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Abstract: - In this paper, we introduce an associative memory storing grey scale images. It’s based on a suitable translation of 
the grey scale image into a Gray-coded binary image, stored in a single BSB binary neural network. The particular BSB we 
are going to exploit has the property of local connectivity. The chosen learning algorithm guarantees asymptotic stability of 
the stored patterns, low computational cost, and control of the connection weights precision, without multiplication. 
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1   Introduction 
The most renowned application of associative memories [1-
3] is that of image recognition in presence of noise or, in 
other words, the recognition of a noisy image, even if it 
differs from the original one in any pixel. 
An image with n pixels and L grey levels can be represented 
by R = log2(L) bits for each pixel. It can be stored into a 
binary neural network with nR neurons; however, the 
number of interconnections, in case of a classical BSB, is 
very large, i.e. n2R2. 
A second approach is based on a multilevel activation 
function with L plateaus [4-5]. The network exhibits stable 
equilibrium points with multivalued components, 
corresponding to the different grey levels. The number of 
neurons is n; the number of interconnections is n2. 
A third approach is based on complex-valued neural 
networks [6-7]. The neuron state can assume one of L 
complex values, with unit magnitude and phases regularly 
spaced in [0,2π]. Each phase angle corresponds to a 
different grey level of the image pixel. The number of 
neurons is n; the number of interconnections is n2. 
In a fourth approach, the image is decomposed into R binary 
images, stored into R independent binary neural networks. 
The total number of interconnections is n2R, but each 
independent network has only n2 interconnections [8]. 
The first approach seems to be the most disadvantageous of 
all. Nevertheless, it will be the one we will follow, with a 
trivial but deeply effective modification: the connectivity of 
the network will be local, that is each neuron will be 
connected with neurons of its neighbourhood only. 
The binary patterns to be stored correspond to as many 
equilibrium points of the recurrent neural network. The 
network dynamics recovers a stored pattern starting from a 
noisy version of it and approaching the corresponding 
equilibrium point. To store a pattern, we need to find the 
values of the weight matrix, in order to satisfy some design 
requirements. 
In literature, several neural models implementing binary 
associative memories have been proposed. Among all the 

Brain-State-in-a-Box (BSB) neural network is frequently 
used [9-11]. In addition, we will focus on a particular BSB: 
a locally connected BSB (LBSB), as explained in Sec. 4. 
 
2   Review of the BSB neural model 
The BSB neural model is described by the following 
difference equation: 
 

x(k + 1) = g[x(k) + αW x(k)]      k = 0, 1, 2 .....    (1) 
 

x(k) = [xi(k)] ∈ [-1,+1]m, is the state vector at time k, W = 
[wij]∈ℜm×m is the local weight matrix. g is the piecewise-
linear saturation nonlinearity 
 

g(x) = 1  if  x ≥ 1 
g(x) = x  if  –1< x < +1 (2) 
g(x) = -1 if  x ≤ –1. 

 
Property 1. Let wii ≥ 0 for i = 1,…,m. Then, only the 
vertices of [-1,+1]m can be asymptotically stable 
equilibrium points of system (1). This means that only 
binary steady-state solutions can be observed. 
 
Property 2. Let ξ ∈ Bm, B = {-1, +1}, a given binary 
equilibrium point of system (2). ξ is asymptotically stable if  
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Given a set of desired binary equilibrium points ξ1….ξQ 
(binary images to be stored), we can find the suitable weight 
values, by solving constraints (3). 
 
Property 3. Let wii = 0, for i = 1,…,m. Assume that ξ ∈ Bm 
is an asymptotically stable equilibrium point of system (1). 
Then, none of the points ξ′∈ Bm at Hamming distance one 
from ξ is an equilibrium point. 
 
A zero-diagonal weight matrix guarantees the absence of 
two or more equilibrium points in a neighborhood and leads 
to large basins of attraction for the stored patterns [11]. 



 
Property 4. System (1) is completely stable if the weight 
matrix W is symmetric. 
 
This means that the system evolution, starting at every 
initial point x(0), always converges to an equilibrium point, 
without limit cycles or chaotic behavior. Lots of simulations 
showed that system (1), when properly designed, is 
completely stable, even if Property 4 is not satisfied. So, 
stability conditions will not be taken into account. 
 
3 Design of associative memories with finite 

precision 
Starting from Properties 2 and 3, the design of a binary 
associative memory, based on model (1), can be formulated 
as follows. Find a local connection matrix W such that: 
 
• a given set of Q bipolar patterns to be stored ξ(1)…ξ(Q) ∈ 

Bm represent as many asymptotically stable equilibrium 
points of system (1); 

• the basins of attraction of desired equilibrium points are 
as large as possible; 

• the number of undesired stable equilibrium points is as 
small as possible. 

