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Abstract - This paper deals with a CMOS based artificial neuron implemented by threshold elements. We 
consider the artificial neuron as a threshold element with controlled inputs having weights formed during 
a learning process. A so-called β-driven threshold element is used for in the scheme of the neuron. 
Functioning of this element is described in a specific ratio form. The β-driven implementation is based on 
using summarized conductivities of n-and p-chains of a CMOS gate as the ratio of weighted sums. The 
threshold element has a wider functional capability in comparison with the traditional functional basis. 
Moreover, its functional capability can be enriched.  
We propose a method for increasing the functional capability of the threshold element by introducing so-
called functional inputs. Each functional input corresponds to a Boolean sum (or product) of a particular 
subset of input variables. This sum (or product) serves as a single input of the threshold element. It is 
shown that introducing functional inputs enables expansion of the functional capability of β-driven 
elements up to the capability to implement an arbitrary monotonic function. The CMOS based 
implementation of the β-driven threshold element with newly proposed functional inputs is presented. 
Methods of the current stabilization of functional inputs are proposed. In the proposed implementation of 
the artificial neuron, each input weight is determined by the current value via a suitable current stabilizer. 
This value can be effectively controlled by the value of the voltage at the gate of one of the current 
stabilizer’s transistors.  
The paper presents examples of the SPICE simulation of behavior of the proposed artificial neuron in the 
modes of learning and maintaining the input weights values.   

                                                 
1 The project is financed by the Ministry of Industry and Trade of Israel, Magneton Agency (file N 27995). 
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1 Introduction 
The great interest to threshold elements and 
threshold logics, lasting for tens of years [1-6], 
is caused, to our mind, first of all by wider 
functional threshold elements’ capabilities in 
comparison with the traditionally based ones’ 
(i.e. AND, NAND, OR, NOR etc.), and by the 
fact, that threshold elements may be used as a 
functional basis for artificial neural networks. 
The effectiveness of using the threshold basis 
depends first of all on the implementation 
complexity of a threshold element. 
In [7-12] we suggested a so-called β-driven 
CMOS threshold element that requires only one 
transistor per a functional input, having a weight 
that could be determined by the width of this 
transistor. It’s hard to imagine the 
implementation to be simpler than this one.  
The base for β-driven implementation was a 
fairly simple transformation of a regular analytic 
representation of the threshold function to a ratio 
form [7].  

In the traditional representation of the threshold 
function  
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where jω  - the weight of the jth input, η  - 
threshold, we select some arbitrary S-subset of 
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To avoid uncertainty of 0/0 type, it’s enough to 
shift the threshold in the initial determination of 
a threshold function by some δ , where 

10 << δ , as follows:  
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β-driven implementation, following from the 
ratio form, is based on changing the ratio of 
weight sums to the ratio of summarized 
conductivities of n- and p-chains of CMOS gate 
(Fig.1,a). 
The functioning of the circuit in Fig.1,a is 
described in Table 1. In the table, every cell 
corresponding to one combination of input 
variable values is divided to 3 sub-cells. The 
upper left sub-cell contains the number of single 
conductivities of p-transistors, switched on, for 
the given values set of input variables. The 
upper right sub-cell contains the analogous 
number for n-transistors. The lower sub-cell 
contains the output function value (the inverter 
output). 
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Figure 1. CMOS implementations of the threshold 
for ratio 1/3 for a certain function and its dual 
function. 
Table 1. Functional table for the circuit shown in 
Fig.1,a. 

x0x1x2
x3x4 

 000 100 010 110 001 101 011 111 

6 δ 6 2+δ 6 2+δ 6 4+δ 2 δ 2 2+δ 2 2+δ 2 4+δ 00 
0 0 0 0 0 1 1 1 
5 δ 5 2+δ 5 2+δ 5 4+δ 1 δ 1 2+δ 1 2+δ 1 4+δ 10 
0 0 0 0 0 1 1 1 
5 δ 5 2+δ 5 2+δ 5 4+δ 1 δ 1 2+δ 1 2+δ 1 4+δ 01 
0 0 0 0 0 1 1 1 
4 δ 4 2+δ 4 2+δ 4 4+δ 0 δ 0 2+δ 0 2+δ 0 4+δ 11 
0 0 0 1 1 1 1 1 

