Strain effects on pyramidal InAs/GaAs quantum dot
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Abstract: Strain distribution in a pyramidal InAs/GaAs quantum dot isinvestigated. The strain field induced by
mismatch of |attice constantsin heterostructuresis analyzed based on theories of linear elasticity and of thermal
stress.  The strain-induced potential is then incorporated in the steady state Schrédinger equation. Both the
strain field and the solution of the steady state Schrédinger equation are found numerically with the aid of a
finite element package — FEMLAB. Eigenenergy and the probability density function of conduction band of
quantum dot are calculated. Results from two different models, namely anisotropic material model and
isotropic material simplification, during the stage of strain analysis are also compared. Numerical results show
eigenenergy and the degeneracy of low eigenenergy are affected by strains.  On the other hand, the differences
between anisotropic and isotropic materials are not large. Therefore, it is suitable to treat INAs/GaAs quantum

dot asisotropic materials.
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1 Introduction

Quantum dots (QDs), which have delta-functions
distribution of density of states, discrete energy
levels, and “atom-like” electronic states due to its
three-dimensional quantum confinement, have
recently attracted substantial attention [1-2]. The
efficiency of QD is strong related to the density of
dots in the quantum dot array. Self-assembled QDs
(SAQDs) formed by strained epitaxy have shown
promising result to have a large array of quantum
dots. SAQD formation is commonly observed in
large mismatch epitaxy of chemicaly similar
materials. For example, the Stranski-Krastanow (SK)
growth of InAs on GaAs first involves the growth of
a~1to 2 monolayer thick of “wetting layer” followed
by coherent island formation [1-3]. The SAQDs may
be buried by afurther growth of the same materialsas
the underlying substrate.

The strain fields inside and in the neighborhood of
SAQDs strongly affect the electronic properties in
vicinity of the dots, and hence the optical-electronic
properties [4-5]. For the optical-electronic properties
in 111-V semiconductors, there are two predominated
strain effects, namely changes of the the conduction
and valence band levels and changes of local electric
fields due to piezoelectric effect. The conduction
band is only affected by the hydrostatic strain, often
referred to as the dilatation or trace of the strain
tensor. The vaence levels can change both with
hydrostatic and shear strain. In the general, for zinc

blende structures, deviatoric strains give rise to
piezoelectrically induced electric fields [6].

To understand the strain effects on electronic
properties of QD, determination of the elastic strain
field in the dots and surrounding matrix is necessary.
There have been three different main methods: (i)
theory of inclusions based on the analytical solution
of elasticity [7-9], (ii) finite element methods (FEM)
[10-13], and (iii) atomistic modeling [14-16]. The
theory of inclusions providesintegral expressions for
eastic fields which can be integrated in closed form
only for simplest inclusion shapes, e.g. cylindrical or
spherical quantum dots. On the other hand, the
interactions between the quantum dot and the
surrounding material are not fully encountered. FEM
is a very versatile and effective numerical method,
which can easily accommodate various theories and
model quantum dot to different levels. Atomistic
models might be more reasonable, at least
theoretically, to model system in nano-scale provided
that accurate interatomic potentials are given.
Moreover, it requires a large computing capacity to
model quantum dots and the surrounding matrix.

In this article, models based on theories of linear
dadticity and of thermal stress are developed to
evauate the strain distribution in the pyramidal
INAS/GaAs SAQD. The mismatch of lattice constants
in heterostructures induces the strain field which is
then calculated with the aid of a finite element
package — FEMLAB. The Schrédinger equation,
including the strain-induced potential, is then solved,



again by FEMLAB. The solutions consist of
eigenenergy and the probability density function of
conduction band. Finally strain effects on electronic
properties in pyramidal INAs/GaAs quantum dot are
discussed. During the strain analysis, the materials of
quantum dot are modeled by anisotropic aswell asits
isotropic simplification, respectively. Numerical
results of two models are compared.

2 Continuum And Quantum Models

Consider a buried pyramid InAs/GaAs quantum
dot structure as shown schematically in Fig. 1. The
InAs island (quantum dot) is self-assembled under
certain conditions during heteroepitaxy on GaAs
substrates. The island is subsequently covered by
additional substrate materials.

Fig.1l. Schematics of (a) the buried InASGaAs
quantum dot structure and (b) the island (InAs
quantum dot).

In this article, the analysis of a quantum dot is
divided into two parts. First, a linear elastic finite
element calculation is performed to determine the
strain field in the quantum dot structure. Second, a
time-independent Schrodinger equation, with a
strain-induced potential calcul ated using deformation
potential theory, is solved numerically to obtain the
spectrum of energies and probability density
functions of available states.

