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Abstract:- This paper presents a non-time based control scheme for a robotic mechanism interacting 
with the environment and/or a human operator. This new control is based on the modification of the 
desired input reference xd. Contrary to a time-based control, where the function, xd(t), is commonly 
calculated off-line during a path-planning process, in the proposed controller, the desired input 
reference is a function of time and a variable which plays the role of a time delay: xd(t-T). For this 
reason this controller has been called delayed reference control (DRC). The time delay is properly 
calculated on-line according to the measured force signals in such a way to improve the interaction 
with the environment and/or the human operator. In fact, the DRC consists in a outer force feedback 
loop around an inner position feedback loop. Numerical simulations will prove the effectiveness of the 
controller by means of a simple 1 DOF mechanism.  
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1     Introduction 
In industrial applications, a number of robotic 
tasks require the robot to interact with the 
environment: components assembling, 
machining mechanical parts, scraping or 
polishing surfaces by applying a constant 
force, metal sheet bending [1]. Moreover in an 
ever increasing number of applications, robots 
interact with a human operator: haptic 
interfaces, surgical robots remotely operated 
by a doctor, robots used for orthopedic 
rehabilitation or neuro-rehabilitation [2]. In 
most of these applications, the robot is required 
to accomplish a task which consists in moving 
the end-effector along a given path and, at the 
same time, preventing the contact force, 
between the robot’s end-effector and the 
environment, from exceeding a given value.  
To fulfill the mentioned tasks, the robot end 
effector has to behave in different ways: in 
contact with a surface, it is required to assume 
a kind of compliant behavior to accommodate 
the interaction, while, during free motion 
mode, it has to follow a given path as 
accurately as possible. Therefore, unlike 
traditional PID, interaction based controllers 

are designed for working in two completely 
different modes: the contact and the free mode. 
In the first, force controlling is essential, in the 
second, path tracking is of main importance. In 
the last thirty years, several approaches have 
been proposed for reaching those goals. For 
example, in the case of time based controller 
are the Stiffness control [3], the Impedance 
control [4], the Force control [5], the Hybrid 
position/force control [6], the Parallel 
force/position control [7] and so on. 
Although tracking controls are generally aimed 
at ensuring that the output of a system follows 
a desired path defined as a function of time 
(trajectory following), there are different 
applications where the desired path is defined 
through space only (path tracking) this 
difference allows to classify the controllers in 
two categories: time based, and non-time based 
controllers.  
In a time-based control, the desired input 
reference is described as a function of time, the 
desired reference signal xd(t) which is 
commonly calculated off-line during the path-
planning process, before the robotic task is 
executed. As a consequence, during the task 
execution, at each instant t*, the control 
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module is required to track an input reference 
xd(t*), which can never be modified by any 
event or circumstance. Time-based controls, 
largely employed in industrial applications, are 
therefore preferable in trajectory following 
problems where time plays as action’s 
reference. Non-time based approaches should 
be chosen for path tracking problems, where 
the desired state is not a function of time as in 
[8]. The basic idea behind these event-based 
methods is considering the reference input a 
function of a variable instead of a function of 
time: xd(l). Such a variable l is sensitive to the 
sensory measurement and the task. In the 
event-based approach the role of the path 
planner is changed. Instead of preplanning the 
input reference as a function of time, a new 
block is introduced in the controller to 
compute on-line the value variable l. This 
variable is computed on the base of the sensory 
measurement and is the base to generate the 
desired reference value. This paper presents a 
non-time based control scheme for a robotic 
mechanism interacting with the environment. 
In this new controller the desired input 
reference is a function of time and a variable 
which plays the role of a time delay: xd(t-T). 
The time delay is calculated on-line according 
to the measured force signals in order to 
improve the interaction with the environment. 
De facto, the DRC consists in a outer force 
feedback loop around an inner position 
feedback loop. The effectiveness of the 
controller has been proven numerically using a 
simple SDOF mechanism, while the 
experimental results will be presented in a 
accompaining paper.  
The paper is set out as follows. The DRC 
theory as well as stability analysis are 
presented in Section 2 and 3. In Sections 4 the 
SDOF mechanism and the simulation results 
will be presented while in section 5 will be 
devoted to the conclusions and the final 
consideration. 
 
2     The DRC theory 
A simple environment-robot interaction task is 
considered. Although the dynamic model is 
very simple (SDOF system), it is sufficient to 
give the physical insights into the DRC method 
applied to force control and to perform the 
stability analysis. The extension of the DRC to 
a MDOF system doesn’t represent a major 

difficulty. The model would represent the 
following case: a robot end-effector, simulated 
by a mass m and a internal damping c, driven 
by a command u, collides with an obstacle of 
stiffness ke generating a contact force Fe. The 
dynamic equation of the system is: 
 

eFuxcxm −=+ &&&   (1) 
 
Equation (1) represents the equation of motion 
of a mass moving along the x-axis, but it could 
represent also the equation of a rotating system 
and the DRC approach would not change 
It has been decided to model the interaction 
with a spring like behavior since is rather 
common to simulate both passive and reactive 
contacts as in [9] and [10].  
When there is no contact, the displacement 
x could be regulated by means of a traditional 
time-based controlled. Assuming to adopt a PD 
controller and the presence of a sensor 
measuring the mass displacement, the control 
law computes the force u as:  
 

( ) ( )xxkxxkekeku dDdPDP
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     (2) 
where kp, kd, e and xd are the proportional, the 
derivative gain, the error and the desired 
displacement. It is assumed that such a 
regulation system is stable when the contact 
does not occur. Yet, in case of contact, high 
contact force could be generated. To avoid this 
problem, the PD control will be modified 
adding a DRC controller.  
Usually the desired trajectory of a joint is 
planned off-line. The desired displacement is 
given as a function of a scalar l, xd=g(l). The 
task will be completely executed when the 
variable l reaches a final value lf. If time-
scaling is not applied, the desired displacement 
is given directly as a function of time xd=g(t). 
It is also assumed that g(0)=0, dg/dll=0>0, 
meaning that the contact is planned to occur at 
time t=0 and that the contact time will be 
longer than zero. 
The DRC introduces a delay T on the time that 
defines the desired displacement. Therefore, 
instead of l=t, the new relationship between 
time and scalar l is l=t-T, and the desired 
displacement becomes xd=g(t-T). The delay T, 
could be computed on the base of sensor 
measuring the contact force Fe as: 
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where the function χ(Fe) has the following 
properties: is zero when the contact force is 
zero and increases with the contact force. 
The first property assures that, if the contact 
does not occur, the delay introduced by the 
DRC controller is null: thus the performances 
of the systems are not modified with respect to 
control law (2). The second property assures 
that, in case of contact, the robot end-effector 
will slow down or stop before too high level of 
force Fe builds up. A simple linear function 
satisfies the two requested properties: 
     

( ) ee FF αχ =   (4) 
 
where α is a constant. In this case the desired 
displacement becomes: 
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The whole control scheme of the system is 
shown in fig.1. By replacing Equations (2), (3) 
and (5) into Equation (1), the closed-loop non 
linear dynamic equation of the system is 
obtained:  
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     (6) 
It can be proved that the value xeq=1/αke  
represents the equilibrium point for the system, 
and in this case the contact force becomes:  
 

α1== eqeeq xkF   (7) 

 
where the higher the parameter α is, the lower 
the contact force at the equilibrium is. Note 
that α is the only parameter that affects the 
contact force at the equilibrium, that the DRC 
controller does not affect the dynamic 
performances of the system during the non 
contact phase, that it limits the contact force 
during contact phase only and that its 
effectiveness is not affected by the position 
regulator. 

Another important consideration is that, at the 
equilibrium point, the derivative of the desired 
displacement (eq.5) is zero. It means that once 
the contact occurs and the equilibrium is 
reached, the desired displacement xd remains 
constant. This condition will remain until 
contact occurs. Assume that the surface is 
removed at time  tev from that instant on, the 
delay T will remain constant assuming the 
value: 
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The desired displacement will be xd=g(t-Tev) 
and if no other contact occurs, the task will be 
completed at the instant t=lf+Tev. As result the 
DRC controller makes the system take more 
time to execute the task which is in fact 
suspended for a time Tev starting from the 
contact instant and finishing when the contact 
force is removed.  
This behavior is required in all those 
applications where time is not a critical 
variable compared to the necessity of having a 
bounded and constant interacting contact force.  
 