 
Table 2, represents the function that is dual to 
the initial one.  
Table 2. Functional table for the circuit shown in 
Fig.1,b. 

x0x1x2x3x4 000 100 010 110 001 101 011 111 

4+δ 0 2+δ 0 2+δ 0 δ 0 4+δ 4 2+δ 4 2+δ 4 δ 4 00 
0 0 0 0 0 1 1 1 
4+δ 1 2+δ 1 2+δ 1 δ 1 4+δ 5 2+δ 5 2+δ 5 δ 5 10 
0 0 0 1 1 1 1 1 
4+δ 1 2+δ 1 2+δ 1 δ 1 4+δ 5 2+δ 5 2+δ 5 δ 5 01 
0 0 0 1 1 1 1 1 
4+δ 2 2+δ 2 2+δ 2 δ 2 4+δ 6 2+δ 6 2+δ 6 δ 6 11 
0 0 0 1 1 1 1 1 

  

Indeed, the function presented in Table 2 is: 
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It follows from the definition of the dual 
function and (6) that 
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The dual function in the threshold basis keeps 
input weights, and the threshold is calculated as 
the following: 
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The most attractive feature of threshold 
functions is their functional plasticity, i.e. the 
possibility of changing the function, realized by 
threshold element, by means of simple changing 
input and output weights. This feature becomes 
important only if the input and the output 
weights control may be realized in a simple way. 
So long as transistor conductivity depends 
monotonously on its gate voltage, the simplicity 
of realizing the control of the output weight in β-
driven CMOS threshold elements becomes 
obvious [9,10] (Fig.2). 
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Figure 2. Implementation of the threshold 
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A threshold element realizes the threshold 
function, which is monotonic one. However, 
there are monotonic functions that are not 
threshold. Among monotonic functions of 
four (and more) variables there are some, 
which are not threshold, for 
example: 3210 xxxxy += . 
As it can be seen, this function describes the 
behavior of a two-input multiplexer – the circuit, 
which is significant for a plenty of 
implementations.  
In this paper we propose methods enabling to 
expend functional capabilities of β-driven 
elements right up to the capability to implement 
an arbitrary monotonic function. 
We describe an artificial neuron based on the 
proposed threshold element having functional 



 

inputs. We consider the whole neuron being a 
threshold element with controlled inputs having 
weights formed during a learning process. We 
propose CMOS implementations of both the β-
driven threshold element, and the artificial 
neuron based on this element. We investigate 
characteristics of the proposed hardware 
implementations.  
 
2 Threshold elements with 
functional inputs 
First of all let us consider a number of circuits 
and functional examples. 
The circuit, shown in Fig.3 a, realizes the second 
order symmetrical monotonic function 
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Let us split the n-channel part of the circuit to 
two channels and incorporate a current 
stabilizer, thus fixing the current equal to i0 in 
the channels (Fig. 3b). The function (9) will 
evidently change, as follows: 
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Figure 3. Implementations of functions: a) for the 
function (8); b) for the function (9). 

It can be seen from the above example, that, if a 
particular subset of n-transistors controlled by 
x j ∈ Rk variables, is selected, and the total 
current is limited by unit value i0 of a current 
stabilizer via this subset, the whole of this 
variable subset will operate in the output 
function as a single variable  

zk = Vx j
x j ∈ Rk

.    (11) 

On the other hand, if a particular subset of p-
transistors controlled by xi ∈ Rm variables, is 
selected, and the total current via this subset of 
transistors is limited by unit value i0 of a current 

stabilizer, the whole of this variable subset of 
these variables operates in the output function as 
a single variable 
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For CMOS β-driven threshold elements define 
as a functional input the subcircuit (Fig. 4) 
consisting of: 

a) transistors, connected in parallel and 
controlled by the variables of a particular 
subset, 

b) a current stabilizer, connected in series, 
that the current via this subcircuit doesn’t 
depend on the number of open transistors. 

The positive feature of the proposed circuit is a 
fact that its implementability is independent on 
the rank of the product (sum) but on the number 
of products in the corresponding minimum form 
only. 
We propose to use the threshold current 
stabilizer (Fig. 4) for generating (limiting) unit-
operating current and hence, the higher degree 
of stabilization would be provided. 

