
Multilayer Spline Neural Networks for Speech Denoising in Frequency Domain

GIOVANNI COSTANTINI, MASSIMO CAROTA
Department of Electronics Engineering

University of Rome “Tor Vergata”
Via del Politecnico 1, 00133 Rome

ITALY

Abstract: - The speech denoising Neural Network architecture we propose in this paper is based on Adaptive Spline Neural
Network (ASNN). It is an architecture for real-time oriented applications, due to its low size complexity and high
parallelism. Results show improvements in Signal to Noise Ratio (SNR) and better performances in comparison with
classical denoising neural networks.

Key-Words: - Speech Enhancement, Noise Reduction, Adaptive Filters

1 Introduction
Today sophisticated communication and recording systems
require better performances in speech denoising. Most of
all, we need to improve noisy speech intelligibility in man
to man or man-machine communication. The presence of
noise dramatically reduces performances of modern
automatic speech recognition systems operating in noisy
environments.
The superimposed noise can be impulsive, continuous,
correlated or uncorrelated. Obviously, a general solution to
the problem of speech denoising is not available; a specific
noise-oriented solution is needed. In this paper we focus
our attention to continuous uncorrelated disturbs
(background noise).
The classical Spectral Subtractive approach to the problem
is still one of the most employed one; its main drawback is
the residual “musical noise”, which causes metallic voice
distortion [1]. In recent years, neural networks were
successfully applied in audio signal processing. However,
the huge size of implemented structures and the low
generalization capabilities have discouraged their use.
We aim to obtain low size real-time oriented neural
architectures using Adaptive Spline Neural Network
(ASNN) to improve SNR in background-noise corrupted
speech signals. Comparison is made with classical Multi
Layer Perceptron (MLP) neural networks used in denoising
applications [2,3].

2 Spline Networks
In classical multilayer feed-forward neural networks, each
neuron is characterized by a fixed non-liner activation
function, such as () ()bxbx eea −− +− 11 .
To reduce the network size, at the cost of an acceptably
grater neuron complexity, it is possible to define adaptive
activation functions. The simplest way is to use polynomial
functions [4]. The main drawback of this solution regards
the adaptation of coefficients in the learning phase, due to

spurious minima and maxima. In addition, a polynomial is a
non-bounded function, resulting in a generally poorly
smooth approximation.
Later, to solve the above problems, adaptive spline
activation function was introduced [5-7]. Each neuron is
characterized by a different activation function, whose
shape can be modified through some control points. It has
been proved that such a neuron improves flexibility,
approximation and generalization capabilities of the
network.
In this work, we implement activation functions through
cubic spline interpolation of control points. In every
training step, we update both activation function shape and
input weight values. In the following, we introduce spline
network theory [5,7].

2.1 Spline curve
A planar spline curve is a two-dimensional array, whose
components are piecewise polynomial, univariate functions
of the same degree. Its mathematical formulation ensures
both continuity and existence of derivatives, along the
curve and in correspondence to the joining points between
the curve spans. We define the curve as follows:

() () ()[] ()uFuFuFuF i

N

i
yx C

3

0

−

=

== (1)

where C is the concatenation operator and ()uFi the i-th
curve span. The indices of the C operator in (1) are valid
only for cubic polynomials that are good tradeoffs between
the requested properties and computational complexity.
The domain of parameter u is 10 ≤≤ u for every curve span;
it has the property of being local. So, we can evaluate, from
the abscissa global parameter, the local parameter u, as well
as the curve span i, thru a unique mapping. In this way, we
can match any point on the spline curve F(u) with a point
on the i-th ()uFi curve span, that can be described as
follows (see [5]):

() () ()[] ()∑
=

+==
3

0j
jji

T
yixii uCQuFuFuF (2)

where iQ are the control points []Tiyix qq ,, , with

constraints Nxxx qqq ,1,0, <<< K , and ()uC j are the spline
polynomials:

() () () ()
() () () ()23

3
23

1

23
2

23
0

2
1253

2
1

43
2
12

2
1

uuuCuuuC

uuuuCuuuuC

−=+−=

++−=−+−= (3)

2.2 The SG (Sigmoid Generalized) neuron
Once the weighted sum

l
ks is computed, a correspondence

in the parametric curve has to be find (that is to determine
the span of the curve); then the value must be mapped
through the curve. In Figure 1, the k-th neuron SG in the l-
th layer of the network is shown:

Figure 1: Representation of SG neuron.

Block SG1 represents the inversion of the x-axis component
of the parametric spline function. By choosing uniform
distribution of samples along x-axis:

() 1++∆= xjxi qxuuF (4)
the inversion of x-axis becomes trivial. We assume:

()
()

() ()  () () () l
k

l
k

l
k

l
k

l
k

l
kl

k zzuzan
x

sz −==
−

+
∆

=
2

2 (5)

where •   is the floor operator, n is the number of control

points, ()l
ka and ()l

ku are respectively the index of the
considered span and its internal parameter u (a=0 stands for
the first span of the curve). All the control points
{ }1,0, ,, −nyy qq K are saved in a Look Up Table (LUT) and are
shown in Figure 2.

Figure 2: control points with a fixed step ∆x.

Block SG2 represents Eq. (2) that can be rewritten as:

() []




































−
−−

−−

=

+

+

+

3

2

123

0020
0101
1452

1331

2
11

i

i

i

i

i

Q
Q
Q
Q

uuuuF
 (6)

for Catmull-Rom spline, where ()uFi is the span a evaluated
in block SG1 with Eq. (5).

3 Network Architecture
The chosen architecture is a Multilayer Spline Neural
Network: three layers of N spline neurons each (N:N:N
network). It operates on samples in the frequency domain
(noisy samples) and outputs samples in the same domain
(clean samples).

Figure 3: the frequency domain network.

The input frequency samples are obtained by evaluating the
Short Time Fourier Transform (STFT) of the input signal to
be filtered. We isolate N samples of the noisy signal, by a
Hamming windowing operation. We first tried to exploit
the speed and efficiency of the FFT algorithm, obtaining
N/2 frequency samples of Spectrum Phase and as many of
Spectrum Modulus. It is well known that FFT gives a
constant resolution in frequency sampling, equal to the
sampling rate divided by the window size in samples: so,
for the speech signal, we have too little information at low
frequencies and too much at the high ones.
One possible solution to this problem is the well-known
constant Q Frequency Transform (QFT) described in [8].
This solution exhibits two unacceptable drawbacks: first,
the evaluation of the complex values of the spectral
components is too much time consuming; second, the so
called IQFT (inverse transform) doesn’t give back a
reconstructed signal of acceptable quality.

Figure 4: the denoising sistem.

SBFT

ASNN

ASNN

ASNN

ASNN

noisy
signal

clean
signal

x1
x2

xN

Extimated
Output
Samples

y1

yN

y2
Input
Samples

Extimated
Output
Samples

Spline Neural Network

y1

yN

y2

y1

yN

y2

Our proposal is to preserve the variable resolution (high at
the low frequencies and low at the high ones), by evaluating
FFT on “sub-bands” of constant resolution. We call it Sub-
Band Fourier Transform (SBFT, see Figure 4).
We evaluate the modulus of the FFT of a windowed chunk
of samples on four adjacent frequency segments (“sub-
bands”). At the output, we rejoin the sub-bands, in order to
obtain the Modulus samples of the estimated clean signal.
In the reconstruction step, we maintain the frequency
samples of the noisy signal spectrum Phase, thanks to the
insensibility of the human ear to phase information.

3.1 The SBFT Algorithm
Chunks of M (M=256) windowed time samples are isolated
and their FFT is evaluated. This algorithm is characterized
by a special window function, obtained extending one 32
frequency sample long Hamming window with its last
sample up to a length of 256 samples, as depicted in Figure
5.

Figure 5: the window function.

The algorithm is as follows:
1) FFT of the current chunk of 256 samples is evaluated

and its first 32 values of the Modulus are extracted;
these values exactly span from 0 Hz to 1000Hz

2) same as above, but for 128 samples, and values from

17-th to 32-th are extracted (1 KHz - 2 KHz)

3) same as above, but for 64 samples, and values from 17-

th to 24-th are extracted (2 KHz - 3 KHz)

4) same as above, but for 32 samples, and values from 13-

th to 17-th are extracted (3 KHz - 4 KHz)

The computations of these four FFTs are independent, so
they can be run in parallel.
The 32 values from the first FFT are the input pattern of a
32:32:32 ASNN. The 16 values from the second FFT are
the input pattern of a 16:16:16 ASNN. The 8 values from
the third FFT are the input pattern of an 8:8:8 ASNN. The 5
values from the fourth FFT (the 5-th value is the zero
frequency component) are the input pattern of a 5:5:5
ASNN. The operations performed by the four neural
networks are independent, too; therefore, they can operate
in parallel on their own frequency sub-band.
In order to obtain the time samples of the estimated clean
signal, the denoising operation ends with the IFFT of the
estimated Modulus, in couple with the noisy Phase.

4 Network Training
To build up a proper training set, we collect some speech
signals, considered clean, and sum them to as many noise
signals, provided they are uncorrelated with respect to the
clean ones. The noise signals are:
1) noise from the real world (noise produced by the fan of

power supply)
2) white noise (computer generated)
3) pink noise (computer generated)

The artificial noisy signals represent the input patterns
(Training Set, i.e. training signals), while their clean
versions are the desired outputs.

Figure 6: the adaptive learning process.

+

Segnale pulito

Rete neurale

+

-

Segnale
rumoroso

Segnale stimato

+

Segnale pulito

Rete neurale

+

-

Segnale
rumoroso

Segnale stimato

The learning algorithm is based on the classical back-
propagation rule: at every step, clean signals estimated by
the ASNNs are compared with the desired clean signals, in
order to evaluate the Mean Square Error, as shown in
Figure 6. Connection weights and control points are then
updated by minimizing this error. The updating step can be
done in parallel inside each sub-network. The first training
cycle ends when input signal end is reached. The training
epoch ends when no relevant changes can be appreciated.

5 Simulation Results
The working sampling frequency was Fs = 8 KHz. Different
speech samples from different speakers with different
utterance were employed. Noisy signals at different SNR
were processed. The developed architectures shows better
SNR improvements in comparison with classical perceptron
neural approach [2,3].
In a first test session, the neural network was tested by
comparing its behavior with respect to the training signals
and to other signals not employed in training process (Test
Set). In both cases, we estimated the improvement of SNR
in dB and the quality of the output signal. In the following
table, test results have been reported, where superimposed
noises are: real noise, pink noise and white noise. At all
events, the starting SNR was approximately 6 dB, where,
signal 1 is the training signal, signal 2 is the same speaker
pronouncing phrases different from those of the training
step, signal 3 is the speaker of opposite sex.

signal 1 signal 2 signal 3

real 17.6 17 15.6

white 15.5 14.7 15.1

pink 15.3 15.2 14

Table 1

In a second test session, the neural network was compared
with respect to classical perceptron multilayer neural
networks (MLP) [2,3]. An SNR improvement of at most 8
dB is achieved on Training Set (starting SNR = 8.7 dB), as
shown in Figure 7.
The proposed architecture requires a more complex training
procedure, because of the overload introduced by the
adaptation of the spline activation function. Nevertheless, in
the operating phase, the spline neuron exhibits the same
complexity as the classical neuron, at remarkable lower
network dimension and topology. In fact, classical
Perceptron Neural Networks do employ a higher number of
neurons (up to 240 in 60:60:60:60 structure), with
absolutely worst performances (see Figure 7).
On the contrary, the proposed architecture requires only
32+16+8+5=61 neurons per layer (183 as a whole), with
better performances (SNR improvement of 17.6 dB).

Figure 7: SNR improvement.

6 Conclusion
A new neural architecture for speech signal denoising was
developed. An adaptive spline neuron model was employed
and a frequency based approach was explored. Results
show better performances compared to classical MLP
neural networks, with SNR improvements up to 17.6 dB.
The developed architecture is real-time application oriented
because of its low complexity and its very high degree of
parallelism.

References:
[1] S. F. Boll, Suppression of Acoustic Noise in Speech

Using Spectral Subtraction’, IEEE Trans. Acoustic.
Speech and Signal Preocessing, vol ASSP-27, no.2,
pp. 113-120, 1979.

[2] T. T. Le, Speech Enhancement Using Non-Linear
Prediction’, TENCON’93. Proceedings. Computer,
Communication, Control and Power Engineering
1993, vol.3, pp. 306-309.

[3] S. Tamura, A. Waibel, Noise Reduction Using
Connectionist Models’, Acoustics, Speech and Signal
Processing 1988. ICASSP-88, vol.1, pp. 553-556.

[4] G. P. Scavone, P. R. Cook, Combined linear and
non-linear prediction in calibrating models of musical
instruments to recordings’, Proceedings of
International Computer Music Conference, ICMC‘94,
pp. 433-434.

[5] S. Guarnieri, F. Piazza, A. Uncini, Multilayer
Feedforward Networks with Adaptive Spline
Activation Function’, IEEE Transaction on Neural
Networks, Vol.10, no.3, May 1999.

[6] A. Uncini, L. Vecci, P. Campolucci, F. Piazza,
Complex-valued Neural Networks with Adaptive
Spline Activation Function for Digital Radio Links
Nonlinear Equalization’, IEEE Trans. on Signal
Processing, Vol. 47, No. 2, February 1999.

[7] L. Vecci, F. Piazza, A. Uncini, Learning and
Approximation Capabilities of Adaptive Spline
Activation Function Neural Networks’, Neural
Networks, Vol. 11, No. 2, March 1998.

[8] Brown J.C., Calculation of a constant Q spectral
transform. J. Acoust. Soc. Am., vol. 89, January,
1991, pages 425-434

2.9 3.6 3.4

8.1

17.6

0
2
4
6
8

10
12
14
16
18
20

Perceptron 10:10:1

Perceptron 20:20:20

Perceptron 40:40:40

Perceptron 60:60:60

Frequency SPLINE
architecture

SNR Improvements a) Time domain operating
Multi-Perceptron 40:40:40

b) Time domain operating
Multi-Perceptron
40:40:40:40

c) Time domain operating
Multi-Perceptron 60:60:60

d) Time domain operating
Multi-Perceptron
60:60:60:60

e) Frequency based SPLINE
architecture with SBFT
algorithm 61:61:61a b c d e

2.9 3.6 3.4

8.1

17.6

0
2
4
6
8

10
12
14
16
18
20

Perceptron 10:10:1

Perceptron 20:20:20

Perceptron 40:40:40

Perceptron 60:60:60

Frequency SPLINE
architecture

SNR Improvements a) Time domain operating
Multi-Perceptron 40:40:40

b) Time domain operating
Multi-Perceptron
40:40:40:40

c) Time domain operating
Multi-Perceptron 60:60:60

d) Time domain operating
Multi-Perceptron
60:60:60:60

e) Frequency based SPLINE
architecture with SBFT
algorithm 61:61:61a b c d e

