

Artificial Neurons Based on CMOS β-Driven
Threshold Elements with Functional Inputs1

V. VARSHAVSKY1, V. MARAKHOVSKY2, I. LEVIN3

1,3 School of Engineering, Bar Ilan University, ISRAEL
2 The University of Aizu, JAPAN

Abstract - This paper deals with a CMOS based artificial neuron implemented by threshold elements. We
consider the artificial neuron as a threshold element with controlled inputs having weights formed during
a learning process. A so-called β-driven threshold element is used for in the scheme of the neuron.
Functioning of this element is described in a specific ratio form. The β-driven implementation is based on
using summarized conductivities of n-and p-chains of a CMOS gate as the ratio of weighted sums. The
threshold element has a wider functional capability in comparison with the traditional functional basis.
Moreover, its functional capability can be enriched.
We propose a method for increasing the functional capability of the threshold element by introducing so-
called functional inputs. Each functional input corresponds to a Boolean sum (or product) of a particular
subset of input variables. This sum (or product) serves as a single input of the threshold element. It is
shown that introducing functional inputs enables expansion of the functional capability of β-driven
elements up to the capability to implement an arbitrary monotonic function. The CMOS based
implementation of the β-driven threshold element with newly proposed functional inputs is presented.
Methods of the current stabilization of functional inputs are proposed. In the proposed implementation of
the artificial neuron, each input weight is determined by the current value via a suitable current stabilizer.
This value can be effectively controlled by the value of the voltage at the gate of one of the current
stabilizer’s transistors.
The paper presents examples of the SPICE simulation of behavior of the proposed artificial neuron in the
modes of learning and maintaining the input weights values.

1 The project is financed by the Ministry of Industry and Trade of Israel, Magneton Agency (file N 27995).

Key-Words: Artificial neuron, threshold element, learnable circuit, CMOS circuits, SPICE-simulation.

1 Introduction
The great interest to threshold elements and
threshold logics, lasting for tens of years [1-6],
is caused, to our mind, first of all by wider
functional threshold elements’ capabilities in
comparison with the traditionally based ones’
(i.e. AND, NAND, OR, NOR etc.), and by the
fact, that threshold elements may be used as a
functional basis for artificial neural networks.
The effectiveness of using the threshold basis
depends first of all on the implementation
complexity of a threshold element.
In [7-12] we suggested a so-called β-driven
CMOS threshold element that requires only one
transistor per a functional input, having a weight
that could be determined by the width of this
transistor. It’s hard to imagine the
implementation to be simpler than this one.
The base for β-driven implementation was a
fairly simple transformation of a regular analytic
representation of the threshold function to a ratio
form [7].

In the traditional representation of the threshold
function

)(
1

0
ηω −= ∑

−

=

n

j
jj xSignY ,

<
≥

=
00
01

)(
Aif
Aif

ASign , (1)

where jω - the weight of the jth input, η -
threshold, we select some arbitrary S-subset of
variables, for which:∑

∈

=
Si

i ηω .

Then:

∑ ∑ ∑∑

∑ ∑ ∑

∉ ∉ ∈∈

−

= ∉ ∈

−=−−=

=−−=−

Sk Sk Si
iikk

Si
iikk

n

j Sk Si
iikkjj

xxxx

xxx

ωωωω

ωηωηω

)1(

)(
1

0 (2)

Hence:

=−=

∑
∑

∑
∈

∉
−

=
Si

ii

Sk
kkn

j
jj x

x
RtxSignY

ω

ω
ηω)(

1

0

, where

<
≥

=
10
11

)(
Bif
Bif

BRt . (3)

To avoid uncertainty of 0/0 type, it’s enough to
shift the threshold in the initial determination of
a threshold function by some δ , where

10 << δ , as follows:

 +
=+−=

∑
∑

∑
∈

∉
−

=
Si

ii

Sk
kkn

j
jj x

x
RtxSignY

ω

ωδ
δηω)(

1

0

,

where

<
>

=
10
11

)(
Bif
Bif

BRt . (4)