3     Stability analysis of the DRC  
To complete the analysis of the DRC, a 
dynamic stability verification will follow. Let 
us consider the system at the equilibrium point 
xeq assuming: 
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In this case the desired displacement at the 
equilibrium point, xd-eq assumes the value: 
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The value of the scalar l that defines the 
desired displacement at the equilibrium is  
 

( )eqdeq xgl _
1−=   (11) 

 
For simplicity, the desired displacement can be 
approximated around the point l=leq  trough a 
Taylor expansion as: 
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(12) 
Replacing Equation (12) into (6), and deriving 
it, a linear third-order ordinary differential 
equation is obtained: 
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     (13) 
By analyzing the coefficient of the eq.13 
according to the Routh-Hurwitz method the 
stability of the system can be studied. All the 
coefficients of the equation are positive and as 
shown in Appendix A, if kd (c+kd)-kpm<0, the 
system is stable if and only if 
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     (13) 
This represents a drawback because it defines a 
lower bound for the contact force. In the 
specific case Feq>1/αmax. If one tries to lower 
the force by increasing the value of α, above 
αmax the system would become unstable. 
 
4     Numerical results 
Let us consider the system as depicted in fig.2 
with m=19Kg, c=20Ns/m ke=10 N/m and α=1. 
Assuming kp=4000N/m and kd=370Ns/m, the 
value of αmax that assures system stability is 
equal to 40.57. Suppose that the end-effector 
moves along a straight line and that between 
time t=3s and t=6s there is the contact as in 
fig.3. Note that the task is delayed for the 
contact time and the parameter T remains 
constant once the contact ends at t=6s as in 
fig.4. Fig.5 shows the trend of the contact 
force, (as from eq.7 around the value 
Fe=1/α=1), while fig.6 shows the requested 
control force. 
Fig.7 to 10 show the same quantities when the 
parameter α is equal to 100 and than the 
system becomes unstable (higher than αmax). It 
is worth noticing that, as expected, the contact 
force has a lower amplitude (fig.9), while the 
control forces reaches much higher levels 
(fig.10). 
 

 
5     Conclusion 
This paper presented a non-time based control 
scheme (called delayed reference control 
(DRC)) for a robotic mechanism interacting 
with the environment and/or a human operator. 
The control can represent an alternative to 
control tasks involving force control problems. 
In fact, the DRC consists in a outer force 
feedback loop around an inner position 
feedback loop. The DRC controller affects the 
dynamic of the system only during the contact 
phase. 
The controller can be employed in all that 
robotic tasks which require the interaction 
between the robotic system and the 
environment, such as machining, polishing, 
human-robot interacting.  
The effectiveness of the controller has been 
proved by means of a simple 1 DoF 
mechanism which has been employed to mimic 
the interaction between a robotic system and a 
human operator. 
 
Appendix A 
According to Routh-Hurwitz theory, the 
Equation (12) is stable if and only if the 
following inequalities are satisfied 
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Note that 4321 ,,, BBBB and 2U  are greater 
than zero. 
In case the proportional gain of the PD 
controller Pk and/or the mass of the joint m are 
too high, which is a common situation in a 
controlled system, it could occur  
 ( ) 0<−+ mkkck PDD  
As a consequence, in order to satisfy the 
inequality 01 >U , the parameter α has to be 
less than the value  
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Fig.1: DRControl schema 
 
 

 
Fig.2: Test system 
 

 

Fig.3: Desired and actual position of end-
effector - stable system 
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Fig.4: Plots of t-T and T- stable system 
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Fig.5: Contact Force - stable system 
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Fig.6: Control force – stable system 
 

 
Fig.7: Desired and actual position of end-
effector - unstable system 
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Fig.8: Plots of t-T and T - unstable system 
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Fig.9: Contact Force - unstable system 
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Fig.10: Control force – unstable system 


