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Abstract : -The Spatio-Temporal Motion-Tuned Wavelet Transform is a construction started around the early 90’s and that has
been investigated in particular for motion-tracking purposes. Recently this approach has been reviewed in new applications of
motion estimation applied either to video compression or to scene analysis. We show in this paper some performances reached
with such constructions and make a comparison with another close construction based on the optical flow computation. We
also discuss improvements of the construction of the MTSTWT and show which results can be reached with this interesting
wavelets family.
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1 Introduction

Wavelets are today a very “hot” subject in video compres-
sion. Several developments on the basis of the MPEG4 stan-
dard have been proposed. The result of a recent ”Call for
Evidence” in july 2003, Trondheim, has shown a good be-
haviour of compression schemes based on wavelets. The
”Call for proposal” at the end of 2003 will probably show
the emergence of wavelets within the upcoming standards.
A group using wavelet for compression has been constituted
within the MPEG4 team.
In the approach we have been investigating recently for mo-
tion detection and estimation, as well as for video compres-
sion and scene analysis, objects motions are tracked and
quantified by wavelets tuned to motion [3]. We have de-
scribed a scheme where objects trajectories can be com-
puted on the basis of the motion coefficients provided by the
wavelet transform, the so-called MTSTWT, and an a priori
model for the trajectory (Nth order polynomial, Spline etc.).
So motion estimation and temporal redundancy reduction
(especially in compression applications) could be based on

the computed trajectories.
This approach differs from other recent use of wavelets for
new video compression proposals like :
1) Hybrid compression with “post motion-compensation fil-
tering” with wavelets.
2) 2D+T compression with motion compensation and lifting
[7].
3) Fast optical flow computation resolved on a 2D orthogo-
nal basis [1].
This is not an exhaustive description of the recent applica-
tion of wavelets in video compression and motion estima-
tion, but we will concentrate here on the “unwarpped” signal
analysis with a specific class of motion-tuned wavelets that
we have started to investigate [2, 3].

2 Construction of Spatio-temporal Motion-
Tuned Wavelets

We recall here the basis of the construction of spatio-
temporal motion-tuned wavelets described in [5, 8, 10].
The definition of a wavelet transform tuned to motion is
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done by means of thecomposite operatorΩg. This one
is defined by the application of transform operators on a
mother wavelet:

[Ωgψ](~x, t) = [T~b,τRθΛcDaψ](~x, t) (1)

where the transform operators are respectively the spatio-
temporal translation, the rotation, the velocity tuning and
the scaling.
This gives, when replacing the operators by their expres-
sions, in the Euclidian or spatio-temporal domain (direct
space) :

[Ωgψ](~x, t) = a−3/2ψ

(
c−1/3

a
r−θ(~x−~b), c

2/3

a
(t− τ)

)
(2)

We can use the above relation with a spatio-temporal morlet
wavelet defined by :

ψ(~x, t) = (e−1/2|~x|2 .ei
~k0~x)× (e−1/2t2 .eiω0t) (3)

This last expression is the simplified expression of the ad-
missible Morlet wavelet, under the assumption thatk0 ≥
π
√

2
Ln2 ' 5.336 andω0 ≥ π

√
2
Ln2 ' 5.336, which en-

ables to neglect the admissibility terms [5, 6].
The previous expression enables to define a wavelet trans-
form tuned to more parameters than the classical spatial
scale and translation. These parameters are the spatio-
temporal scaling and translation but also the rotation and the
velocity. We finally obtain theexpression in the Euclid-
ian, or Spatio-Temporal direct, domain, of the “motion-
tuned” wavelet transform (MTSTWT) with a set of tuning
parametersg = {a, c, θ,~b, τ} :

ψ(a,c,θ,~b,τ)(~x, t) = a−3/2 ×

e−
c−2/3

2a2 |~x−~b|
2
× e−j

c−1/3
a

~k0r
θ(~x−~b)︸ ︷︷ ︸

spatial term

×

e−
c4/3

2a2 (t−τ)2
× e−j

c2/3
a ω0(t−τ)︸ ︷︷ ︸

temporal term

(4)

Remark: A sequence is viewed as a spatio-temporal object
and is decomposed on a basis tuned to 2D+T. Motion could
be analyzed on 2D signals but we prefer to work on a 3D or,
better called, “2D+T” approach because of a lack of consid-
eration of the time variable in the 2D case.

