
An Experimental Study of the

Simple Ant Colony Optimization Algorithm

MARCO DORIGO† and THOMAS STÜTZLE‡
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Abstract: - Ant Colony Optimization (ACO) is a recently proposed metaheuristic inspired by
the foraging behavior of ant colonies. Although it has been experimentally shown to be highly
effective on a number of static and dynamic discrete optimization problems, only limited knowl-
edge is available to explain why the metaheuristic is so successful. In this paper we propose a
simple framework that allows the investigation of some basic properties of ACO and we report
about some experiments and what we learned from them.
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1 Introduction
Ant algorithms [3, 4, 1, 2] are multi-agent sys-
tems in which the behavior of each single agent,
called artificial ant or ant for short in the follow-
ing, is inspired by the behavior of real ants. The
Ant Colony Optimization (ACO) metaheuristic is
one of the most successful examples of ant algo-
rithm [5], and has been applied to many types
of problems, ranging from the classical traveling
salesman problem to routing in telecommunica-
tions networks.

ACO algorithms have been inspired by an expe-
rience run by Goss et al. [10] using a colony of real
ants. They ran a number of experiments with a
laboratory colony of Argentine ants (Iridomyrmex
humilis) using a double bridge connecting a nest
of ants and a food source to study the ants’
pheromone trail laying and following behavior in
controlled experimental conditions. Particularly
interesting is the case in which one branch of the
double bridge is longer than the other: They found
that, although in the initial phase random oscilla-

tions could occur, in most experiments all the ants
ended up using the shorter branch. The connec-
tion between this experience and the design of the
ACO metaheuristics has been described in a num-
ber of papers [8, 9, 6, 7].

In this article we run experiments with an ele-
mentary ACO algorithm, called Simple-ACO (S-
ACO), in which artificial ants’ behavior is very
similar to that of their natural counterpart (i.e.,
many of the features that are often added to
ACO artificial ants to obtain high performing algo-
rithms for hard combinatorial optimization prob-
lems are not implemented in S-ACO). The algo-
rithm is experimentally tested using the example
problem of finding shortest paths in graphs. Al-
though the shortest path problems can be solved
with deterministic algorithms in polynomial time,
it is an interesting problem for studying the be-
havior of ACO algorithms, because (i) it is the
problem solved by real ant colonies, (ii) the short-
est path problem is very simple and the algorithm
behavior is not obscured by technicalities of the



problem under consideration, and (iii) we expect
features which are important to solve this easy
problem to be even more important when attack-
ing much more difficult combinatorial optimiza-
tion problems.

In the following we first briefly describe S-ACO,
then present some simulation results, and eventu-
ally discuss what we learned from these results.

2 Simple-ACO

The problem that we consider in the following is
finding a shortest path on a graph G = (N, A).
S-ACO exploits a set of variables T = τij(t) called
artificial pheromone trails that are associated to
the arcs (i, j) of the graph G. Pheromone trails
are read and written by the ants. The amount
(intensity) of each pheromone trail is proportional
to the utility, as estimated by the ants, of using
the corresponding arc to build good solutions.

In S-ACO each ant builds, starting from the
source node, a candidate solution to the shortest
path problem by applying a step-by-step decision
policy. At each node local pheromone information,
which is stored at the node itself and/or on its out-
going arcs, is read (sensed) by the ant and used in
a stochastic way to decide to which node to move
next: when located at a node i an ant k uses the
pheromone trails τij to compute the probability
pk

ij of choosing j as the next node:
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where N k
i is the feasible neighborhood of ant k

when in node i. (At the beginning of the search
process, an amount of pheromone τ0 = 1 is as-
signed to all the arcs of the graph G to avoid di-
vision by zero.) In S-ACO the feasible neighbor-
hood N k

i of ant k located in node i contains all the
nodes directly connected to node i, except for the
predecessor of node i (that is, the last node ant
k visited before moving to i). This way the ants
avoid returning to the same node they visited im-
mediately before node i. Only in case N k

i is empty
(corresponding to a dead end in the graph), node
i’s predecessor is included into N k

i . Note that this
decision policy can easily cause the ants to enter
a loop.

An ant repeatedly hops from node to node us-
ing its decision policy until it eventually reaches
the destination node. Due to differences among
the ants’ paths, the time step at which ants reach
the destination node may differ from ant to ant
(ants traveling on shorter paths will reach their
destinations faster).

Once reached the destination node, the ants
eliminate loops they might have done while search-
ing for the destination node and then retrace step
by step the same, loop-free, path backward to the
source node in a deterministic way.

