution that will be not 
adequate for analysis proposes.  
     In this work only autoregressive models (AR) 
have been used. Their application is simpler and the 
results supplied are satisfactory in the vibratory 
signal study of interest in this work. In order to 
complete the field of parametric models, the general 
procedure is presented when the use of MA or 
ARMA models could be of interest. 
    After model selection (in this case the AR), it is 
necessary to define the order and to calculate the 
corresponding parameters. In this case, with an AR 
model, the equations (1), are called the Yule-Walker 
equations. 
     There are different AR models, the difference 
between them is the algorithm implemented for the 
parameter determination from the linear equation 
system. The Burg algorithm [8] is based on the 
arithmetic mean of the direct and regressive 
prediction error power. The parameters are modelled 
from the observed data. Other algorithms, such as 
Yule-Walker method made an intermediate 
calculation using the correlation matrix. The 
Levison-Durbin recursive algorithm permits to 



obtain the Yule-Walker equations power error, been 
more efficient than the Gaussian elimination. 
     The model order p selection can be made using 
different criteria [8-9], as Final Predictor Error 
(FPE), 
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where N is the number of data used and 2
εσ  is the 

noise signal variance. The order p is the value, which 
minimises this criterion. 
     Another order selection method is the Akaike 
Information Criterion, 

2ln 2AIC N pεσ= +                  (3) 
     Both methods for AR models provide a similar 
order, since they are asymptotically equivalents 

ln( )AIC FPE=  when N ?  8  . 
     Finally, according to the equation (4), Power 
Spectral Density (PSD) is obtained once the model 
type, model order and parameters are defined. 
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4 Experimental results 
During the study of vibration behaviour of a mill 
stand power train in order to define condition 
monitoring strategies arises the interest on the 
application of parametric methods in the calculation 
of power spectral density. Specifically, one of the 
gearboxes driving the first stages of the mill was 
studied. This kind of machinery supposes a challenge 
for maintenance team due not only to the low 
operative speed but also because of the difficulty to 
achieve a long vibration data record. The machine of 
interest has suffered several important faults such as 
bearing races pitting, broken bearing races, cracking 
and broken teeth. The last one is the most dangerous 
fault and it is necessary to define a tool in order to 
detect this situation before it could become a 
catastrophic failure. It must be emphasized that at 
this moment maintenance people don’t realize about 
faults until they are in an advanced phase. 
     The gearbox of interest is driven by an electric 
motor, it has 5 reduction stages with helical gears. At 
the end two output shafts turn both milling rolls 

coupled by universal joints. The milling torque is 
304 KNm with an output speed about 10 r.p.m. and 
an input speed of 825 r.p.m. That makes a global 
transmission rate of 81. Table 1 contains gear data. 

Table 1: Modulus and teeth data for real machine 

Stage 1 2 3 4 5 
m (mm) 8 10 14 20 18 

z 20/60 20/60 20/60 20/60 31/31 
 
     Analysing several of the developed faults the 
following sequence could be defined. Faults, 
normally starts in a low speed bearing, nevertheless 
due to the gearbox configuration it is not easy to 
detect this one using conventional condition 
monitoring techniques since the spectra is very rich 
and it is difficult to identify bearing fault 
frequencies. Fortunately, due the low speed 
operation, bearing faults are not as dangerous as in 
high-speed gearbox so it can still work during a long 
period of time. The problem is that as the bearing 
damage progress, shafts suffer a certain 
misalignment that yields to a gear damage that could 
finish in a broken tooth. Then, if the misalignment of 
a shaft is detected the fault could be identified 
reducing the risk of a catastrophic fault and allowing 
the planning of the maintenance operations. 
     Gear misalignments could be detected analysing 
the gearmesh frequencies (GMF) and their 
harmonics as well as their side bands. In this case the 
gearbox configuration has the same partial 
transmission rate for several stages (20/60) doing 
more difficult to discern between GMF harmonics, 
then it was considered to analyse only the GMF side 
bands in order to detect misalignment. 
    There is another problem that is related to the 
period of time that the gearbox is working in 
stationary conditions. Each rolling mill stage works 
on two wires that go into the stage at different times. 
So there are three operating modes defined by the 
number of wires that are on the stage at time. These 
are: No wires, 1 wire and 2 wires. These modes are 
changing and is not possible a long data acquisition 
in stationary conditions. The preferred operating 
mode and also the longer is that corresponding to 2 
wires since it is the highest load to the system. This 
mode has a maximum duration about 45 to 50 
seconds in the best case. Nevertheless this situation 
could require some minutes to appear, doing the 
acquisition time very tedious.  
     As there are not vibration data registers about 
normal and fault condition, a laboratory gear set with 
the same features as the real machine was built in 
order to allow fault simulation. The most important 
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Fig. 3.- 0.5 mm misaligment PSD Spectra for 
each channel and load. 
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Fig. 2.- NO FAULT condition PSD Spectra, 
for each channel and load.  

faults were developed on the two last reduction 
stages that is the reason because only these two were 
considered on the design of the laboratory set. The 
gear test set developed  (see figure 1) has a 1.1 Kw 
electric drive, two reduction stages, two output 
shafts, and two pneumatic brakes located in the 
output shafts, which act as loads, simulating the 
lamination rollers. 

     Data acquisition has been carried out using four 
piezoelectric accelerometers B&K model 4398 
located in points called 1 to 4 as appears in figure 3. 
Position 1 register axial vibrations as long as 
positions 2, 3 and 4 done the same in radial direction. 
The electric drive provides an input velocity of 32 
rpm, which yield the nominal gearmesh frequencies 
indicated in Table 2.  

    In order to study the misalignment, shaft 3 was 
moved in radial direction on support called R7. 
Displacements that move shafts away are considered 
as positives as long as these that bring shafts nearer 
are considered as negatives. Five misalignment cases 
were considered: -0.5 mm, No Fault , 0.5 mm, 1.3 
mm and 2.4 mm. For each one, four tests were 
developed for different loads at 100%, 75%, 50% 
and 25% of the maximum load. That means a total of 

20 vibration data registers with four channels each 
one. 
     Base spectra is modified by misalignment, 
changing the amplitude of GMF harmonics, and 
providing a higher number of side bands located 
around the GMF with frequency increments equal to 
the defect frequency. In this case the defect 
frequency is that of the shaft, which means that side 
bands will be spaced a frequency of 0.177 Hz around 
the GMF of 5.5111 Hz. So a high resolution 
spectrum is required  for seeing the side bands. In 
order to achieve a good resolution at least four 
spectra lines must be defined between each side 
band, that means a resolution about 0.04425 Hz 
which supposes an acquisition time about 22.5 
seconds. 
     On the laboratory set it is possible to acquire data 
without time limit allowing long registers and as a 
consequence good frequency resolution. Five 
minutes of vibration were taken at a sampling 
frequency of 10 kHz as the interest is on the low 
frequency original were resampled to a frequency of 
40 Hz.  

Table 2. Gearmesh frequencies. 

Pair Teeth Rotation 
frequency (Hz) 

GMF 

Z1-Z2 20/60 0.533/0.177 10.666 
Z3-Z4 31/31 0.177/0.177 5.5111 

Shaft 3 

Shaft 2 

Shaft 1 

1 

2 

3 

4 

Fig. 1.- Gear test set up 



     Figure 2 shows the resulting spectra for normal 
condition and figure 3 corresponds to the 0.5 mm 
misalignment case. These spectra have been obtained 
using a length of 1024 data averaging for the whole 
register that has a total of 12032 data points.  
     It can be appreciated that misalignment increases 
the 1XGMF and their lateral bands. The effects on 
the amplitude of the GMF harmonics are not very 
significant and similar results are obtained for the 
other misalignment cases. Therefore, for 
misalignment detection, attention must be focus on 
the GMF side bands. 
    For applying parametric methods, sensor position 
3 and load case of 100% was selected. Figure 4 
shows the resulting spectra for each misalignment 
filtered around the GMF. It can be appreciated the 
increment on the side bands amplitude. 

     A reduction in the number of data points used for 
periodogram calculation degrades the resulting 
spectra. In this case zero padding was used in order 

to achieve the same frequency resolution. Figure 5 
and 6 show the results for data length of 512 and 256 
points. So, it is no possible to identify easily the fault 
condition as the side bands are masked. 

    The parametric spectra was obtained using only 
256 data points. The model order was selected using 
the No Fault condition carrying out the parameter 
estimation by the Burg algorithm. Table 3 contains 
the order obtained using the Akaike  (AIC) and Final 
Prediction Error (FPE) criteria. 

Table 3.- Estimated orders for the No Fault condition 
using, Akaike (AIC) and Final Prediction Error 
(FPE) for 256 data points. 