2.1 Anisotropy parameter

An anisotropy parameter is used together with the velocity
parameter in order to control the variance of the wavelet

w.r.t. to the velocity plane [11]. This parameter is intro-
duced into the expression of the wavelet by replacing~x and
~k byA−1~x andA~k, respectively, with :

A =
[

1 0
0 ε

]
(5)

and

A−1 =
[

1 0
0 1/ε

]
(6)

The purpose of the anisotropy parameter, as explained in
[11, 3], is to relax or increase the selectivity of the wavelet
in speed. In the examples shown further, the selectivity has
been fixed to 100. Adjusting this parameter can be used ei-
ther for the “exhaustive” speed analysis of a scene or for the
detection of an accurate speed value in a scene.

2.2 Wavelet and algorithm choice

The known initial authors [5, 8] of motion-tuned wavelets
have been trying Morlet wavelets in the spectral domain.
We have investigated other wavelets like the partial gaussian
derivatives. These wavelets have been used by Mallat et al.,
in the “dyadic transform” for singularity detection and mul-
ticontours decomposition/reconstruction. They are better
suited to object detection in a scene because they oscillate
much less than the Morlet wavelet. However, and maybe
because of their difference in compacity between the direct
and the Fourier domain, they have not given, for now, better
results than the Morlet wavelet.

• Fast “A Trous” (“With Holes”) algorithm :
This algorithm is supposedly an interesting investigation
field for the MTSTWT. We have built a motion-tuned trans-
form based on this algorithm. But the wavelet used have
to satisfy the AMR (Multi Resolution) condition (the twin-
scale relation) which is not the case for the Morlet wavelet.
Our present work is today concentrated on the construction
of a filter bank satisfying the AMR condition (this is the
case for Splines mentioned in [12]) and based on wavelets
tuned to motion and more specifically to speed.

• Twin-scale relation for an AMR.
In order to satisfy to an AMR decomposition, the studied
function, or signal, has to be projected on a “scaling” func-
tion. This function is related to the wavelet function, which,
for the “a trous” algorithm gives the remaining information
contained in the complementary orthogonal subspace [12].
The scaling function exists only for some classes of wavelets
and must satisfy the following necessary condition called the
“twin-scale relation” :
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h(n)φ(x− n) (7)

• Speed tuning admissibility conditions :
In order to make wavelets tuned to velocity, special condi-
tions must be satisfied. These constraints come from the
application of the velocity operatorΛc on the wavelet (see
equation1). TheΛ operator acts on the wavelet according
to the following relation :

[Λcψ](~x, t) = ψ(c−q~x, cpt) (8)

The constraints result in two linear equations based, first
on a unitary assumption and second on the application of
the speed-tuning transformation to thev0 speed-plane [11].
They explicit the choice of the followingp = 2/3 and
q = 1/3 values.

3 Spectral and direct algorithms

We have tested a spectral domain and a direct domain algo-
rithm for the MTSTWT. The direct version computes con-
volutions separably in the direct domain with the same fil-
ter length (-4,4,sizeof(image-direction)) as in the spectral
domain. At this point we could argue that computing the
MTSTWT in the direct domain is faster than going forth and
back to the Fourier domain.
But the interesting point is of course the advantage in the di-
rect domain to use a ”compact” representation of the wavelet
filter. Another interesting point is that the filter condition of
compacity, in the direct domain, is easily satisfied in com-
parison with the spectral algorithm where a representation
compact in the time domain as well as in the frequency do-
main is more difficult.This is a major concern when comput-
ing the WT in the Fourier domain, so this restriction, due to
the Heisenberg principle, does not apply to the convolution
computation in the direct spatio-temporal space.
The direct space, separable, version of the MTSTWT al-
gorithm computed with the same filters lengths is slower
than the spectral version. Nevertheless, in the direct space
the computation should be faster under the condition to use
fewer taps filters (compact filters). In the direct space the
filters can also have a length inferior to the signal. In the
Fourier space, they must have the same length for an imple-
mentation with term-to-term products.
• Other remark : The wavelets can be“scaled” by means of
the parameter a. The change in variable is k/a for the spatial
part and t/a for the temporal part. At this point we suggest
not to tune the temporal variable to scale. The meaning of
temporal variable scale tuning is not clearly understandable.