2.1 Continuum model

Epitaxialy grown semiconductor heterostructures,
such as SAQDs, often consist of several materials
with lattice parameters that are mismatched. The
mismatch of lattice parameters gives rise to strain
field in a quantum dot structure, which will then

affect the electric properties of the quantum dots.
L attice mismatch parameter is usually defined as[17]
= M , (1)
ay

where a, and a, are the lattice parameter of the
substrate and quantum dot materials, respectively.
Thelattice mismatch parameter isasystem parameter
of the quantum dot. In this article, the parameter ¢,
issimulated as an initia strain in the island/substrate
interface. Thisinitial strain will induce further strain
in the system.

In order to analyze the effect caused by initial
strain &, in the island/substrate interface, theory of
easticity together with thermal stress theory [18] are
utilized. Theinitial strain in the quantum dot is then
treated as thermal strain under the therma stress
theory. Since mismatch lattice parameters is only
along the island/substrate interface (i.e., 1-2 plane or
x-y plane asdepicted in Fig. 1), thethermal strainsin
the idand/substrate interface are specified as

&y

Bu=Pr=¢,; orther g, =0. 2

By linear elasticity and thermal stress theory, the
relationship between the stresses and the strainsin a
quantum dot structure is expressed as

7, =Cy (80 — Be) » 11:k1=123 , (3)

where 7, and g, are the stress and strain tensors,
respectively, Cix is the elastic stiffness tensors, and

L. isthe thermal strain tensors.

The linear elasticity boundary value problem,
arising from the mismatch in lattice parameters
between the island and substrate materials, is solved
using the finite element package — FEMLAB. We
consider that all outer boundaries are traction free
surfaces, and the substrate bottom is fixed. The
displacement compatibility across the interface of
idand/substrate is satisfied automatically in the finite
dement formulation with displacement field as
unknowns.

2.2 Quantum model

The strain components will induce an extra
potential field which may affect the probability
density functions and energies of the electronsin the
quantum dot structure. Pikus-Bir Hamiltonian [4-5]
together with the computed strain field from



above-mentioned continuum model are used to
analyze strain-induced effects in quantum dots.

The behavior of individua electron in an
undeformed crystal is governed by the steady state
Schrédinger equation:

{zﬁ*vo(”}%(r>=%wn(r), (4

where p =— iV is the momentum operator, V,(r)
the potential field, m, the electron rest mass, 7 the
Planck’'s constant, and E, and w,(r) the nth

eigenenergy and the corresponding probability
density function, respectively. The r and V are the
position vector and the Laplacian operator,
respectively, in the undeformed crystal coordinate.
Oncethere being strains, the steady state Schrédinger
equation (4) is modified according to Pikus-Bir
Hamiltonian [4] as

[Ho+H, ] v, [(T+e)r] =E, w,[(I+&)r], (5)

where
p2
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Since the conduction band is only affected by the
hydrostatic strain [6], the diagonal term of Eq. (7)
leads to

[Hg]m:ac(sxx+sw+azz), (8)

where a, is deformation potential constant shown in

Table 1.

Equation (5) is then solved numerically again by
means of the finite element method in order to obtain
eigenenergy and the probability density function of
conduction band in a quantum dot structure. The
boundary conditions on the quantum dot/substrate
interface are

{ Vo =Vs ©)
(dyy/di)/m, = (dy,/di)/m , i=xy,z

where subscripts d and s correspond to the
quantum dot and substrate regions, respectively,
index i corresponds to one of the three possible
coordinaes X, y, z and electron effective mass is
taken along one of three coordinate axes.

Table 1 Material property [6]

Materia InAs GaAs
electron effective 0,023 0,067
mass (m /m,) ' '

lattice parameter | 505 | (565
a (nm)
Y ang's modulus
51.3 85.5
(Gpa)
Poisson’sratio 0.354 0.316
Cu 8.329 11.879
Cu 3.96 5.94
deformation
. -5.08 -7.17
potentia & (eV)
energy gap Eg (eV) 0.354 1.424

Note: 1. C; is elastic constants (Unit : 10" N/m?).

3 Numerical Results

The materials are modeled by anisotropic and its
isotropic simplification, respectively, during the
strain analysis to investigate the strain field in the
pyramidal InAS/GaAs quantum dot structure. The
geometry and material properties of the quantum dot
structure are shown in Fig. 1 and Table 1,
respectively.

Figures 2-3 show the strain components along
(x=0,z=25)nm. Fig.2are ¢, and ¢, while ¢,

for Fig. 3. It is easily to see that these components
have significant variation with position throughout
the structure. Moreover, strains are more nonuniform
at InAs/GaAs interface due to the pervasive effect of
relaxation.

