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Abstract: - Iterative decoding of Low Density Parity Check (LDPC) codes using the Parity Likelihood Ratio 
(PLR) algorithm have been proved to be more efficient compared to conventional Sum Product Algorithm 
(SPA).  However, the nature of PLR algorithm tends to put numerious pieces of data to this decoder and perform 
computation intensive operations, which is a major challenge for building a practical real-time LDPC decoder.  
In this paper, we employ extrinsic information clipping and calculation step merging techniques, which are used 
in modified sequential architecture, into the parallel implementation of LDPC decoder.  The proposed parallel 
architecture decreases the decoding latency without increases the memory storage compared to existing 
modified sequential design.  Simulation results show that the proposed architecture results in time savings of up 
to 96.12% and 37.94% over conventional direct sequential implementation and modified sequential design 
respectively. 
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1   Introduction 
Like turbo codes [1], LDPC codes [2] belong to the 
general class of powerful concatenated codes that 
employing pseudo-random encoders and iterative 
decoders [3].  They are the two best known codes that 
are capable of achieving low bit error rates (BERs) at 
low signal to noise ratios (SNRs) [4], [5].  They are 
recent breakthroughs in coding theory that promise to 
push the areal density of the magnetic recording 
channel to its limits [6].  LDPC codes were proposed 
by Gallager in 1962 [2], and the performance is very 
closed to the Shannon limit [7].  However, LDPC 
codes were not pursued due to implementation 
complexity [8].  Nevertheless, the interest in iterative 
decoding algorithms has led to rediscover of LDPC 
codes [8] by MacKay and Neal [9], [10]. 
 LDPC codes are similar to turbo codes in many 
aspects but are widely considered as serious 
competitors to turbo codes [11] in terms of 
performance and complexity as well as their similar 
philosophy bases: constrained random code 
ensembles and iterative decoding algorithm [12].  
Recent advances in error correcting codes (ECCs) 
have shown that irregular LDPC codes can achieve 
reliable transmission at SNRs extremely close to the 
Shannon limit on the additive white Gaussian noise 
(AWGN) channel, outperforming turbo codes of the 
same block size and code rate [13]. 
 There are some variation of LDPC decoding 
algorithm, Sum Product Algorithm (SPA) and Parity 

Likelihood Ratio (PLR) algorithm.  Although all 
current implementations of the decoder employ SPA 
for decoding, direct implementation of SPA can be 
very sensitive to the quantization effect.  It has been 
proven that PLR technique can greatly reduce the 
quantization level requirement [14], which leads to 
significant reduction in decoding costs.  As the 
horizontal step of PLR algorithm only involve look 
up table for the PLR function, their respective 
realization are straightforward and involve only table 
searching. 
 LDPC code applications become more on 
handling parity check in communication systems 
such as cellular mobile phone and video conferencing 
which requires real-time encoding or decoding of 
transmitted data.  However, the randomness of LDPC 
code and large amount of intermediate processing 
data results in stringent memory requirements that 
amount to an order of magnitude increase in 
complexity [5].  Therefore, reducing the size of 
decoder becomes an increasingly concern for feasible 
VLSI implementation. 
 In [15], a modified sequential decoder 
architecture has been taken into account the clipping 
of extrinsic information [14] and combining 
horizontal backward step with extrinsic information 
calculation to simplify decoding process to boost 
decoding performance.  Extrinsic information 
clipping decrease number of quantization levels and 
iterations required so as to reduce the size of finite 
state machine in the control unit and reduce the size 



of look-up table.  Decoding step merging eliminate 
the need to store intermediate variable of horizontal 
backward step and result in minimize memory 
storage and number of read-write cycles.  These 
simplified the architecture complexity and results in a 
sub-optimal decoder design.  Therefore, further 
improvement in the design of LDPC decoder can take 
advantage of these techniques used in modified 
sequential architecture for practical VLSI 
implementation. 
 In this paper, we propose a parallel architectural 
to employ the clipping and merging technique so as 
to propose a high performance but a comparatively 
low cost parallel decoder.  Simulation results show 
that the proposed architecture is more efficient than 
and with same storage requirement as the modified 
sequential decoder in [15]. 
 The rest of paper is organized as follows.  Section 
2 presents the two sequential LDPC decoders that use 
PLR algorithm for decoding.  Then, Section 3 
proposes a new optimized version of parallel 
architecture for reducing decoding time.  Next, 
Section 4 presents some simulations results followed 
by some concluding remarks provides in Section 5. 
 
 
2   Current Design Solutions 
Sequential implementation is one of the solutions for 
digital LDPC decoder since it alleviates the use of 
complex operations, apply in-place algorithm, 
synchronise timing signal, incorporate address 
counter and look-up tables for simplifying 
combinational arithmetic, solving latency problem 
due to interleaving process, utilising memory 
modules and further optimizing chip area.  Besides, it 
takes the most significant bit in output section to 
eliminate exponent calculation and employs simple 
decision logic at output section for termination of 
iteration.  These simplified the architecture 
complexity and results in a sub-optimal decoder 
design.  However, a major problem with this 
approach is that even though many simplifications 
have been made, the size of chip is still significantly 
large due to the memory requirement and the big 
finite state machine.  In addition, the 6-bit 
architecture has been shown to be only marginally 
satisfied with the specification of real-time 
transaction.  Therefore, both decoding time and chip 
size is the main drawback of the direct sequential 
architecture for practical VLSI implementation. 
 Modified sequential architecture, which 
incorporates clipping of extrinsic information and 

combining horizontal backward step with extrinsic 
information calculation, further reduce memory 
storage by a half and double the decoding speed.  
However, the big finite state machine inside the 
control unit makes further development of sequential 
decoder limited. 
 