β-driven implementation, following from the
ratio form, is based on changing the ratio of
weight sums to the ratio of summarized
conductivities of n- and p-chains of CMOS gate
(Fig.1,a).
The functioning of the circuit in Fig.1,a is
described in Table 1. In the table, every cell
corresponding to one combination of input
variable values is divided to 3 sub-cells. The
upper left sub-cell contains the number of single
conductivities of p-transistors, switched on, for
the given values set of input variables. The
upper right sub-cell contains the analogous
number for n-transistors. The lower sub-cell
contains the output function value (the inverter
output).

x0 x1 x4

x2 x3

3/1 3/1

2/1 2/1 1/6

12/1

Y Y

Vd d

x0
x1 x4

x2 x36/1 6/1

1/1 1/1 4/1

1/2
Y Y

Vd d

d d

a) b)

Figure 1. CMOS implementations of the threshold
for ratio 1/3 for a certain function and its dual
function.
Table 1. Functional table for the circuit shown in
Fig.1,a.

x0x1x2
x3x4

 000 100 010 110 001 101 011 111

6 δ 6 2+δ 6 2+δ 6 4+δ 2 δ 2 2+δ 2 2+δ 2 4+δ 00
0 0 0 0 0 1 1 1
5 δ 5 2+δ 5 2+δ 5 4+δ 1 δ 1 2+δ 1 2+δ 1 4+δ 10
0 0 0 0 0 1 1 1
5 δ 5 2+δ 5 2+δ 5 4+δ 1 δ 1 2+δ 1 2+δ 1 4+δ 01
0 0 0 0 0 1 1 1
4 δ 4 2+δ 4 2+δ 4 4+δ 0 δ 0 2+δ 0 2+δ 0 4+δ 11
0 0 0 1 1 1 1 1

Table 2, represents the function that is dual to
the initial one.
Table 2. Functional table for the circuit shown in
Fig.1,b.

x0x1x2x3x4 000 100 010 110 001 101 011 111

4+δ 0 2+δ 0 2+δ 0 δ 0 4+δ 4 2+δ 4 2+δ 4 δ 4 00
0 0 0 0 0 1 1 1
4+δ 1 2+δ 1 2+δ 1 δ 1 4+δ 5 2+δ 5 2+δ 5 δ 5 10
0 0 0 1 1 1 1 1
4+δ 1 2+δ 1 2+δ 1 δ 1 4+δ 5 2+δ 5 2+δ 5 δ 5 01
0 0 0 1 1 1 1 1
4+δ 2 2+δ 2 2+δ 2 δ 2 4+δ 6 2+δ 6 2+δ 6 δ 6 11
0 0 0 1 1 1 1 1

Indeed, the function presented in Table 2 is:

).5422(43210

434241403213201
−++++=

∨∨∨∨∨=
xxxxSign

xxxxxxxxxxxxxxY (5)

It follows from the definition of the dual
function and (6) that

.
))()()((

143424140321320

43424103210

43424103210

Yxxxxxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxYd

=∨∨∨∨∨=
=∨∨∨∨∨∨∨=

=∨∨∨=
 (6)

The dual function in the threshold basis keeps
input weights, and the threshold is calculated as
the following:

∑ ∑∑
−

=

−

=

−

=

−+−=−
1

0

1

0

1

0
)1()]([

n

j

n

j
jjj

n

j
djj xSignxSign ηωωηω (7)

The most attractive feature of threshold
functions is their functional plasticity, i.e. the
possibility of changing the function, realized by
threshold element, by means of simple changing
input and output weights. This feature becomes
important only if the input and the output
weights control may be realized in a simple way.
So long as transistor conductivity depends
monotonously on its gate voltage, the simplicity
of realizing the control of the output weight in β-
driven CMOS threshold elements becomes
obvious [9,10] (Fig.2).

x1

V1

x2

V2

x3

V3

x4

V4

Vth

Figure 2. Implementation of the threshold

function ∑
=

−=
4

1

)]()([
j

thpjjn VxVSignY ϕϕ .

