VHDL Modeling of Boolean Function Classification Schemes for
L ossless Data Compression

K.T. THO, K.H. YEOW, F. MOHD-YASIN, M.S. SULAIMAN, M.I. REAZ
Faculty of Engineering
Multimedia University
63100 Cyberjaya Selangor
MALAYSIA

Abstract: - This paper describes the VHDL modeling of a Boolean compression algorithm that allows for

efficient hardware implementation.

The compression algorithm is performed by incorporating Boolean

function classification into Huffman coding. This allows for more efficient compression because the data has
been categorized and simplified before the encoding is done. The design is followed by the timing analysis for
the validation, functionality and performance of the model using Aldec Active HDL. It is proven that the
model has been tested successfully. The average compression ratio is 25% to 37.5% from numerous testing

with various text inputs.

Key-Words: - Data compression, Boolean function classification, Boolean compression, Huffman coding

1 Introduction

The term Data Compression refers to the process of
reducing the amount of the required data
representing a given quantity of information. Data
compression is increasingly more and more
important in the development of computer and data
communications technology. Various data
compression technologies have been developed
since the past few decades, using different
agorithms for different applications. Some of the
data compression techniques are Null Suppresion,
Run-Length Encoding, Huffman coding, Arithmetic
coding, Lempel-Ziv-Welch coding, Discrete Cosine
Transform, Joint Photographic Expert Group and
Boolean Compression algorithm[1].

Boolean function classification technique has
been traditionally designed for digital circuit
applications. The main feature of this technique is
due to the fact that the functions belonging to some
classes may be implemented more efficiently than
the general sum of product implementation.
Boolean function classification plays an important
role in the field like technology mapping for digital
circuit design, function mapping for minimization
and the development of universal logic moduleg2].

In this work we attempt to design Boolean
compression algorithm by incorporating Boolean
function classification into Huffman encoding[3].
By performing the Boolean function classification,
the binary data is grouped in their classes and
through Huffman encoding, the compression is done
in a more efficient way because the data has been

categorized and simplified before the encoding is
done. The result is higher compression ratio. We
had study the existing Boolean classification
schemes that are suitable for use in data
compression. We also study the new and alternative
classification schemes that can be implemented in
the algorithm. After finalizing the algorithm, VHDL
is used to implement the algorithm. This design
environment permits extensive simulation for
verification of the algorithm[4].

2 Designed Algorithm

‘ Read the first 15-bits Boolean block from data source ‘

'

‘ Generate fractal for the first Boolean block ‘

:

hatch the fractals to the rest of the source and
Increment counter for each fractal

any unmatched 16-bit data left?

pif ,@

na

yes

| Continue reading the next unmatched 16-bit data |

v

|Generate fractal for unmatched 16-bit data ‘

v

—‘ Wlatch fractal with unmatched data bit and increment the counter |
Fig. 1 Boolean function classification algorithm

Boolean compression agorithm works as follows.
16-bit of data bits are extracted from datainput. The
first 16-bit Boolean block is then used to generate
fracta. The fracta is then used to match with the
fractals for al other bits in the data source. If there
are identical matches between the first fractal with
the fractals in the data source, the counter for the
fractd is incremented. After al the data bits are
matched with the first fractal, the first unmatched
16-bit data will be used as the next fractal, and to be
matched with the remaining bits of data. Again,
when there are matches between the second fractal
with the data source, the counter for the second
fracta will be incremented. The same algorithm
continues until there is no more unmatched data
source. Figure 1 shows the flow chart for the
algorithm as explained.

When there is no more unmatched data source
with the fractal, the algorithm continues with the
Huffman encoding to compress the classified data
source. From the counters for each of the fractds,
the frequency of occurrence for each fractal can be
determined. Based on Huffman algorithm[5], the
data bits with higher number of occurrence are to be
encoded with shorter codes, whereas the data bits
with lower number of occurrence are to be encoded
with longer codes. The same concept appliesin this
compression. For the fractal with higher number of
occurrence, the fractal is encoded with a short code
and saved with a header to enable the data to be
retrieved or decompressed. This is to be explained
in the decompression section. Each of the fractalsis
encoded using Huffman encoding and this
completes the Boolean compression. Figure 2
shows the flow chart for Huffman encoding

algorithm.