While an ant returns to the source, it adds
pheromone to the edges it traverses: during its re-
turn travel the generic ant k deposits an amount
∆τk of pheromone on each arc it has visited (in
the loop-free path). In particular, if ant k at time
t traverses the arc (i, j), it updates the pheromone
value τij as follows:

τij(t)← τij(t) + ∆τk (2)

By this rule an ant using the arc connecting
nodes i and j increases the probability that forth-
coming ants will use the same arc in the future.

An important aspect of S-ACO (and of ACO
algorithms in general) is how the value ∆τk is
chosen. In the simplest case, this can be a same
constant value for all the ants. In this case the
only effect which works in favor of the detection
of a shorter path is the so called differential path
length effect observed also in real ants: ants which
have detected a shorter path can deposit pheromo-
ne earlier than those traveling on a longer path;
therefore, the short path becomes more desirable
quicker than longer paths and this in turn deter-
mines an increase in the probability that forth-
coming ants will choose it (this is an example of
autocatalysys or positive feedback).

A more sophisticated way of updating the
pheromone trails is to make ∆τk a function of the
quality of the solution generated, that is, of the
path length: the shorter the path the more the
pheromone deposited by the ant. Generally, we
will require the amount of pheromone deposited
by an ant to be a non-increasing function of the
path length. In S-ACO, in particular, an ant de-
posits an amount of 1/Lk, where Lk is the length
of ant k’s path.

To avoid a quick convergence of all the ants to-
wards a sub-optimal path, pheromone trails “evap-



orate”. It is interesting to note that although also
real pheromone trails evaporate, evaporation does
not seem to play an important role in shortest path
experiments with real ants. The fact that, as we
will see later in the experiments section, evapora-
tion is important to get good results with artificial
ants is probably due to the fact that the optimiza-
tion problems tackled by artificial ants are much
more complex than those real ants can solve. A
mechanism that allows a form of “learning” of the
problem structure seems therefore to be necessary
for artificial ants. Evaporation allows the learning
of new policies by allowing to forget bad choices
made in the past.

Evaporation is carried out decreasing pheromo-
ne trails at exponential speed. In practice, at each
iteration of the algorithm the following equation
is applied to all pheromone trails:

τ ← (1− ρ) · τ (3)

where ρ ∈ (0, 1] is a paremeter.

It is interesting to note that, in experiments
with real ants, pheromone trail evaporation does
not play any role. Hence, in one experiment we
test the performance of S-ACO when setting ρ =
0, that is, when there si no evaporation. We will
see that the more complex the graph the more im-
portant is the role played by pheromone evapora-
tion to obtain the desired behavior of convergence
on a shortest path. Note that if the pheromone
trails evaporate completely, that is, when ρ = 1,
then the algorithm is actually reduced to a random
search.

3 Experiments with S-ACO

In the following we run a few experiments on
two simple graphs with the goal of studying how
changing some aspects of S-ACO results in a dif-
ferent behavior of the algorithm. The graphs used
are the double bridge of Figure 1 and a more com-
plex graph shown in Figure 2.

The behavior of S-ACO is judged with respect
to convergence towards the shortest path. By con-
vergence we mean the situation in which, as the
algorithm runs for an increasing number of iter-
ations, the ants’ probability of following the arcs
of the shortest path increases — in the limit to
a point where the probability of selection for arcs
of the shortest path becomes arbitrarily close to
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Destination

Figure 1: Double bridge experimental setup. The
ants can choose to go from the source node to the
destination node either via the short path on the
right or via the longer path on the left.

one while for all the other arcs it becomes close to
zero.

Note that the choice of judging the algorithm us-
ing convergence as defined above instead of more
standard performance indexes like the time or the
number of iterations necessary to find the optimal
solution is consistent with the goal of this paper,
that is, understanding the relationship between
design choice and algorithm’s behavior. In fact, in
such simple graphs as those used here, the short-
est path is found very quickly because of the large
number of ants compared to the relatively small
search space. On the contrary, when attacking
more complex problems like NP-hard optimiza-
tion problems or routing in dynamic networks, the
way experimental results are judged is different.
In NP-hard optimization problems the main goal
is to find quickly very high quality solutions and
therefore we are interested mainly in the solution
quality of the best solution(s) found by the ACO
algorithm. In routing in dynamic networks the al-
gorithm has to be able to react rapidly to chang-
ing conditions and to maintain exploration capa-
bilities so that it can effectively evaluate alterna-
tive paths which, due to the dynamics of the prob-
lem, may become more desirable; in both cases we
will need a different definition of algorithm con-
vergence.