A threshold element realizes the threshold
function, which is monotonic one. However,
there are monotonic functions that are not
threshold. Among monotonic functions of
four (and more) variables there are some,
which are not threshold, for
example: 3210 xxxxy += .
As it can be seen, this function describes the
behavior of a two-input multiplexer – the circuit,
which is significant for a plenty of
implementations.
In this paper we propose methods enabling to
expend functional capabilities of β-driven
elements right up to the capability to implement
an arbitrary monotonic function.
We describe an artificial neuron based on the
proposed threshold element having functional

inputs. We consider the whole neuron being a
threshold element with controlled inputs having
weights formed during a learning process. We
propose CMOS implementations of both the β-
driven threshold element, and the artificial
neuron based on this element. We investigate
characteristics of the proposed hardware
implementations.

2 Threshold elements with
functional inputs
First of all let us consider a number of circuits
and functional examples.
The circuit, shown in Fig.3 a, realizes the second
order symmetrical monotonic function

)2(43210

4342324131

21403020101

−++++=
=∨∨∨∨∨

∨∨∨∨∨=

xxxxxSign
xxxxxxxxxx

xxxxxxxxxxY
 (8)

Let us split the n-channel part of the circuit to
two channels and incorporate a current
stabilizer, thus fixing the current equal to i0 in
the channels (Fig. 3b). The function (9) will
evidently change, as follows:

212010

2102

zzzxzx
2)zzSign(xY

∨∨=
=−++=

, (9)

where 211 xxz ∨= and 432 xxz ∨= , hence:

42324131

403020102

xxxxxxxx
xxxxxxxxY

∨∨∨∨
∨∨∨∨= (10)

x0

x1 x2 x3 x4

3/1 1/3

1/1 1/1 1/1 1/1

x0

x1 x2 x3 x4

3/1 1/3

1/1 1/1 1/1 1/1

a) b)

Y1 Y2

Figure 3. Implementations of functions: a) for the
function (8); b) for the function (9).

It can be seen from the above example, that, if a
particular subset of n-transistors controlled by
x j ∈ Rk variables, is selected, and the total
current is limited by unit value i0 of a current
stabilizer via this subset, the whole of this
variable subset will operate in the output
function as a single variable

zk = Vx j
x j ∈ Rk

. (11)

On the other hand, if a particular subset of p-
transistors controlled by xi ∈ Rm variables, is
selected, and the total current via this subset of
transistors is limited by unit value i0 of a current

stabilizer, the whole of this variable subset of
these variables operates in the output function as
a single variable

mRix
i

mRix
im xxz

∈∈
== &V . (12)

For CMOS β-driven threshold elements define
as a functional input the subcircuit (Fig. 4)
consisting of:

a) transistors, connected in parallel and
controlled by the variables of a particular
subset,

b) a current stabilizer, connected in series,
that the current via this subcircuit doesn’t
depend on the number of open transistors.

The positive feature of the proposed circuit is a
fact that its implementability is independent on
the rank of the product (sum) but on the number
of products in the corresponding minimum form
only.
We propose to use the threshold current
stabilizer (Fig. 4) for generating (limiting) unit-
operating current and hence, the higher degree
of stabilization would be provided.

Figure 4. Current stabilizer:
circuit of the functional input,
having a current stabilizer on the
couple of transistors connected in
series;

It seems that any MOS-transistor provides
current stability in saturated mode. Really, the
current via T1-transistor (Fig.4), under the
condition thref VVv −≥ 11 (saturated mode)
doesn’t depend on v1, according to the first order

Shockley equations 2
11)(

2 thref VVI −=
β

.

However, taking channel length modulation
effect into consideration, the linear dependence
of the current via transistor on the voltage drop
on it will be obtained as follows:

).1()(
2

)1()(
2 1

2
1

2
11 vVVVVVI threfdsthref λβλβ

+−=+−=

x 1 x k

Vref2

Vref1 T1

T2

1.75v

v1

v2

Results of the SPICE simulation for the
proposed stabilizer are presented in Fig. 5.

V = 3.5Vref2

V = 2.2Vref2

Figure 5. Behavior of the current stabilizer
(Vref2=3.5V and Vref2=2.2V).