• the following set of constraints be satisfied 
 

0
1

)()( >≥∑
≠
=

m

ij
j

q
j

q
iij ξξw δ  i = 1,…,n;  q = 1,…,Q    (4) 

 

The last point can be formulated as an unconstrained 
optimization problem, solved by minimizing the following 
convex cost function [11] 
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where P(x) = 1,  if x < 0;    P(x) = 0  if x ≥ 0, and 
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Gradient descent applied to (6) gives [10] 
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If there’s a solution, related to a global minimum of the cost 
function (5), iterative algorithm (7) converges to it [11]. 
Each addendum in (7) can be +1, -1 or zero. Consequently, 
the learning algorithm exhibits three main features: 
 
1. Only additions are required for its implementation.  
2. Starting from wij(0) = 0, weights assume the values 

wij(t) = ± η Nij(t), where Nij(t) is a positive integer. 
Hence, all the weights will have finite precision; the 

required number of bits is log2(Nmax)+1, where Nmax is 
the maximum value of Nij. 

3. The algorithm can be implemented on digital hardware 
without numerical errors, provided that a sufficient 
number of bits are used. No rounding or truncation is 
required to represent the weights. A digital 
implementation of the algorithm is discussed in [12]. 

 
Asymptotic convergence of (7) to a solution of (4) is not 
guaranteed; the iteration can approach a limit cycle in the 
solution space [12]. In our experiments, the algorithm is 
stopped when all the terms ∆i

(q)  become non-negative, for 
every i, l. If this condition is not met within a given number 
of iterations, we say that the desired patterns cannot be 
stored with the stability margin δ. By choosing η small 
enough, satisfactory performances can be obtained. 
 
4 Locally connected BSB (LBSB) and 

decomposition of gray scale images 
Consider an M×N LBSB, with M×N cells arranged in M 
rows and N columns. The basic unit of a LBSB is the cell. 
Our BSB is locally connected, because any cell in a LBSB 
directly interacts with only its neighbour cells. In Fig. 1 the 
case of first order neighborhood is shown: a cell and its 
neighbourhood are highlighted. In the architecture proposed 
in this paper, we adopt a neighborhood order such that the 
total number m of neighborhood neurons is much less than 
M×N. The local connection weights of a LBSB can be 
computed by the iterative algorithm (7). 
Each of the n pixels of an L grey level image can be 
represented by R bits, b1,...,bR, with R = log2L. In this 
paper, we consider L = 16 grey levels (R = 4). One image 
can be decomposed into R binary images, n pixels each. The 
binary images can be stored into a binary LBSB associative 
memory, mapping the bits of each pixel over the cells, as 
depicted in Fig. 1. Four contiguous are used to store a single 
pixel. With this particular binary pattern, bits from different 
pixels can fall in the same neighbourhood. 
 

 
Fig. 1. LBSB neighborhood and pixel bit distribution 

 
We reconstruct the original image by recalling a stored 
binary pattern and applying the inverse mapping to extract 
the bits of each pixel from the stable state vector. 
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A zero mean additive Gaussian noise is one of the principal 
cause of image corruption. This kind of noise can provoke a 
jump from a quantization level to an adjacent one and, as a 
consequence, the reversing of several bits. Thus, the 
Hamming distance between a stored pattern and its noisy 
version is in each neighbourhood amplified. To circumvent 
this problem, instead of the usual binary coding, we adopt 
the reflected binary Gray coding: moving from one 
quantization level to an adjacent one, only one bit can 
change. 
Using the Gray code, zero-mean additive Gaussian noise 
results in the minimal Hamming distance, in each 
neighbourhood, between the stored pattern and its noisy 
version. So, the probability of correct recall is improved. 
 
5   Experimental tests 
To show the effectiveness of the proposed method, many 
experiments have been accomplished. More noticeable is 
the following. We store two images with 200x200 pixels 
and L=16 grey levels. One of these images is shown in Fig. 
2a). Due to computer memory limitations, we partition each 
image into 16 parts, 50x50 pixels each. This way we obtain 
32 50x50 images that can be stored into a LBSB with 10000 
cells. 
Then, we tried to recall the stored images starting from a 
corrupted version of their. Noisy initial states were 
generated by adding to the stored images a zero mean 
Gaussian noise with standard deviation equal to 1.7. An 
example of noisy image is shown in Fig. 2b). In Fig. 2c) we 
show the same image after mapping in the LBSB. All the 32 
images were correctly recalled. 
 

a)   b) 
 

   
 

c) 
 

Fig. 2 a) One stored image 
b) Noisy version of image a) 
c) Image a) mapped on the LBSB 

7   Conclusions 
In this paper a LBSB neural network implementation for 
associative memories has been proposed. This approach is a 
variation of the one proposed in [8]. The main differences 
are: the mapping procedure of the images in the BSB and 
the local connectivity of the network. 
The experimental results show the good behaviour of the 
structure in term of images recall, when the original images 
are corrupted by gaussian noise. 
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