Double bridge setup: Number of ants ver-
sus solution quality based pheromone up-
date
In a first experiment we applied the S-ACO algo-
rithm to the double bridge setup depicted in Fig-
ure 1. We report results for two experiments with
S-ACO:

1. Run S-ACO with different values for the num-
ber of ants and setting parameter α = 2 (this



Table 1: The table entries give the number of times
S-ACO converged to the long path in 100 inde-
pendent trials for varying values of m and with
α = 2. The columns give the number m of ants
in the colony. The first row (ns) concerns results
obtained performing pheromone updates without
considering path length; the second row (sq) con-
cerns results obtained performing pheromone up-
dates proportional to path length.

m 1 2 4 8 16 32 64 128 256 512
ns 50 42 26 29 24 18 3 2 1 0
sq 18 14 8 0 0 0 0 0 0 0

is the same value as used in the equations ap-
proximating real ants’ behavior as identified
in [10]).

2. Same experiment as above except that the
ants deposit an amount of pheromone which
is inversely proportional to the length of the
path they have found.

We ran 100 trials and for each experiment and
each trial S-ACO was stopped after 1000 steps
done by each ant. Evaporation was set to ρ = 0.
At the end of the trial we check whether the
pheromone trail is higher on the short or on the
long path. In Table 1 we then report the percent-
age of experiments in which the pheromone trail
was higher on the long path. We could verify that
reporting this number was enough because S-ACO
showed convergence behavior for the given param-
eter settings. Table 1 gives the results of the two
experiments. Let us focus first on the results of
experiment 1. For a small number of ants (up to,
say, 32), S-ACO converges relatively often to the
longer path. This effect is certainly due to fluctu-
ations in the path choice in the initial iterations
of the algorithm which can lead to a strong rein-
forcement of the long path. Yet, with an increasing
number of ants, the number of times we observed
this behavior decreases drastically and for large
number of ants (here 512) we never observed this
behavior in any of the 100 trials. The experiments
also indicate that, as it could be expected, when
using only one ant S-ACO shows very poor be-
havior: the number of ants has to be significantly
larger than one to obtain convergence to the short
path.

The results obtained with solution quality based
pheromone update (experiment 2) are much bet-
ter. As can be clearly observed in Table 1, S-ACO
converges to the long path much less frequently
than when pheromone updates are independent of
the solution quality. With only one ant, S-ACO
converges in only 18 of 100 trials to the long path,
which is significantly less than in experiment 1,
and with as few as 8 ants, it did not convergence
anymore to the long path.

In some additional experiments, we examined
the influence of the parameter α on the conver-
gence behavior of S-ACO, in particular investigat-
ing the cases where α was changed in step sizes of
0.25 from 1 to 2. Again, the behavior was depen-
dent on whether solution quality based pheromone
update was used or not. In the first case we found
that increasing α had negative effects for the con-
vergence behavior, while in the second case the
results were rather independent of the particular
value of α. In general, we found that the smaller
α, the easier it is for the algorithm to converge
towards the shorter path, if the number of ants is
held fixed. This is intuitively clear, because large
values of α tend to amplify the influence of initial
random fluctuations, while small values of α tend
to limit the influence of poor decisions done in the
first iterations, that can therefore be more easily
forgotten via the pheromone evaporation mecha-
nism.

As in the case of real ants, autocatalysis and
differential path length are at work to favor the
emergence of short paths. While the results with
S-ACO indicate that the differential path length
effect alone can be enough to let S-ACO con-
verge to the optimal solution on small graphs, re-
lying on this effect as the main driving force of
the algorithm comes at the price of having to use
large colony sizes, which determines long simula-
tion times. In addition, we expect the effectiveness
of the differential path length effect to strongly de-
crease with increasing problem complexity. This
is what is tested in the experiment of the next
subsection.