3. Learnable neuron circuit and the
way of teaching
Implementing an artificial neuron as a digital-
analog device has a number of advantages over
software implementation. First, this is a sharp
increase in performance. However, such an
implementation, due to its internal analog
nature, has rigid restrictions on the class of
threshold functions that can be realized. These
restrictions considerably decrease the functional
possibilities of neural networks with fixed
number of neurons.
In [9-12] we suggested a CMOS learnable
neuron based on β-driven threshold element that
consisting of synapses, β-comparator and output
amplifier. It requires 5 transistors and one
capacitor per a learnable synapse. The neuron
has one remarkable property: its
implementability depends only on the threshold
value and does not depend on the number of
logical inputs and their weights. This fact and
low complexity make this artificial neuron fairly
attractive for usage.
In our later works [13-18] the suggested neuron
was modified by increasing the steepness of the
β-comparator and incorporating two extra
amplifiers with different thresholds. The circuit
implementing such a neuron is given in Fig. 6.

F

V

V
F

F

x1 xn

V
ref1

ref2
high

mid

low

dd

Decrement
Increment

Vout

x2

S1ω 1
S2ω 2

Snω n

Figure 6. Learnable neuron circuit.

This circuit has two p-channel transistors with
reference voltages 1refV and 2refV on their gates,

which provide very sharp steepness of the β-
comparator characteristic in the working point; n
synopses jS with weighted binary inputs jx

(adjusted weight of jx is jω) and three output
amplifier with different thresholds.
Synapse circuit with a binary input is
represented in Fig. 7.

Vout

M1

M2

M3

ref3

Decrement

Increment
VCj

Vdd

Vxj

C j

Figure 7. Synapse circuit with binary input.

We incorporate a current stabilizer into this
circuit. The synapse is activated when .1=jx
In this case transistor M3 is opened. Transistor
M1 sets the value of the synapse current by
means of control voltage

jCV on its gate.

Circuits used for forming the control voltages
that determine the weights of the input variables
of a neuron just slightly depend on the way of
the synapse implementation. Some of these
circuits were studied (for example, in [19]) and
they are of about the same structure. The
difference between them is mainly associated
with the memory element they use (capacitor or
transistor with a floating gate) and with the way
of representing the values of the input binary
variables ({0,1} or {-1, +1}).
In our case, the voltage that controls the synapse
current (i.e. variable weight) accumulates on the
capacitor during the teaching. The capacitor
charge is allowed to change only when the
synapse is active, i.e. when the input variable
equals “Log.1'”. The capacitor charge increase
or decrease is realized by approximately the
same quanta that determine the learning step.
The learning step is specified on the base of the
required accuracy of setting the control voltages.
Its value can be controlled by choosing the
amplitude and duration of “increment” and
“decrement” signals.
What is the meaning of adding two extra output
amplifiers in Fig. 6? One of the important
parameters of a threshold element is the smallest
(for the given input combinations) deviation of
the β-comparator output voltage from the output
amplifier threshold).(outV∆± Actually, outV∆
determines the maximum complexity of a

function that can be realized on a single neuron.
In hyper-geometrical representation, a threshold
element corresponds to a hyperflat separating
the set of all input combinations to two subsets T
and F. It is easy to understand that outV∆ is
determined by the shortest distance from T and
F sets to the hyperflat. The same sets T and F
can be separated by different hyperflats. Since in
our learnable neuron the input weights change
continuously, then the set of separating
hyperflats also fills some subspace, and among
this set of hyperflats there is a hyperflat with the
biggest distance from T and F. Indeed, let us
consider a threshold function

).332(432143231 −+++=∨∨= xxxxSignxxxxxy
The combinations closest to the separating
hyperflat are T0={1010,0110,0001} and
F0={1100, 0010}. The optimal representation of
this threshold function in reduced ratio form is

)2.18.04.04.0(4321 xxxxRty +++= with
minimum residual (deviation of weighted sum of
variables from the threshold) determining outV∆
equal to ±0.2. In the same time, there is a correct
implementation

)2.18.076.022.0(4321 xxxxRty +++= with
minimum residual equal to ±0.02.
The two extra amplifiers optimize outV∆ during
the learning. The amplifier thresholds highF and

lowF are selected so that their difference with the
threshold of the main output amplifier midF is
equal to the guaranteed outV∆ . The neuron is
taught so that the outputs of all the three
amplifiers have the same value, providing the
guaranteed value of outV∆ .

If the input weight memory is implemented on a
capacitor, then the threshold function degrades
because of the capacitor charge leakage via
parasite resistances. In this case, the extra
amplifiers provide on-line recovery of synaptic
weights values. Since a capacitor discharges
fairly slowly, the wrong values of neuron output
first appear at the outputs of the amplifiers highF

and lowF while the main output midF functions
correctly. Thus, different values of highF or lowF

as compared to midF is a signal of some change
in the synaptic weights. To correct them, we can
use the same mechanism of forming increment
and decrement signals as used in the learning.
The general structural scheme used when
simulating the process of teaching the neuron to

the given threshold logical function is shown in
Fig. 8.

Figure 8. General scheme of the experiment

The generator of the input signals periodically
produces sequences of value combinations of
input variables nxxx ..., , , 21 and the sequence of
values that the given logical function Y takes on
these combinations. Teaching/refresh switch
passes to its output either the signal Y (when
teaching) or the output signal midF (when
refreshing). The comparator produces the signals
“decrement” and “increment”. The passive
values of these signals are equal to “0” and “1”
respectively. Their logical description looks as
follows:

highFYDecrement = and

lowFYIncrement ∨= when teaching; and

highmid FFDecrement = and

lowmid FFIncrement ∨= when refreshing.
Physically, these signals are realized with
limited amplitude and duration, determining the
learning step.
In all the experiments with learnable neurons,
there is an acute problem of selecting the
threshold function for teaching what determines
the simulation time. The experiment duration is
often measured in hours and even days. A
threshold function should satisfy the following
requirements:
− short sequence of variable combinations
checking all possible switches of the function
value,
− covering a wide range of weights,
− high value of the threshold for the given
number of variables.
Threshold functions that can be represented by
Horner’s scheme

(...)))((4321 −−−− ∨∨ nnnnn xxxxx meet these
requirements. For such functions, the sequence
of integer values of the variable weights and the
threshold with minimum sum forms the
Fibonacci sequence. The length of the checking

sequence is n+1 for the Horner's function of n
variables.

5 Concluding Remarks
In this paper we described a CMOS
implementation of an artificial neuron based on
a β-driven threshold element proposed by the
authors. Using such an element as a functional
basis of artificial neurons has a number of
advantages in comparison with the traditional
functional basis. In this paper we have focused
on extension of functional capability of the
threshold element.
The main contribution of the paper can be
summarized as follows:
1. Introducing functional inputs into the β-

driven threshold element to allow to
increasing its functional capability up to the
capability of realizing every monotonic
Boolean function.

2. Implementation of the β-driven threshold
element, having the proposed functional
inputs, by a CMOS circuit, and investigation
of its implementability.

3. Developing a method for current
stabilization of the functional inputs.

4. Implementation of an artificial neuron using
of the proposed threshold element, wherein
the neuron has controlling inputs, weights of
which are formed during the learning
process, and wherein the current via a
current stabilizer of a suitable input
determines the weight of this input.

All the proposed solutions were simulated. The
SPICE simulation results demonstrate the high
efficiency of the solutions and consequently
motivate further investigations of the artificial
neurons based on β-driven elements.

