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Abstract :- Recently we have proposed the T-class of time-frequency distributions (TFD’s) with time-only
kernels to provide high-resolution and considerable cross-terms reduction for multicomponent FM signals.
In this work we investigate the instantaneous frequency (IF) properties of two members of this class: the
hyperbolic and the exponential T-distributions in the presence of noise. A comparison with two well-known
TFD’s, Wigner-Ville and Choi-Williams distributions, is also considered.
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1 Introduction
Non-parametric instantaneous frequency (IF) esti-
mation for multicomponent non-stationary signals
is an important issue in signal processing [1, ?, 2].
The concept of the instantaneous frequency can be
found in [1, 3, 4, 5]. Time-frequency analysis is
used for IF estimation for multicomponent signals
as it is the only reliable tool to reveal the mul-
ticomponent nature of such signals by concentrat-
ing the signal energy in the time-frequency plane
around the component IF laws [3]. These energy
concentrations are known as ”peaks” or ”ridges”
of the time-frequency representation or distribution
(TFD). However, quadratic time-frequency distribu-
tions of multicomponent signals suffer from the pres-
ence of cross-terms [3, 4, 5], which can obscure the
real features of interest in the signal. Considerable
efforts have been made to define TFD’s which reduce
the effect of cross-terms while improving the time-
frequency resolution [3, 5]. However, there is al-
ways a compromise between these two requirements.
TFD’s have different performances in this respect
and the choice of the proper TFD is application de-
pendent.

A class of time-frequency distributions with high
time-frequency resolution and strong cross-terms re-
duction was proposed in [1, 7] and proved to be
effective for both mono- and multicomponent FM
signals. Members of this class has kernels that are
functions of time only. We shall refer to these TFD’s
with time-only kernels as the T-distributions (TD’s).
In this paper we show that this class is also efficient
in IF estimation of mono- and multicomponent FM
signals in the presence of additive gaussian noise. Its
performance is compared to two widely used mem-

bers of the quadratic class of TFD’s: The Choi-
Williams Distribution (CWD) and the Wigner-Ville
Distribution (WVD).

2 The IF Concept and TFD’s
For time-frequency analysis of a real signal x(t), we
always consider its analytic associate z(t) = x(t) +
jx̂(t), where x̂(t) is the Hilbert transform of x(t) [4].

Consider an analytic signal of the form

z(t) = aejφ(t) + ε(t) (1)

where the amplitude a is constant, and ε(t) is a
complex-valued white Gaussian noise with indepen-
dent identically distributed (i.i.d.) real and imag-
inary parts with total variance σ2

ε . The instanta-
neous frequency of z(t) is given by

fi(t) = (1/2π)dφ(t)/dt (2)

We assume in this analysis that fi(t) is an arbi-
trary, smooth and differentiable function of time
with bounded derivatives of all orders.

The general equation for quadratic time-frequency
representation of a signal z(t) is given by [4]

ρ(t, f) = F
τ→f

[G(t, τ) ∗
(t)

Kz(t, τ)] (3)

where G(t, τ) is the time-lag kernel, Kz(t, τ) = z(t+
τ/2)z∗(t − τ/2) and ∗

(t)
denotes time convolution.

The kernel could also be expressed in the Doppler-
lag domain as g(ν, τ , where

G(t, τ) = F−1

ν→t
{g(ν, τ)} (4)



In the discrete lag domain ρ(t, f) will be

ρ(t, f) =
∫∞
−∞

∑∞
m=−∞Kz(u, 2mT )

× G(t− u, 2mT )e−j4πfmT du (5)

where m is an integer and T is the sampling interval.
If ρ(t, f) is discretized over time and frequency then
we have

ρ(n, k) =
∑Ns−1

l=−Ns

∑Ns−1
m=−Ns

Kz(lT, 2mT )

× G(nT − lT, 2mT )e−j2π km
2Ns (6)

where 2Ns is the number of samples. The frequency
samples are given by fk = k/4NsT.
The IF estimate is a solution of the following opti-
mization

f̂i(t) = arg[max
f

ρh(t, f)] ; 0 ≤ f ≤ fs/2 (7)

where fs = 1/T is the sampling frequency. The
frequency estimation error is the difference between
the actual value in eq.(2) and the estimate in eq.(5)
as follows

∆f̂i(t) = fi(t)− f̂i(t) = φ′(t)/2π − f̂i(t). (8)

Therefore, the bias and variance of this estimate
will be

B(f̂i(t)) = E [∆f̂i(t)] = fi(t)− E [f̂i(t)]
V (f̂i(t)) = E [∆f̂i(t)]2 = E [{fi(t)− f̂i(t)}2] (9)

As we will see later, this bias is zero for single-
tone and linear FM (LFM) signals, and therefore a
Cramer-Rao bound (CRB) exists for the variance.

3 The T-Distributions
Time-only kernels are a special case of separable
time-lag kernels. Suppose we have a separable time-
lag kernel as follows

G(t, τ) = g1(t)g2(τ) (10)

where g1 and g2 are continuous and L2 integrable
functions.

It was shown in [7] that for best time-frequency
resolution we should have

G(t, τ) = G(t) = g1(t)/M
g(ν, τ) = g(ν) = F

t→ν

−1{g1(t)}/M (11)

where G(t, τ) is now a time-only kernel. This is
the formula for all time-only kernels, which are the
kernels of the T-distributions.