Complex problem: Pheromone evaporation
In a second experiment we run S-ACO on the
graph given in Figure 2. Based on the results for
the double bridge experiment, we modified the ba-
sic configuration of S-ACO so that the ants always
deposit an amount of pheromone which is the in-
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Figure 2: An extension of the double bridge setup.
Here ants can choose between the upper path
which is longer but once chosen can be traversed
without any further decision to be made, and the
lower set of paths that are shorter but require a
number of decisions to be done, with the risk of
entering loops.

verse of the length (after loop elimination) of the
path they generated. To evaluate the behavior of
the algorithm we observe the development of the
path lengths found by the ants. In particular, we
plot the moving averages of the path lengths after
loop elimination (moving averages are calculated
using the 4·m most recent paths found by the ants,
where m is the number of ants). In other words, in
the graph of Figure 3 a point is plotted each time
an ant has completed a journey from the source to
the destination and back (the number of journeys
is on the x-axis), and the corresponding value of
the point on the y-axis is given by the length of
the ant’s path after loop elimination.

In this experiment we focus on the influence
that pheromone trail evaporation has on the con-
vergence behavior of S-ACO. We have run ex-
periments with S-ACO and different settings for
the evaporation rate of ρ ∈ {0, 0.01, 0.1} (α = 1
and m = 128 in all experiments). If ρ = 0, no
pheromone evaporation takes place. Note that an
evaporation rate of ρ = 0.1 is rather large, be-
cause evaporation takes place after every iteration
of the S-ACO algorithm: after 10 S-ACO itera-
tions, which corresponds to the smallest number of
steps that an ant needs to build the shortest path
and to come back to the source, roughly 65% of the
pheromone trail on each arc evaporates, while with
ρ = 0.01 this evaporation is reduced to around
10%.
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Figure 3: The graph plots the moving averages
(given on the y-axis) of the ants’ path length for
the graph of Figure 2 as a function of the number
of completed paths (given on the x-axis). We give
plots for not using evaporation (rho = 0), small
evaporation (rho = 0.01), and large evaporation
(rho = 0.1). The trials were limited to 5000 steps
by each single ant; α = 1 and m = 128.

Figure 3 gives the observed moving averages.
Although the graphs are relative to one single run
of the algorithm, they are representative of the
typical algorithm behavior. If no evaporation is
used, the algorithm does not converge: neither to
the shortest path nor to any longer path, as can
be understood by observing that the moving av-
erage is around 7.5, which does not correspond
to the length of any path. With these parameter
settings, this result typically does not change if
the run last a much higher number of iterations.
With pheromone evaporation, the behavior of S-
ACO is significantly different. After a short tran-
sitory phase, S-ACO converges to a single path:
either the shortest one (the moving average takes
the value 5 for ρ = 0.01) or the path of length 6
for ρ = 0.1. A closer examination of the results re-
vealed that at convergence all ants built loop-free
paths of the indicated length.

In further experiments with S-ACO on this
graph we have made the following general obser-
vations:

• Without solution quality based pheromone
update, S-ACO gets trapped in the strongly
suboptimal solution of length 8; the larger the
parameters α or ρ are chosen, the faster S-
ACO converges to this suboptimal solution.
We conjecture that the reason for the subop-
timal behavior is that ants are easily trapped



in cycles in the lower part of the graph while,
once entered the upper part of the graph, they
can easily reach the destination node. This
has the effect of decreasing the power of the
differential path length effect. This exam-
ple shows once again that pheromone update
based on the solution quality is important for
convergence towards good solutions.

• The pheromone evaporation rate ρ can be
critical. In particular, we observed that S-
ACO often converged to suboptimal paths
when evaporation was set to a too high value.
For example, in 15 trials with ρ set to 0.2, S-
ACO converged one time to a path of length
eight, one time to a path of length seven and
two times to a path of length six, while with
setting ρ to 0.01, S-ACO converged in all tri-
als to the shortest path.

• Large values of α generally result in a worse
behavior of S-ACO because they give exces-
sive importance to the initial random fluctu-
ations.

In general, we noticed that as problems become
more complex, the parameter settings of S-ACO
become increasingly important to obtain conver-
gence to the optimal solution.

4 Conclusions

This article reports results of experiments run with
S-ACO, a simplified ACO algorithm for finding
shortest paths in graphs. The experimental re-
sults allow to derive important conclusions for the
application of ACO algorithms to much more dif-
ficult combinatorial optimization problems. These
are that (i) the differential path length effect alone
is not effective enough to allow to solve effectively
large optimization problems, (ii) solution quality
based pheromone update by the ants is important
to allow a fast convergence of S-ACO, (iii) large
values for parameter α lead to a strong emphasis
of initial, random fluctuations and to bad algo-
rithm behavior, and (iv) pheromone evaporation
is important when trying to solve more complex
problems.

We expect that more detailed studies of S-ACO
will lead to a better understanding of ACO fea-
tures which are important to solve complex, real-
world optimization problems.
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