The eigenenergies of the quantum dot structure
are shown in Table 2. The strain effects shift al
energy states, as one would expect, especidly the
first energy state increased about 0.2 eV.
Furthermore, degeneracy of energy states is also
shifted by strain effect.
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Fig. 2. Plot of Strain components ¢,, and ¢, a
(x=0, z=25) nm ; a solid line is for anisotropic
analysis, adashed lineisfor isotropic analysis.
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Fig. 3. Plot of Strain ¢,, a (x=0,z=25 nm; a

solid lineis for anisotropic analysis, a dashed lineis
for isotropic analysis.

The distribution of confined states is enlarged due to
strain effect. In the subfigure 5(a), the states are
confined to two regions in a unstrained idand. In
strained cases, subfigures 5(b)-5(c) show the results
of isotropic analysis are similar to the results of
anisotropic analysis

Three-dimensional view of the isosurface of the
squared probability density functionsin QD structure
isshownin Fig. 6. Subfigures 6(a)-6(b) aretheresults
for the 2™ energy state and 3“ energy state,
respectively, without stain effect. The states are
confined to two regionsin y axis (for the 2™ energy

state) and two regions in x axis (for the 3 energy
state), respectively. Subfigures 6(c)-6(d) are the
results of the anisotropic analysis, for the 2" energy

Probability density profiles, given by square of
probability density functions, namely|1//1|2and|gz/2|2

for the two lowest energy states in a quantum dot
structure, are shown Fig. 4-5, respectively. Subfigure
4(a) is the result for an unstrained quantum dot
structure. The states are almost entirely confined to
the island region. Subfigures 4(b)—4(c) are results of
the anisotropic analysis and the isotropic analysis,
respectively, for a strained quantum dot structure.

Table 2 Numerical results for eigenenergy

Strained
Eigenenergy | Unstrained

Isotropic | Anisotropic

1 0.429 0.649 0.677

2 0.7 0.849 0.858

3 0.7 0.849 0.858

4 0.865 0.879 0.877

5 0.865 0.885 0.883

6 0.885 0.915 0.916

7 0.891 0.924 0.923

8 0.924 0.924 0.923

9 0.924 0.930 0.929

10 0.928 0.930 0.929
Unit : eV
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Fig. 4. Probability density fields for the 1% energy
state, by (@) unstrained analysis, (b) anisotropic
analysis for strained QD; (c) isotropic analysis for
strained QD. The cross section is the y—z plane
through the dot center.



state and 3" energy state, respectively. Dueto strain
effect, the distribution of confined states is enlarged
to theisland region and substrate region. Further, the
states are confined to two regions inxaxis (for the 2"
energy state) and two regions iny axis (for the 3"
energy state), respectively. Subfigures 6(e)-6(f) are
the results of the isotropic analysis, for the 2" energy
state and 3" energy state, respectively. However, the
results of isotropic analysis are similar to the results
of anisotropic analysis.

@ (b) (©

Fig. 5. Probability density fields for the 2™ energy
state, by (@) unstrained analysis;, (b) anisotropic
analysis for strained QD; (c) isotropic analysis for
strained QD. The cross section is the y—z plane
through the dot center.
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Fig. 6. Theisosurface of the squared probability density functionsin QD structure, (a) for the 2™
eigenenergy state without strain; (b) for the 3 eigenenergy state without strain; (c) for the 2
eigenenergy state by anisotropic analysis with strain; (d) for the 3" eigenenergy state by
anisotropic analysiswith strain; (€) for the 2" eigenenergy state by isotropic analysiswith strain;
() for the 3" eigenenergy state by isotropic analysis with strain.



4 Conclusion

In this article, we have analyzed both the
continuum mechanics and conduction band quantum
mechanics of a srained pyramida InAs/GaAs
quantum dot, using the finite element package —
FEMLAB. The strain fields in and around quantum
dot induced by the lattice mismatch of the quantum
dot structure have been calculated. Moreover, the
steady state Schrédinger equation has been analyzed,
and the eigenenergy and the probability density
function of conduction band in a quantum dot
structure have been found.

Numerical results have shown that strain effects
will shift the eigenenergy and the degeneracy of low
eigenenergy. Thefirst eigenenerergy increased about
0.2 eV. Moreover, during the strain anaysis, the
quantum materials have been modeled by both
anisotropic and its isotropic simplification,
respectively. According to the numerical results of
eigenenergy and the corresponding probability
density function, the differences between two
material models are small. Therefore, it is suitable to
smplify InAs and GaAs as equivalent isotropic
materias
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