The Exponential T-Distribution (ETD): the ker-
nel of the Choi-Williams distribution (CWD) in the
Doppler - lag domain is g(ν, τ) = exp(−4π2ν2τ2/σ)
which can be given in the time-lag domain by [4]

G(t, τ) =
√

σ/4πτ2 exp(−σt2/4τ2) (12)

where σ is a real parameter. In [7], we proposed a
time-frequency distribution Te(t, f) with the follow-
ing exponential time-only kernel

G(t, τ) = Gσ(t) =
√

σ/π exp(−σt2) (13)

where σ is a real parameter and
√

σ/π is a normal-
ization factor. It was shown in [1] that the resolution
of the ETD exceeds that of CWD by far.

The hyperbolic T-distribution (HTD): it has the
following time-only kernel [7]

G(t, τ) = Gσ(t) = kσ/ cosh2σ(t) (14)

where σ is a real positive number and kσ is a nor-
malization factor given by

kσ =
∫ ∞

−∞
1/ cosh2σ(t) = Γ(2σ)/22σ−1Γ2(σ)

in which Γ represents the gamma function.

4 IF Using TD’s
It can be shown that the T-distributions do not
satisfy the time marginal property, hence they do
not satisfy the traditional condition for the instan-
taneous frequency. But in [1] we proposed the fol-
lowing general IF property: at any time t, the time-
frequency distribution ρ(t, f) should have absolute
maximum at f = 1

2π
dφ(t)

dt , which is the actual im-
portant characteristic needed for IF estimation. In
[1] we have shown that at any t, the hyperbolic T-
distribution has absolute maximum at f = 1

2π
dφ(t)

dt
for linear FM signals. This is general for all T-
distributions and constitutes the basis for our IF
estimation. For non-linear FM signals this IF esti-
mate is biased, and best IF estimation is achieved in
this case by adaptive methods [1]. For an FM signal
of the form z(t) = a ejφ(t), a being a constant, the
general formula for the T-distributions can be given
by

ρz(t, f) ≈ |a|2
∫

G(t− u) δ [
1
2π

φ
′
(u)− f ] du

= |a|2G(t− ψ(f))ψ
′
(f) (15)

where ψ is the inverse of 1
2πφ

′
, i.e., 1

2πφ
′
(ψ(f)) = f

and it is assumed that there is a relatively small



effect from higher-order derivatives φ(k)(t), k ≥ 3.
Assuming that ψ

′
(f) is not a highly peaked func-

tion of f and knowing that G(t − ψ(f)) is peaked
at t = ψ(f) since it is low-pass and even in t, the
absolute maximum of ρz(t, f) for any time t would
be at ψ(f) = t, or f = 1

2πφ
′
(t), which is the instan-

taneous frequency of the FM signal z(t). For non-
linear FM signals, the energy peak of ρz(t, f) is actu-
ally biased from the instantaneous frequency due to
the higher-order phase derivatives. The major con-
tribution in this term is due to φ(3)(u) [1]. There-
fore at the instants of rapid change in the IF law
the bias is not negligible and eq.(14) would not be
an accurate approximation to ρz(t, f) unless suitable
windowing in the lag direction is used. An adaptive
window length would be recommended, but due to
significant bias no CRB is applicable.

For linear FM (LFM) signals we have φ(k)(t) = 0
for k ≥ 3. Assuming z(t) = aej2π(fot+βo

2
t2), where

fo and βo are constants, we have

d(t, f) =
1
βo
| a |2 Gα

(
t− 1

βo
(f − fo)

)
(16)

which has an absolute maximum at f = fo + βot,
the instantaneous frequency of the linear FM signal
z(t). As βo → 0, i.e., z(t) approaches a sinusoid,
we have d(t, f) → | a |2 δ(f − fo), in accordance
with eq.(4) for a monocomponent single-tone signal.

5 Simulation Results
The above time-frequency distributions were simu-
lated and the IF was estimated according to eqs.
(1) and (6-9). A linear FM signal of length N = 512
samples was selected and i.i.d noise samples were
added for different SNR’s. The sampling frequency
was fs = N Hz. For each SNR, 1000 Monte Carlo
iterations were considered for the purpose of calcu-
lating the variance of the IF estimate. Fig.(1) shows
the result of this simulation for three TFd’s. The
performance of the HTD is distinguished as supe-
rior to other TFD’s, especially at low SNR’s. Per-
formance of the ETD is nearly to that of the HTD
in this particular example.

6 Conclusion
This paper has shown that the recently developed T-
Class of time-frequency distributions (TFD’s) out-
performs other well - known distributions like the
Wigner - Ville distribution (WVD) and the Choi -
Williams distribution (CWD) in terms of robust-
ness. The HTD gave a minimal variance for all
SNR’s, however, the difference in performance is
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Figure 1: Performance of various TFD’s in IF estimation
of a linear FM signal with length N = 512 samples. The
sampling frequency was fs = N Hz. It is evident that
the recently proposed HTD surpasses other TFD’s in ro-
bustness where it gives the minimum variance, especially
at low SNR’s.

more evident for low SNR’s, where the T-Class dis-
tributions outperform other TFD’s BY FAR.
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