 
Figure 4. Current stabilizer: 
circuit of the functional input, 
having a current stabilizer on the 
couple of transistors connected in 
series; 

 
 

It seems that any MOS-transistor provides 
current stability in saturated mode. Really, the 
current via T1-transistor (Fig.4), under the 
condition thref VVv −≥ 11  (saturated mode) 
doesn’t depend on v1, according to the first order 

Shockley equations 2
11 )(

2 thref VVI −=
β

. 

However, taking channel length modulation 
effect into consideration, the linear dependence 
of the current via transistor on the voltage drop 
on it will be obtained as follows: 
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Results of the SPICE simulation for the 
proposed stabilizer are presented in Fig. 5.  

V     = 3.5Vref2

V     = 2.2Vref2

 
Figure 5. Behavior of the current stabilizer 
(Vref2=3.5V and  Vref2=2.2V). 

 
3. Learnable neuron circuit and the 
way of teaching 
Implementing an artificial neuron as a digital-
analog device has a number of advantages over 
software implementation. First, this is a sharp 
increase in performance. However, such an 
implementation, due to its internal analog 
nature, has rigid restrictions on the class of 
threshold functions that can be realized. These 
restrictions considerably decrease the functional 
possibilities of neural networks with fixed 
number of neurons. 
In [9-12] we suggested a CMOS learnable 
neuron based on β-driven threshold element that 
consisting of synapses, β-comparator and output 
amplifier. It requires 5 transistors and one 
capacitor per a learnable synapse. The neuron 
has one remarkable property: its 
implementability depends only on the threshold 
value and does not depend on the number of 
logical inputs and their weights. This fact and 
low complexity make this artificial neuron fairly 
attractive for usage. 
In our later works [13-18] the suggested neuron 
was modified by increasing the steepness of the 
β-comparator and incorporating two extra 
amplifiers with different thresholds. The circuit 
implementing such a neuron is given in Fig. 6.  
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Figure 6. Learnable neuron circuit. 

This circuit has two p-channel transistors with 
reference voltages 1refV  and 2refV on their gates, 

which provide very sharp steepness of the β-
comparator characteristic in the working point; n 
synopses jS  with weighted binary inputs jx  

(adjusted weight of jx  is jω ) and three output 
amplifier with different thresholds. 
Synapse circuit with a binary input is 
represented in Fig. 7. 
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Figure 7. Synapse circuit with binary input. 

We incorporate a current stabilizer into this 
circuit. The synapse is activated when .1=jx  
In this case transistor M3 is opened. Transistor 
M1 sets the value of the synapse current by 
means of control voltage 

jCV on its gate. 

Circuits used for forming the control voltages 
that determine the weights of the input variables 
of a neuron just slightly depend on the way of 
the synapse implementation. Some of these 
circuits were studied (for example, in [19]) and 
they are of about the same structure. The 
difference between them is mainly associated 
with the memory element they use (capacitor or 
transistor with a floating gate) and with the way 
of representing the values of the input binary 
variables ({0,1} or {-1, +1}). 
In our case, the voltage that controls the synapse 
current (i.e. variable weight) accumulates on the 
capacitor during the teaching. The capacitor 
charge is allowed to change only when the 
synapse is active, i.e. when the input variable 
equals “Log.1'”. The capacitor charge increase 
or decrease is realized by approximately the 
same quanta that determine the learning step. 
The learning step is specified on the base of the 
required accuracy of setting the control voltages. 
Its value can be controlled by choosing the 
amplitude and duration of “increment” and 
“decrement” signals. 
What is the meaning of adding two extra output 
amplifiers in Fig. 6? One of the important 
parameters of a threshold element is the smallest 
(for the given input combinations) deviation of 
the β-comparator output voltage from the output 
amplifier threshold ).( outV∆±  Actually, outV∆  
determines the maximum complexity of a 



 

function that can be realized on a single neuron. 
In hyper-geometrical representation, a threshold 
element corresponds to a hyperflat separating 
the set of all input combinations to two subsets T 
and F. It is easy to understand that outV∆  is 
determined by the shortest distance from T and 
F sets to the hyperflat. The same sets T and F 
can be separated by different hyperflats. Since in 
our learnable neuron the input weights change 
continuously, then the set of separating 
hyperflats also fills some subspace, and among 
this set of hyperflats there is a hyperflat with the 
biggest distance from T and F. Indeed, let us 
consider a threshold function 