Load 
Sensor 25% 

AIC/FPE 
50% 

AIC/FPE 
75% 

AIC/FPE 
100% 

AIC/FPE 
1 117/117 119/105 120/120 103/103 
2 116/109 103/103 120/120 120/111 
3 103/103 119/110 112/112 105/105 
4 112/111 119/112 115/103 74/74 

     Figure 7 contains the spectra obtained by the 
parametric method using only 256 data points. So it 
is possible to identify the fault condition with an 
acquisition of 6.4 seconds. In real machinery this fact 
increases the acquisition possibilities, allowing to 
improve the diagnostics capability of a maintenance 
team. 
     As the interest is focused on the detection of a 
rise in the side bands magnitude and in order to do 
easier the fault identification by the maintenance 
people it is not necessary to use a parametric model 
of high order. Figure 8 shows as is possible to have a 
good indicator using a model order of 8. In this case 
is not possible to identify lateral bands but is clear 
the increase on the energy content of the frequency 
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Fig. 4.- Spectra for chanel 3, load 100% (1024 
lines, 1024 data points), (1) –0.5 mm; (2) No 
Fault; (3) 0.5 mm; (4) 1.3 mm (5) 2.3 mm.  
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Fig. 5.- Spectra for chanel 3, load 100% (1024 
lines, 512 data points), (1) –0.5 mm; (2) No 
Fault; (3) 0.5 mm; (4) 1.3 mm (5) 2.3 mm. 
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Fig. 6.- Spectra for chanel 3, load 100% (1024 
lines, 256 data points), (1) –0.5 mm; (2) No 
Fault; (3) 0.5 mm; (4) 1.3 mm (5) 2.3 mm.  
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Fig. 8.- Parametric Spectra for chanel 3, 
load 100% (1024 lines, 256 data points, 
Order 8), (1) –0.5 mm; (2) No Fault; (3) 0.5 
mm; (4) 1.3 mm (5) 2.3 mm. 
 

band of interest and appear enough for detection and 
diagnostic of this kind of fault. 

 
 

5 Conclusions 
Unconventional spectral estimation tools are useful 
when high resolution frequency is desired but there 
are limitations on the acquisition period. In this work 
parametric methods are used on detection of gear 
misalignment in machinery working at low speed. 
Parametric methods provide the possibility to reduce 
the time period in order to achieve enough 
information to do a good diagnostic. The main 
difficulty to apply this kind of tools is the selection 
of the autoregressive model order. In this task 
several criteria can be used. Nevertheless, it has been 

showed the possibility of using a reduced order that 
could be good enough for misalignment detection. 
 
 

6 Acknowledgments  
The authors are grateful to the Spanish Commission 
of Science and Technology (CICYT) for supporting 
the project 1FD97-1324 and to the Spanish Ministry 
of Science and Technology for the project DPI2003-
01845.  
 
 
References: 
[1] P. D. McFadden, Detecting fatigue cracks in 

gears by amplitude and phase demodulation of 
the meshing vibration, ASME Transactions 
Journal of Vibration Acoustics Stress and 
Reliability in Design 108, 165-170.  

[2] C. K. Mechefske, J. Mathew, Fault detection 
and diagnosis in low speed rolling element 
bearings, Part I: The use of parametric spectra, 
Mechanical Systems and Signal Processing, 
Vol. 6(4) p. 297-307, Academic Press 1992. 

[3] A.V.Oppenheim, R.W. Schafer, Discrete-Time 
Signal Processing, Prentice Hall Signal 
processing Series, Englewood Cliffs, 1989. 

[4] G. Dalpiaz, A. Rivola, and R. Rubbini, 
Effectiveness and sensitivity of vibration 
processing techniques for local fault detection in 
gears, Mechanical Systems and Signal 
Processing, Vol 14, (3), Academic Press 1999. 

[5] C.K. Mechefske and J. Mathew, Parametric 
spectral estimation to detect and diagnose faults 
in low speed rolling element bearings: 
preliminary investigations, Mechanical Systems 
and Signal Processing, Vol. 7, no.1 p 1-12, 
Academic Press, 1993. 

[6] P.M.T. Broersen, Facts and fiction in Spectral 
Analysis, IEEE Transactions on 
instrumentation and measurement, Vol 49, nº4, 
pp766-772, August 2000. 

[7] M.B. Priestly, Spectral Analysis and Time 
Series. Academic Press, 1983 

[8] J.P. Dron, L.Rasolofondraibe, F. Bolaers, A. 
Pavan, High-resolution methods in vibratory 
analysis: application to ball bearing and 
monitoring and production machine, 
International Journal of Solids and Structures 
Vol. 38, pp. 4293-4313, Pergamon 2001 

[9] S. Braun, Mechanical Signature Analysis: 
theory and applications, Academic Press, 1986. 

     

0
2

4
6

8
10 1

2

3

4

5
0

0.5

1

1.5

x 10
-6

Hz

P
S

D

Fig. 7.- Parametric Spectra for chanel 3, load 
100% (1024 lines, 256 data points, Order 
105), (1) –0.5 mm; (2) No Fault; (3) 0.5 mm; 
(4) 1.3 mm (5) 2.3 mm. 
 


