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Abstract: - High-k dielectric materials are being considered as replacement for SiO2 as the gate dielectric since 
the high physical thickness can reduce the tunneling current while retaining the low equivalent oxide thickness 
(EOT) required next generation Metal-Oxide-Semiconductor field effect transistors (MOSFET’s). In this paper, 
we simulate the capacitance – voltage (C-V) of n-type MOS devices with different high-k dielectric insulator 
numerically. According to the results, high-k dielectric materials maintain the capacitance and provide a robust 
physical thickness preventing tunneling current. Capacitance of high-k dielectrics couldn’t be estimated by 
capacitance of insulator with EOT directly because an 8 % difference of capacitance among materials is 
observed in an extreme case. To obtain a accurate result, a self-consistent Schrödinger – Poisson equation should 
be considered.  
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1   Introduction 
To span both 100 nm and 70 nm technology nodes, 
the oxide thickness of gate dielectric needs to be 
scaled below 1.5 nm [1-3]. Due to large gate leakage 
currents and reliability problems, which are caused 
by tunneling phenomena and appear even at low 
voltages these values cannot be obtained in a classical 
MOS structure with SiO2 as gate oxide [4-5,18]. 
Clearly, if one looks at the capacitor equation, the 
only factor left to adjust is the dielectric constant. 
Therefore, while the actual scaling limit of SiO2 is 
still debate, research on the high-k gate dielectrics has 
been expanded significantly to enable the capacitor 
dielectric to maintain a robust thickness while still 
providing a continuously shrinking area and storage 
voltage. As mentioned above, gate dielectric 
materials must have high dielectric constant, low 
leakage current and good thermal stability, interface 
characteristics comparable to Si-SiO2. According to 
previous studies, high-k dielectric material such as 
SiO2, Si3N4, HfO2, TiO2, Ta2O5, ZrO2, La2O3 and 
their silicates are possible candidates [6-15,17].  

However, it has been shown recently that higher 
physical gate oxide thickness can result in 
degradation of the electrical performance due to 
increased fringing fields from gate to source/drain. 
Therefore, gauging the impact of the gate stack on the 
device by accurate simulations of the MOS and 
MOSFET capacitance should be addressed for high-k 
dielectric application. In this study, capacitance - 
voltage (C-V) characteristics of MOS devices with 

four gate dielectric, which are SiO2, Si3N4, HfO2 and 
TiO2, are examined quantitatively. An important 
result is presented. That is, equivalent oxide thickness 
(EOT) not only depends on dielectric constant but 
also depends on other characteristics of materials, 
such as band gap, conduction band electrode offset 
and so on. Estimating EOT of high-k materials by 
dielectric constant directly results in incorrect C-V 
characteristic, field and potential distribution in the 
substrate.  

The remaining content of this study is given as 
follows. Sec. 2 briefly explains the simulation models 
and the computational method. Sec. 3 shows the 
simulation results and discussion. Sec. 4 draws the 
conclusion. 
 
 
2   Modeling and Simulation 
Capacitance of a MOS capacitor equals the oxide 
capacitance and the silicon capacitance connected in 
series. Since the silicon capacitance depends on total 
charge per unit area in siliocn, the distribution of 
charge should be estimated. The Schrödinger – 
Poisson equation are solved to obtain electron 
concentration, field and potential distribution in the 
substrate of the simulated MOS capacitor. Firstly, the 
Poisson equation is described as follows: 
 
 

( )AD NNnpq −+−−=∇⋅∇ ψε ,                                (1) 



where ε is the electrical permittivity, q is the 
elementary electronic charge, n and p are the electron 
and hole densities, and ND and NA are the number of 
ionized donors and acceptors, respectively. The 
Schrödinger equation along the semiconductor 
substrate (z - direction) [17,18] 
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ħ is the reduced Planck constant, EC is the conduction 
band energy, v is the band valley, mz,v, is the effective 
mass for valley in quantization direction, Ψj,v is the 
j-th normalized eigenfunction in valley v; and , Ej,v  is 
the j-th eigenenergy. The computing procedure is 
given as follows. Firstly, the stop criteria, mesh, 
output variables and simulation models are chosen. 
Then, Poisson equation is solved iteratively until the 
result converges. Next, Schrödinger equation is 
solved until it converges. After the two equations 
converge, we’ll check the whole system converges or 
not. If the whole system converges, then stop 
computing. Otherwise, the outer loop should be 
iterated again until the whole system converges. This 
scheme makes sure the solution will be 
self-consistent. Thus, the capacitance could be 
estimated accuratly.  
 
 

3   Results and Discussion 
In the numerical studies, a NMOS with 30 nm gate 
length is simulated. Figure 1 illustrates the simulated 
NMOS. The thickness of poly-Si gate (Hg) is 100 nm 
and the thickness of p+ substrate (Hs) is 250 nm. The 
doping concentration of substrate is 5×1019 cm-3. Two 
equivalent oxide thicknesses, 2 nm and 4 nm, are 
simulated by a 10 Hz frequency ac signal. Applied 
gate voltage varies from –1.5 ~ 1.5 V. High-k 
dielectric materials considered in this work are Si3N4, 
HfO2 and TiO2. Table 1 gives the dielectric constant 
of them and the EOTs of each material are given in 
Table 2. Numerical results of the NMOS are obtained 
by using a commercial TCAD tool, ISE-DESSIS ver. 
8.0.3 [19]. 
 
 
Table 1. Dielectric constants of high-k Insulators. 

Materials SiO2 Si3N4 HfO2 TiO2

k 3.9 7.5 21 60 

Band gap (eV) 9 5 6 3.1 

Table 2. Equivalent oxide thickness for high-k 
Insulators. 

Materials SiO2 Si3N4 HfO2 TiO2 

EOT 1 (nm) 2 3.85 10.77 30.77

EOT 2 (nm) 4 7.69 21.54 61.54
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Fig. 1. The simulated NMOS with 30 nm gate length. 
 
 

In this study, we assume that there is no 
interfacial trap charge. Figures 2 and 3 shows 
simulated C-V curves of MOS with SiO2 and TiO2 
for EOT = 2 and 4 nm. EOT is given by  
 
 

( ) xxSiO tkkEOT
2

=                                           (3) 
 
 
where kx is the k value for the film of interest, tx is the 
physical thickness of the film of interest and kSiO2 is 
the k value of silicon dioxide. EOTs in Table 2 are 
calculated by Eq. (3).  

According to the results, a thinner oxide 
thickness actually induces a larger capacitance than a 
thicker one. Approximately, the difference of 
capacitance is proportional to 1/tx. Since capacitance 
of a MOS capacitor equals the oxide capacitance and 
the silicon capacitance connected in series, total 
capacitance can be expressed as  
 
 

( )SiOXSiOX CCCCC += ,                                             (4) 



where COX and CSi are capacitance of gate dielectric 
and silicon, respectively. Once strong inversion layer 
forms, total capacitance is dominated by the silicon 
capacitance. C is approximated by COX, which is kx/tx. 
Therefore, C is proportional to 1/tx. 
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Fig. 2. The simulated capacitance of the NMOS with 

2 and 4 nm SiO2 gate dielectric thickness. 
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Fig. 3. The simulated capacitance of the NMOS with 

2 and 4 nm TiO2 gate dielectric thickness. 
 
 

Figures 4 and 5 illustrates C-V curves with 
different high-k materials for EOT = 2 and 4 nm. 
From the figures, differences of capacitance with 
different materials are shown. In an extreme case, an 
8 % difference is observed. It is because electric field 
would penetrate through insulator into silicon. The 
penetrating mechanism depends on the physical 
thickness of insulator, band gap, band structure, 
conduction band electrode offset and quantum 

mechanism. Therefore, we cannot estimate C by Cox 
and Eq. (3) directly. A Schrödinger – Poisson 
equation should be considered.  
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Fig. 4. The simulated capacitance for the NMOS of 

different gate dielectric materials with EOT 
= 2 nm. 
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Fig. 5. NMOS capacitance with different gate 

dielectric materials, where EOT = 4 nm. 
 

According to the numerical results mentioned 
above, we can make summary of the results. High-k 
dielectrics actually provide a robust thickness 
without losing any capacitance. Capacitance of 
high-k dielectrics couldn’t be estimated by 
capacitance of insulator with EOT directly because 
an 8 % difference of capacitance among materials is 
observed in an extreme case. The difference is caused 
by the penetrating mechanism of different materials. 
Therefore, the penetrating mechanism has to be 



analyzed and model carefully to obtain an accurate 
device capacitance. 

 
 

4    Conclusions 
To increase the gate capacitance while reducing the 
tunneling current, alternative high dielectric constant 
materials are currently under intense investigation. In 
this paper, a 30 nm NMOS is simulated with SiO2, 
Si3N4, HfO2 and TiO2. A self-consistent 
Schrödinger – Poisson equation are considered to 
obtain the capacitance of the simulated device. The 
results are more accurate than estimating capacitance 
by oxide capacitance with EOT. According to our 
numerical studies, high-k dielectrics ensure a 
continuously shrinking of MOS/MOSFET possible 
without gate leakage concern. Although high-k gate 
dielectrics seem to be an attractive solution of 
continuous scaling of MOS device, a number of 
difficulties are investigated: (1) crystallization upon 
heating; (2) dopant penetration; (3) fixed charge; (4) 
in some cases instability in contact with poly Si; (5) 
low channel mobility; and (6) uncontrolled oxide 
formation at the Si/high-k interface. The selection of 
suitable materials and their process are left for further 
studies.   
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