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ABSTRACT

In this paper, we introduce a diffusion-based Mone
Carlo method, the last-passage algorithms and demon-
strate the possibility of evaluating the power-law singu-
larity associated with the corner of a conductor for the
computation of capacitance coefficients for very large
scale integration (VLSI) interconnects. We illustrate
our method in the solution of a benchmark problem,
the charge singularity at the corner of the unit square
plate. The result is in good agreement with the previous
result by Morrison and Lewis. Furthermore, it should
be noted that the method for determining corner singu-
larities is completely general; it is not limited to the 2-D
rectangular corner geometry.

1 Introduction

A major difficulty computing capacitance coefficients
for VLSI interconnects arises from the corner and edge
singularities when we apply deterministic methods like
finite difference or element methods. To ease the prob-
lem, a simple formula taking the charge concentration
at any 3-D rectangular corner into account has been
given [1].

In this paper, we introduce a Monte Carlo method,
last-passage algorithms [2]-[4], for getting the corner
singularity of a conducting object. The Monte Carlo
method is illustrated in the solution of the charge sin-
gularity at the corner of the unit square plate.

2 Last-passage Algorithms

In this section, we review the last-passage algorithms [2]

which allow one to efficiently calculate the charge den-
sity at a point on a conducting surface by utilizing the
backward diffusing paths that initiate at the point.

Using the isomorphism between electrostatic prob-
lems and diffusion problems [5], [6], we obtain a formula
for the electrostatic potential V(x + €), very near the
point x on the conducting surface [7]:

Vix+e) = Pygx+ey)p(y, <), (1)
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Here, g(x + ¢€,y) is the Laplacian Green’s function asso-
ciated with Dirichlet boundary conditions on the region

09y. In particular, g(x + €,y) is the probability den-
sity associated with a diffusing particle initiating at the
point x + € and making the first contact on the surface
08y, at the point y. Also, p(y,o0) is the probability of
a diffusing particle initiating at the point y on the up-
per first-passage surface and diffusing to infinity without
ever returning to the conductor. Thus, Eq. 1 represents
the electrostatic potential, V(x + €), as the probabil-
ity density of a diffusing particle initiating at the point
x + € near a conducting surface, and diffusing without
ever contacting the conducting surface again. It should
be noted that in Eq. 1 the first factor is analytically
simple, but it depends on the quantity € and the second
factor is very complicated, but it is independent of e.

Gauss’ law gives the surface charge density o(x) on
a conductor in terms of the formula [8]:
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o(x) = i de V(x+e). (2)
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Inserting Eq. 1 for V(x + ¢€), this becomes

000 =1 [ Eyeeyny.). G
where

9(x+ey). (4)
e=0
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The function G(x,y) is the Laplacian Green’s function
for a point dipole centered on the conducting surface at
point x and normal to the surface.

For a flat conducting surface, this dipole Green’s
function is readily shown to be given by

Glx,y) = o 20 (5)
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where 6 is the angle between the vectors z and y, and a
is the radius of the absorbing sphere. Substituting Eq. 5
into Eq. 3 gives the formula:

3 cosf
()= [ AT ©

T8



Figure 1: This schematic view illustrates that a diffusing
particle is initiated at the point y on the surface of a
hemisphere surrounding the point x on a square plate
to obtain the charge density at x.

3 Numerical Example

In this section, we demonstrate the last-passage method

for getting the corner charge singularity exponent of the
unit square plate and compare with the previous result
by Morrison and Lewis [9].

The last-passage method obtains the charge density
at the point x as follows (see Fig. 1): N diffusing parti-
cles are initiated at points selected randomly with den-
sity cos 8 dS on the surface of a hemisphere surrounding
the point x. They diffuse until they either hit the con-
ductor or diffuse to infinity.

Application of this method gives for the corner sin-
gularity of the square plate the exponent, 0.7031, and in
good agreement with the singular purturbation result,
0.7034 [9]. The exponent is obtained from the linear
regression of the charge densities along the diagonal of
the square plate with 10° trajectories for each data point
(see Fig. 2).

4 Summary and Discussions

In this paper, we demonstrate our last-passage method
in the solution of a benchmark problem, the charge sin-
gularity at the corner of the unit square plate. The re-
sult is in good agreement with the singular perturbation
result by Morrison and Lewis [9]. We should note that
our method is not limited to the 2-D rectangular corner
geometry. Our method can be used to ease the difficulty
treating the corner charge singularities when we apply
deterministic methods like finite difference or element
methods for the computation of capacitance coefficients
for VLSI interconnects.
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Figure 2: Corner exponent of the unit square plate with
10° trajectories for each data point: r = \/z2 + y? is
the diagonal distance from the corner and the linear
regression slope is —0.7031 with correlation coefficient
—0.9999999.
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