'

[Save the header of the 16bit data |

| Sawe the next 1651 data | Save the Huffiman code of
+ first 16.bit data

| Read the rext 16bit data |
F Y
L
‘ my more 16hit

&
7
Te Drata?
Mo

Fig. 2 Huffman encoding algorithm

The decompression agorithm involves re-
building the Huffman tree from a stored
frequency table in the header of the compressed
file, and converting or decompressing the bit
streams of variable encode length into
characters. Beginning at the root node based on
the header stored in the compressed data, and
depending on the value of the bit, the right or
left branch of the Huffman tree is taken, and
then return to read another bit for the next
branch. When the node selected is a leaf, which
means that it has no right and left child nodes,
its character value is written to the
decompressed file and go back to the root node
for the next bit. This algorithm is continued till
all the compressed hits of variable encode
length are decompressed. Figure 3 shows the
decompression algorithm.

Fetrieve the header inform ati on
of first encoded data

4

‘ Eead the root node }47

¥
| Eeadthe first branch node |

¥

4>| Eead n+1 branch node

This is aleaf node. Proceed with
next encoded data

Fig. 3 Decompression algorithm

3 VHDL Implementation

VHDL implementation had been performed
following the algorithm discussed in section 2. The
implementation is started by building a statistical
lookup table for al the possible text inputs, ranging
from ato z for small case, A to Z for uppercase and
some special characters like semicolon, each with
specific class. An ASCII-to-binary program written
in javascript is used to convert the text input into
binary bits. The ASCII table for each of these
charactersis also referred. This ASCII table is used
as areference to specify the bit patterns for each of
the input character. The bit patterns for each of the
input character are important in the formation of the
lookup table consisting of al possible text inputs.
Since the compressor can recognize 71 characters,

these characters are classified into their respective
classes After determining the size of the class, the
next step is to determine the characteristic of the
class. The eguations to determine the class using
definition for direct symmetric Boolean functionis

f(2) = f(x, y) = f(y. ¥) D

where x is initialized to 001, and y = m-1, where m
is the length of the encoded bits. x is initialized to
001 to represent the class for encoded data with
length of 1 bit.

Thus,

f(2) = f((001),, (M-1)10) = f((M-1)10, (001),) 2

for the function to be a direct symmetric function.
f(2) represents function for classification of the
Boolean function derived using definition for direct
symmetric Boolean function.

To perform the compression, the input data will
first match with al the predefined inputs in the
lookup table. When the input data is matched
successfully, the length of the encoded output will
be shown, and the output will be displayed. The
output is of variable length. Thus, careful
declaration of the vector size is needed to ensure
correct compilation and simulation. The possible
length of the encoded output ranges from 1 bit to 6
bits, which is lesser than the uncompressed form of
datafor each character, which is 8 bits.

For the decompression of the encoded data, the
class of the encoded data and the compressed data
are used as the inputs to run the decompression
program. Again, the compressed data may be of
different length, which varies from 1-bit to 6-bit.
The inserted class and compressed data will then be
matched with all the predefined data in the lookup
table. When the inserted class and compressed data
matches with the predefined data in the lookup table,
then the output, which is the original data before
compression can be obtained.

4 Simulation and Discussion

The system was coded in IEEE-compliant VHDL
and compiled and simulated using the Aldec Active-
HDL version 3.5 suite. This provides an opportunity
to detect and correct errors early in the design
procesy 6]-[7]. Both compression and
decompression modules was designed and tested in
isolation before being incorporated into the higher
levels of the design.

Both compression and decompression modules

were first simulated individually to verify their
functionalities. Each module was feed a fix inputs
and the correct outputs were observed. After the
successful individual simulations were performed,
the modules were integrated together. This enables
detailed simulation at the top level.
The results are generated using waveform editor.
The clock signal and outputs are shown in the timing
diagram. One example of the simulation was shown
in section 4.1 and 4.2 using the 72-bit input binary
data.

4.1 Compression Simulation

7 WAX+plus 1 - c:\documents and settingstkh yeow\desktop\vhdl compression articleYrom kee thailtesting purposelcompression_updated - [compres... m@@
Cy WthpusT Fle Bt e Mods fusion Ut Cptors idow e - X

=] 9N ORES2L BAE HER AR2E B

| Ref [oors JEL3] Tine: [2gs | et [268:5 |

E,Ag Narme: Valued 2lus 40z EQJS EQUS WDQJS WQQus . ;Ls WEPus WEPus
= cl 1
BF il | - wiom o owmcro f oo { ovoon f mim)
FDs |BI 1m i m i 10 j
FD outpuatsd 30110] i ot I o I 1 T

&l
a

hj=d" =]
Iy | Ref [Lons

36| Name:

= clk

D= inputData
I class

23|

Fig. 4 Simulation results for compression

In Figure 4, the generated data inputs are 00110101,
00110110, 00110111, 01100011, 00111001,
01101011, 01101100, 01110000, and 01110111.
The encoded outputs are 0000, 0001, 0010, 1001,
0100, 1000, 1011, 0111, and 1110. The outputs are
exactly the same as the output in the lookup table.
This yields that the compression is performed
correctly. In this simulation, the compression ratio is
50%. The best compression ratio for this algorithm
is 87.5%, which is the case when all the inputs are
having encoded output of 1 bit. However, thisrarely
occurs since text inputs usually consist of various
different characters, which have their respective
class and output bits as defined in the lookup table.
The average compression ratio is 25% to 37.5%
from numerous testing with various text inputs.
This is verified from the lookup table as well, since
class 101 and class 110 have most input texts, and
their encoded bits range from 5 bits to 6 bits.

4.2 Decompression simulation

i1 MAX +plus 1 - i ecture -l8%

@ Mphs T Fle Edt View Node Assin Utltes Options Window Hep -l81%

NEEal sk - K oREsEs BRA HEa 2R3 R &
m Start: [00n [et oo Interial: - (B0 Dus

8lis 10 16005 Al
00

o poom) oo m | nm

O T T T T

gs MAstplus 1T File Edit Wiew MNode Assign Utiities Options ‘Window Help

NEES sz - ¢ oREBLL BRE EER 2E2
Sta [00ns (3] End: [a00us Interval: |30.0us

% IDus SD.IDus 35.|Dus

INERNRERERREREEN
100

I T O LT

onoior . ononon ¥ oo oioid

|t > > |

Fig. 5 Simulation for decompression

In Figure 5, the input is the compressed data and
class. The compressed data are 0000, 0001, 0010,
1001,0100, 1000,1011, 0111 and 1110. The outputs
are 00110101, 00110110, 00110111, 01100011,
00111001, 01101011, 01101100, 01110000, and
01110111. The outputs are exactly the origina
inputs which verify the correct functionalities of the
agorithm.

5 Conclusion

The objective of this project was to design and
implement a Boolean compression agorithm using
VHDL. The Boolean function classification
schemes are incorporated into Huffman coding for a
better compression agorithm. The modules were
successfully compiled and simulated. The hardware
implementation demonstrated complete, correct
functionality and met al the initid system
requirements.

Currently we are conducting further research to
reduce the hardware complexity in term of synthesis
to be able to download the code into Altera
FLEX10K: EPF10K10LC84 FPGA chip on LC84
package for hardware redization.

References:

[1]Visweswariah, K., Kulkarni, S.R. and Verdu, S,
“Universal Coding for Nonstationary Sources’,
IEEE Transaction on Information Theory, Vol.
46, No. 4, July 2000, pg 1633-1637

[2]Chip-Hong Chang, Bogdan J. Fakowski,
“Qperations on Boolean Functions and Variables
in Spectral Domain of Arithmetic Transform”,
IEEE International Symposium on Circuits and
Systems (ISCAS '96 — Connecting the World),
V olume 4 Pages 400-403, Georgia, 1996

[3]Chien-Chung Tsai, Malgorzata Marek-
Sadowska, “Boolean Function Classification via
Fixed Polarity Reed-Muller Forms’, |EEE
Transactions on Computers, Vol 46, No. 2,
Pages 173-186, 1997

[4]Mamun Bin Ibne Reaz, Sayed Zahidul Islam,
Mohd. Alauddin Mohd. Ali, Mohd. Shahiman
Sulaiman, “FPGA Redlization of
Backpropagation for Stock Market Prediction”,
Proceedings of the 9" International Conference
on Neura Information Processing, Vol. 2, pp
960-964, Singapore, 18-22" November, 2002.

[S]Huffman, D.A., “A method for the Construction
of Minimum Redundancy Codes,” Proceedings
of the Institute of Radio Engineers, New York,
1952, pg 1098-1101

[6]R.D.M. Hunter, “Introduction to VHDL",
Chapman & Hall, Summit Design Inc., USA,
1996, 482 pages.

[7] Peter J. Ashenden, “ The Designer’s Guide to
VHDL”, Morgan Kaufmann Publishers, Inc.,
San Francisco, California, 1996, 688 pages.

	MALAYSIA
	shahiman.sulaiman@mmu.edu.my
	5 Conclusion
	The objective of this project was to design and implement a Boolean compression algorithm using VHDL. The Boolean function classification schemes are incorporated into Huffman coding for a better compression algorithm. The modules were successfully comp
	Currently we are conducting further research to reduce the hardware complexity in term of synthesis to be able to download the code into Altera FLEX10K: EPF10K10LC84 FPGA chip on LC84 package for hardware realization.
	References:

