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Abstract: - The speech denoising Neural Network architecture we propose in this paper is based on Adaptive Spline Neural 
Network (ASNN). It is an architecture for real-time oriented applications, due to its low size complexity and high 
parallelism. Results show improvements in Signal to Noise Ratio (SNR) and better performances in comparison with 
classical denoising neural networks. 
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1   Introduction 
Today sophisticated communication and recording systems 
require better performances in speech denoising. Most of 
all, we need to improve noisy speech intelligibility in man 
to man or man-machine communication. The presence of 
noise dramatically reduces performances of modern 
automatic speech recognition systems operating in noisy 
environments. 
The superimposed noise can be impulsive, continuous, 
correlated or uncorrelated. Obviously, a general solution to 
the problem of speech denoising is not available; a specific 
noise-oriented solution is needed. In this paper we focus 
our attention to continuous uncorrelated disturbs 
(background noise). 
The classical Spectral Subtractive approach to the problem 
is still one of the most employed one; its main drawback is 
the residual “musical noise”, which causes metallic voice 
distortion [1]. In recent years, neural networks were 
successfully applied in audio signal processing. However, 
the huge size of implemented structures and the low 
generalization capabilities have discouraged their use. 
We aim to obtain low size real-time oriented neural 
architectures using Adaptive Spline Neural Network 
(ASNN) to improve SNR in background-noise corrupted 
speech signals. Comparison is made with classical Multi 
Layer Perceptron (MLP) neural networks used in denoising 
applications [2,3]. 
 
2   Spline Networks 
In classical multilayer feed-forward neural networks, each 
neuron is characterized by a fixed non-liner activation 
function, such as ( ) ( )bxbx eea −− +− 11 . 
To reduce the network size, at the cost of an acceptably 
grater neuron complexity, it is possible to define adaptive 
activation functions. The simplest way is to use polynomial 
functions [4]. The main drawback of this solution regards 
the adaptation of coefficients in the learning phase, due to 

spurious minima and maxima. In addition, a polynomial is a 
non-bounded function, resulting in a generally poorly 
smooth approximation. 
Later, to solve the above problems, adaptive spline 
activation function was introduced [5-7]. Each neuron is 
characterized by a different activation function, whose 
shape can be modified through some control points. It has 
been proved that such a neuron improves flexibility, 
approximation and generalization capabilities of the 
network. 
In this work, we implement activation functions through 
cubic spline interpolation of control points. In every 
training step, we update both activation function shape and 
input weight values. In the following, we introduce spline 
network theory [5,7]. 
 
2.1 Spline curve 
A planar spline curve is a two-dimensional array, whose 
components are piecewise polynomial, univariate functions 
of the same degree. Its mathematical formulation ensures 
both continuity and existence of derivatives, along the 
curve and in correspondence to the joining points between 
the curve spans. We define the curve as follows: 
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where C is the concatenation operator and ( )uFi  the i-th 
curve span. The indices of the C operator in (1) are valid 
only for cubic polynomials that are good tradeoffs between 
the requested properties and computational complexity. 
The domain of parameter u is 10 ≤≤ u  for every curve span; 
it has the property of being local. So, we can evaluate, from 
the abscissa global parameter, the local parameter u, as well 
as the curve span i, thru a unique mapping. In this way, we 
can match any point on the spline curve F(u) with a point 
on the i-th ( )uFi  curve span, that can be described as 
follows (see [5]): 
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where iQ  are the control points [ ]Tiyix qq ,, , with 

constraints Nxxx qqq ,1,0, <<< K , and ( )uC j  are the spline 
polynomials: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )23

3
23

1

23
2

23
0

2
1253

2
1

43
2
12

2
1

uuuCuuuC

uuuuCuuuuC

−=+−=

++−=−+−=     (3) 

 
2.2 The SG (Sigmoid Generalized) neuron 
Once the weighted sum 

l
ks  is computed, a correspondence 

in the parametric curve has to be find (that is to determine 
the span of the curve); then the value must be mapped 
through the curve. In Figure 1, the k-th neuron SG in the l-
th layer of the network is shown: 
 

 
 

Figure 1: Representation of SG neuron. 
 
Block SG1 represents the inversion of the x-axis component 
of the parametric spline function. By choosing uniform 
distribution of samples along x-axis: 

( ) 1++∆= xjxi qxuuF  (4) 
the inversion of x-axis becomes trivial. We assume: 
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where •   is the floor operator, n is the number of control 

points, ( )l
ka  and ( )l

ku  are respectively the index of the 
considered span and its internal parameter u (a=0 stands for 
the first span of the curve). All the control points 
{ }1,0, ,, −nyy qq K  are saved in a Look Up Table (LUT) and are 
shown in Figure 2. 

 
 

Figure 2: control points with a fixed step ∆x. 

Block SG2 represents Eq. (2) that can be rewritten as: 
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for Catmull-Rom spline, where ( )uFi  is the span a evaluated 
in block SG1 with Eq. (5). 
 
3   Network Architecture 
The chosen architecture is a Multilayer Spline Neural 
Network: three layers of N spline neurons each (N:N:N 
network). It operates on samples in the frequency domain 
(noisy samples) and outputs samples in the same domain 
(clean samples). 

 

 
Figure 3: the frequency domain network. 

 
The input frequency samples are obtained by evaluating the 
Short Time Fourier Transform (STFT) of the input signal to 
be filtered. We isolate N samples of the noisy signal, by a 
Hamming windowing operation. We first tried to exploit 
the speed and efficiency of the FFT algorithm, obtaining 
N/2 frequency samples of Spectrum Phase and as many of 
Spectrum Modulus. It is well known that FFT gives a 
constant resolution in frequency sampling, equal to the 
sampling rate divided by the window size in samples: so, 
for the speech signal, we have too little information at low 
frequencies and too much at the high ones. 
One possible solution to this problem is the well-known 
constant Q Frequency Transform (QFT) described in [8]. 
This solution exhibits two unacceptable drawbacks: first, 
the evaluation of the complex values of the spectral 
components is too much time consuming; second, the so 
called IQFT (inverse transform) doesn’t give back a 
reconstructed signal of acceptable quality. 
 

 
Figure 4: the denoising sistem. 
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Our proposal is to preserve the variable resolution (high at 
the low frequencies and low at the high ones), by evaluating 
FFT on “sub-bands” of constant resolution. We call it Sub-
Band Fourier Transform (SBFT, see Figure 4). 
We evaluate the modulus of the FFT of a windowed chunk 
of samples on four adjacent frequency segments (“sub-
bands”). At the output, we rejoin the sub-bands, in order to 
obtain the Modulus samples of the estimated clean signal. 
In the reconstruction step, we maintain the frequency 
samples of the noisy signal spectrum Phase, thanks to the 
insensibility of the human ear to phase information. 
 
3.1 The SBFT Algorithm 
Chunks of M (M=256) windowed time samples are isolated 
and their FFT is evaluated. This algorithm is characterized 
by a special window function, obtained extending one 32 
frequency sample long Hamming window with its last 
sample up to a length of 256 samples, as depicted in Figure 
5. 
 

 
 

Figure 5: the window function. 
 
The algorithm is as follows: 
1) FFT of the current chunk of 256 samples is evaluated 

and its first 32 values of the Modulus are extracted; 
these values exactly span from 0 Hz to 1000Hz 

 
 
2) same as above, but for 128 samples, and values from 

17-th to 32-th are extracted (1 KHz - 2 KHz) 
 

 
3) same as above, but for 64 samples, and values from 17-

th to 24-th are extracted (2 KHz - 3 KHz) 
 

 

 
4) same as above, but for 32 samples, and values from 13-

th to 17-th are extracted (3 KHz - 4 KHz) 
 

 
The computations of these four FFTs are independent, so 
they can be run in parallel. 
The 32 values from the first FFT are the input pattern of a 
32:32:32 ASNN. The 16 values from the second FFT are 
the input pattern of a 16:16:16 ASNN. The 8 values from 
the third FFT are the input pattern of an 8:8:8 ASNN. The 5 
values from the fourth FFT (the 5-th value is the zero 
frequency component) are the input pattern of a 5:5:5 
ASNN. The operations performed by the four neural 
networks are independent, too; therefore, they can operate 
in parallel on their own frequency sub-band. 
In order to obtain the time samples of the estimated clean 
signal, the denoising operation ends with the IFFT of the 
estimated Modulus, in couple with the noisy Phase. 
 
4   Network Training 
To build up a proper training set, we collect some speech 
signals, considered clean, and sum them to as many noise 
signals, provided they are uncorrelated with respect to the 
clean ones. The noise signals are: 
1) noise from the real world (noise produced by the fan of 

power supply) 
2) white noise (computer generated) 
3) pink noise (computer generated) 

 

The artificial noisy signals represent the input patterns 
(Training Set, i.e. training signals), while their clean 
versions are the desired outputs. 

 
Figure 6: the adaptive learning process. 
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The learning algorithm is based on the classical back-
propagation rule: at every step, clean signals estimated by 
the ASNNs are compared with the desired clean signals, in 
order to evaluate the Mean Square Error, as shown in 
Figure 6. Connection weights and control points are then 
updated by minimizing this error. The updating step can be 
done in parallel inside each sub-network. The first training 
cycle ends when input signal end is reached. The training 
epoch ends when no relevant changes can be appreciated. 
 
5   Simulation Results 
The working sampling frequency was Fs = 8 KHz. Different 
speech samples from different speakers with different 
utterance were employed. Noisy signals at different SNR 
were processed. The developed architectures shows better 
SNR improvements in comparison with classical perceptron 
neural approach [2,3]. 
In a first test session, the neural network was tested by 
comparing its behavior with respect to the training signals 
and to other signals not employed in training process (Test 
Set). In both cases, we estimated the improvement of SNR 
in dB and the quality of the output signal. In the following 
table, test results have been reported, where superimposed 
noises are: real noise, pink noise and white noise. At all 
events, the starting SNR was approximately 6 dB, where, 
signal 1 is the training signal, signal 2 is the same speaker 
pronouncing phrases different from those of the training 
step, signal 3 is the speaker of opposite sex. 
 

signal 1 signal 2 signal 3 

real 17.6 17 15.6 

white 15.5 14.7 15.1 

pink 15.3 15.2 14 

 
Table 1 

 
In a second test session, the neural network was compared 
with respect to classical perceptron multilayer neural 
networks (MLP) [2,3]. An SNR improvement of at most 8 
dB is achieved on Training Set (starting SNR = 8.7 dB), as 
shown in Figure 7.  
The proposed architecture requires a more complex training 
procedure, because of the overload introduced by the 
adaptation of the spline activation function. Nevertheless, in 
the operating phase, the spline neuron exhibits the same 
complexity as the classical neuron, at remarkable lower 
network dimension and topology. In fact, classical 
Perceptron Neural Networks do employ a higher number of 
neurons (up to 240 in 60:60:60:60 structure), with 
absolutely worst performances (see Figure 7). 
On the contrary, the proposed architecture requires only 
32+16+8+5=61 neurons per layer (183 as a whole), with 
better performances (SNR improvement of 17.6 dB). 

    
Figure 7: SNR improvement. 

 
6   Conclusion 
A new neural architecture for speech signal denoising was 
developed. An adaptive spline neuron model was employed 
and a frequency based approach was explored. Results 
show better performances compared to classical MLP 
neural networks, with SNR improvements up to 17.6 dB. 
The developed architecture is real-time application oriented 
because of its low complexity and its very high degree of 
parallelism. 
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