).332( 432143231 −+++=∨∨= xxxxSignxxxxxy
The combinations closest to the separating 
hyperflat are T0={1010,0110,0001} and 
F0={1100, 0010}. The optimal representation of 
this threshold function in reduced ratio form is 

)2.18.04.04.0( 4321 xxxxRty +++=  with 
minimum residual (deviation of weighted sum of 
variables from the threshold) determining outV∆  
equal to ±0.2. In the same time, there is a correct 
implementation 

)2.18.076.022.0( 4321 xxxxRty +++= with 
minimum residual equal to ±0.02. 
The two extra amplifiers optimize outV∆  during 
the learning. The amplifier thresholds highF  and 

lowF  are selected so that their difference with the 
threshold of the main output amplifier midF  is 
equal to the guaranteed outV∆ . The neuron is 
taught so that the outputs of all the three 
amplifiers have the same value, providing the 
guaranteed value of outV∆ . 

If the input weight memory is implemented on a 
capacitor, then the threshold function degrades 
because of the capacitor charge leakage via 
parasite resistances. In this case, the extra 
amplifiers provide on-line recovery of synaptic 
weights values. Since a capacitor discharges 
fairly slowly, the wrong values of neuron output 
first appear at the outputs of the amplifiers highF  

and lowF  while the main output midF  functions 
correctly. Thus, different values of highF  or lowF  

as compared to midF  is a signal of some change 
in the synaptic weights. To correct them, we can 
use the same mechanism of forming increment 
and decrement signals as used in the learning. 
The general structural scheme used when 
simulating the process of teaching the neuron to 

the given threshold logical function is shown in 
Fig. 8. 

 
Figure 8. General scheme of the experiment 

The generator of the input signals periodically 
produces sequences of value combinations of 
input variables nxxx  ..., , , 21  and the sequence of 
values that the given logical function Y takes on 
these combinations. Teaching/refresh switch 
passes to its output either the signal Y (when 
teaching) or the output signal midF  (when 
refreshing). The comparator produces the signals 
“decrement” and “increment”. The passive 
values of these signals are equal to “0” and “1” 
respectively. Their logical description looks as 
follows: 

highFYDecrement =  and 

lowFYIncrement ∨=  when teaching; and  

highmid FFDecrement =  and 

lowmid FFIncrement ∨=  when refreshing. 
Physically, these signals are realized with 
limited amplitude and duration, determining the 
learning step. 
In all the experiments with learnable neurons, 
there is an acute problem of selecting the 
threshold function for teaching what determines 
the simulation time. The experiment duration is 
often measured in hours and even days. A 
threshold function should satisfy the following 
requirements: 
− short sequence of variable combinations 
checking all possible switches of the function 
value, 
− covering a wide range of weights, 
− high value of the threshold for the given 
number of variables. 
Threshold functions that can be represented by 
Horner’s scheme 

(...)))(( 4321 −−−− ∨∨ nnnnn xxxxx  meet these 
requirements. For such functions, the sequence 
of integer values of the variable weights and the 
threshold with minimum sum forms the 
Fibonacci sequence. The length of the checking 



 

sequence is n+1 for the Horner's function of n 
variables. 
 
5 Concluding Remarks 
In this paper we described a CMOS 
implementation of an artificial neuron based on 
a β-driven threshold element proposed by the 
authors. Using such an element as a functional 
basis of artificial neurons has a number of 
advantages in comparison with the traditional 
functional basis. In this paper we have focused 
on extension of functional capability of the 
threshold element.  
The main contribution of the paper can be 
summarized as follows: 
1. Introducing functional inputs into the β-

driven threshold element to allow to 
increasing its functional capability up to the 
capability of realizing every monotonic 
Boolean function.  

2. Implementation of the β-driven threshold 
element, having the proposed functional 
inputs, by a CMOS circuit, and investigation 
of its implementability.  

3. Developing a method for current 
stabilization of the functional inputs. 

4. Implementation of an artificial neuron using 
of the proposed threshold element, wherein 
the neuron has controlling inputs, weights of 
which are formed during the learning 
process, and wherein the current via a 
current stabilizer of a suitable input 
determines the weight of this input.  

All the proposed solutions were simulated. The 
SPICE simulation results demonstrate the high 
efficiency of the solutions and consequently 
motivate further investigations of the artificial 
neurons based on β-driven elements. 
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