4 Results

1) Algorithm complexity of the MTSTWT

• The MTSTWT in the Fourier domain has a complexity of
O(filterlength × (N3LogN)) with N = m × n × k the
size of the sequence.
• Add one IFFT3 per speed parameter if the analyzis is
made in the direct domain, or IFFT1 if the analysis is made
in the spectral domain (not yet implemented). The speed
analysis is based on the use of a set of wavelets tuned to
different speeds. The speed analysis of a sequence is fi-
nally based on the search for a best basis in a dictionary
of speed-tuned wavelets. The set of speed can be for exam-
ple Sc = {1, 3, 6, 12, 24, 48} pixels/frame. This set can be
chosen with or without an a priori knowledge of the speeds
of the object pertaining the sequence. An a priori search
in scene analysis would be to search only for objects hav-
ing a speed around 3 pixels/frame. The term “around” has
also the special meaning that an anisotropy parameter can be
added to the wavelet in order to give it a specific variance.
This anisotropy parameter, in other terms, gives the wavelet
a selectivity. So for a wavelet tuned to 3 pixels/frame, the
anisotropyε enables to search for speeds between, for exam-
ple, 2 and 4 pixels/frame. The selection can finally be done
by hard or soft thresholding (the so-called “keep or kill” and
“shrink or kill” procedures).
• Add the FFT3 of the sequence-block analyzed prior to the
MTSTWT (convolution products between block-sequence
and spectral wavelet).

2) Computational speed•The MTSTWT in the di-

rect space with wave filters of length sizeof(each-image-
direction), i.e. with the same filter lengths as in the Fourier
domain, gives a computation speed of approximately 30
times (30 secondes) the computation in the spectral domain
(see below for the spectral algorithm results). The computa-
tions have been done on a Xeon-BiProc at 2.6GHz.
• The MTSTWT in the spectral domain, with 3 different
speed bases i.e. with 3 (2D+T)-wavelets tuned to 3 speeds
(3, 6, 10 pixels/fr) on a360×240×8 block of frames (Tisch-
Tennis player sequence) takes 1200ms on the same Xeon bi-
pro 2.4GHz. Add approximately 380 ms for the IFFT3 for
each speed, which give a total of 2400ms, at one (the high-
est) resolution.

• The Fast Optical Flow [1] computed between 2 frames of
the same sequence and at 4 resolutions takes 10 seconds on
the 2.4GHz Xeon .

5 Conclusion and futur developments

Motion-tuned wavelets are very efficient for motion param-
eter computation, can be very accurate, robust to noise and
occlusion due to their redundancy, and have the property
of scalability by construction (multiresolution). Their ap-
plication to compression is not obvious directly for motion
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computation because :
1) A good segmentation of objects is difficult and not yet
well-performed especially in MPEG4.
2) The MTSTWT computation is complex : they are similar
in a way to matching pursuit due to the ”large parame-
ter sweep” that has to be done for each GOF (Group Of
Frames), but we are working on the improvement of the
algorithm.

On another side :
1) They can be a good solution in post motion-compensation
trajectory filtering, either on a dense field or on block trajec-
tories.
2) Their efficiency in motion parameter extraction can be
used in scene analysis.
3) They have shown good results in target tracking.

Our present improvements are concentrated on a several
precise points :
1) The use of wavelets better suited to object detection and
less oscillating (Gaussian derivatives)
2) A computation in the direct space (discussed above) in
order to avoid the direct to dual space conversions (FFT�
IFFT)
3) The reduction of the convolution kernel size (especially
for the direct domain computation)
4) The use of a Fast Algorithm based on the “A trous algo-
rithm” and/or computation in direct space (Euclidian space
convolution; already coded)
5) The extension of the wavelets tuning to acceleration and
objects deformability [9, 4]
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Figure 1. The “caltrain sequence” GOF used:400 × 512 × 8. In this sequence block of 8 frames, the train motion
(and ball) is accelerated. All the objects (and background ) are moving : camera constant speed panoramic to the left to
follow the train, calendar in vertical translation, two-balls pendulum with complex rotating motion etc.

Figure 2. MTSTWT analysis with the spectral algorithm and parametersa = 1, εs = 100, on 8 frames of the “Caltrain
sequence”. Three interesting points to notice : 1) the first frame undergoes a “side effect” due to the non-circularity of
the convolution (or non symmetrization or padding) 2) the accelerated motion can be detected by stronger (brighter co-
efficients) when getting closer to the 8th frame 3) All the motions are detected with strong (bright) or weak coefficients
depending on the speed. In particular the upper left “thumb” image with a duck (logo of the software used for avi video
decomposition into jpeg images) is totally invisible.
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Figure 3. MTSTWT analysis with the spectral algorithm and parametersa = 1, εs = 100, on an “8 frames synthetic
still-block” of the “Caltrain sequence”. This block of eight frames is synthetically composed of the same frame, i.e.
there is no motion at all in these 8 frames. We can easily see, in comparison with the previous figure, that the MTSTWT
has detected no motion. We can easily see on the upper left part of the image the “still image” logo of the software used
for avi video decomposition
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