References:
[1] S. McCulloch and W. Pitts, “A Logical
Calculus of the Ideas Imminent in Nervous
Activity”, Bulletin of Mathematical
Biophysics, 5, 1943, pp.115-133.
[2] C. Mead, Analog VLSI and Neural Systems.
Addison-Wesley, 1989.
[3] T. Shibata, T. Ohmi, “Neuron MOS Binary-
logic Integrated Circuits: Part 1, Design
Fundamentals and Soft-hardware Logic Circuit
Implementation”, IEEE Trans. Electron Devices,
Vol.40, No.5, 1993, pp. 974-979.
[4] T. Ohmi, T. Shibata, K. Kotani, “Four-
Terminal Device Concept for Intelligence Soft

Computing on Silicon Integrated Circuits”.
Proc. of IIZUKA’96, 1996, pp. 49-59.
[5] S.M. Fakhraie, K.C. Smith, VLSI-Compatible
Implementations for Artificial Neural Networks.
Kluwer, Boston-Dordrecht-London, 1997.
[6] Montalvo, R. Gyurcsik and J. Paulos,
“Toward a General-Purpose Analog VLSI
Neural Network with On-Chip Learning”, IEEE
Transactions on Neural Networks, Vol.8, No.2,
March 1997, pp.413-423.
[7] V. Varshavsky, “Beta-Driven Threshold
Elements”, Proceedings of the 8-th Great Lakes
Symposium on VLSI, IEEE Computer Society,
Feb. 19-21, 1998, pp.52-58.
[8] V. Varshavsky, “Threshold Element and a
Design Method for Elements”, filed to Japan's
Patent Office, Jan.30, 1998, the application
number is JPA H10-54079.
[9] V. Varshavsky, “Simple CMOS Learnable
Threshold Element”, International ICSC/IFAC
Symposium on Neural Computation, Vienna,
Austria, Sept.23-25, 1998.
[10] V. Varshavsky, “CMOS Artificial Neuron
on the Base of Beta-Driven Threshold Element”,
IEEE International Conference on Systems, Man
and Cybernetics, San Diego, CA, October 11-
14, 1998, pp.1857-1861.
[11] V. Varshavsky, “Synapse, Threshold
Circuit and Neuron Circuit”, filed to Japan's
Patent Office on Aug. 7,1998, the application
number is JPA-H10-224994.
[12] V. Varshavsky, “Threshold Element”, filed
to Japan's Patent Office on Aug. 12, 1998, the
application number is JPA-H10-228398.
[13] V. Varshavsky and V. Marakhovsky, “Beta-
CMOS implementation of artificial neuron”,
SPIE's 13th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and
Controls. Applications and Science of
Computational Intelligence II, Orlando, Florida,
April 5-8, 1999, pp.210-221.
[14] V. Varshavsky and V. Marakhovsky, “Beta-
CMOS Artificial Neuron and Implementability
Limits”, Lecture Notes in Computer Science
1607, Engineering Applications of Bio-Inspired
Artificial Neural Networks.
[15] Jose Mira, Juan V. Sanchez-Andves (Eds.).
Proceedings of International Work-Conference
on Artificial and Natural Neural Networks
(IWANN'99)}, Spain, June 2--4, Springer,
Vol.11, 1999, pp. 117-128.
[16] V. Varshavsky and V. Marakhovsky, “The
Simple Neuron CMOS Implementation
Learnable to Logical Threshold Functions”,
Proceedings of International Workshop on Soft

Computing in Industry'99 (IWSCI'99), June 16-
18, Muroran, Hokkaido, Japan, IEEE, 1999, pp.
463-468.
[17] V. Varshavsky and V. Marakhovsky,
“Implementability Restrictions on the Beta-
CMOS Artificial Neuron”, Proceedings of the
6th International Conference on Electronics,
Circuits and Systems (ICECS'99), September 5-
8, 1999, Pafos, Cyprus, IEEE, 1999, pp. 401-
405.
[18] V. Varshavsky and V. Marakhovsky,
“Learning Experiments with CMOS Artificial

Neuron”, Lecture Notes in Computer Science
1625, Computational Intelligence Theory and
Applications, ed. by Bernard Reusch.
Proceedings of the 6th Fuzzy Days International
Conference on Computational Intelligence,
Dortmund, Germany, May 25-27, Springer,
1999, pp. 706-707.
[19] A. Montalvo, R. Gyurcsik, and J. Paulos,
“Toward a General-Purpose Analog VLSI
Neural Network with On-chip Learning”, IEEE
Transactions on Neural Networks, Vol.8, No.2,
March 1997, pp. 413-423.