 
3   Implementation of Parallel 

Architecture 
In general, parallel architectures for a given 
algorithm are attractive from an implementation 
perspective giving low power, high throughput, and 
simple control logic [16].  Parallel architectures are 
even more favorable for iterative algorithms if the 
data converges and codes that can iteratively decoded 
in a block parallel fashion.  One such family of codes 
is LDPC codes [16].  LDPC codes are linear block 
codes with a sparse parity check matrix [16].  Above 
a code rate dependent minimum block size, powerful 
LDPC codes and PLR decoding algorithm maps quite 
well to a parallel decoder architecture in which the 
algorithm is directly instantiated in hardware.  As 
illustrated in Fig. 1, higher throughput with a parallel 
decoder can be achieved by simply implementing a 
code with same block size and maintaining the same 
clock frequency compared to a sequential 
architecture [16].  The main challenge of 
implementing parallel decoder architecture for LDPC 
codes is the cycle arrangement of the control units.  
However, by careful management of the read-write 
process, it is possible to avoid address conflict and 
timing allocation problems. 
 The decoding sequence of LDPC code by PLR 
algorithm is carried out iteratively except 
initialization and output step.  These recursive steps 
operated on a dimension can be classified into 4 
categories.  Updating step and horizontal forward 
step can be operated concurrently and can be 
classified as the “Horizontal Forward” category.  
However, vertical backward step and vertical 
horizontal step, which depends on the computation 
result of Horizontal Forward category, can be 
classified as another two categories.  Finally, 
horizontal backward step merge with extrinsic 
information calculation can be classified as 
“Horizontal Backward” category and its computation 
depends on the two vertical steps, while the 
calculation result will be used in Horizontal Forward 
category of next dimension. 
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Fig. 2  Timing of decoding steps in a dimension. 
 
Therefore, by carefully arranging timing of 
instructions in a dimension, the four categories of 
operations can actually work in parallel.  Since 
nowadays dual-port memory modules are available, 
the categories can be re-arranged in parallel using 
two data ports.  By applying the decoding steps 
arrangement shown in Fig. 2 to the modified 
sequential decoder, decoding speed can be doubled.  
Since dual-port memory units are used, the total 
number of memory bits can remain unchanged. 
 
 
3.1   Input and Output Section 
In each iteration, there are four equal time slots for 
performing large amount of calculations in the four 
dimensions.  However, the first iteration is not for 
calculation but for input and output data.  The output 
step will process when the signal of first iteration is 
asserted.  Resulting value will be outputted after the 
decoding of the last dimension in the last iteration 
before next decoder input.  The resulting values can 

be reduced by only taking the most significant bit.  
This design reduces the exponent computation to 
convert the indices back from logarithmic domain.  
After that, information and parity will be inputted to 
the decoder respectively.  Once data are inputted 
from ADC to decoder, the updating step and the 
horizontal forward step can be carried out 
simultaneously. 
 
 
3.2   Interleavers and Deinterleaver 
The randomness of the interleaver output sequence 
makes it difficult to realize in low complexity 
combinational circuit.  A direct interleaver 
implementation uses two banks of buffers alternating 
between read and write for consecutive sectors of 
data.  The latency through an interleaver is therefore 
equal to the block size [16]. 
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Fig. 3  Interleavers and deinterleaver implemented 
using dual-port ROM. 

 

Fig. 1  Block diagram of parallel decoder architecture for LDPC code. 
 



The basic block interleaver design uses a minimal 
amount of control logic.  Using ROM for high-speed 
implementation, the interleaver inputs are data 
position in current dimension, while outputs are data 
position in previous dimension.  In updating step, 
when reading in shuffled extrinsic information from 
last dimension, the RAM address is read from ROM 
data and the ROM address is read from control unit.  
This decreases the latency problem due to data 
interleaving since a long duration stage for data 
shuffle process is eliminated.  The read-read 
operations are then repeated alternating between 
ROM and RAM as in sequential design.  More 
sophisticated interleaver designs yield improved 
error rate performance, but result in increased 
implementation complexity [16].  Therefore, the 
implementation of the described basic interleaver 
provides a lower limit on complexity [16]. 
 
 
3.3   Control Unit 
In iterative programs, like LDPC code decoding, 
execution proceeds as a sequence of sequential 
iterations, where at each iteration all parallel 
processes corresponding to logical function and 
variables can execute independently, but each logical 
function then needs to communicate values computed 
during that iteration with other variables it is 
connected, before it can commence its next iteration.  
As shown in Fig. 4 and Fig. 5, the control flow is 
done in such a way that every iteration, a logical 
function sends data to its logical neighbours and then 
waits until it receives messages back from all of next 
iteration to any of these neighbours. 
 In the control unit, timing controller, iteration 
controller and dimension controllers are responsible 
for implementing decoding steps recursively.  For 
that reason, iteration controller is to activate one 
necessary dimension controller at a time and pass 
iteration number for dimension controller to use.  The 
whole control unit incorporates simple decision logic 
that uses a sign-controlled signal from the timing 
controller to indicate the first and final iteration of a 
data block.  A simple state machine like the one 
shown in Fig. 4 is used to maintain the state of each 
iteration in the decoder.  A cycle can be in one of four 
states: output state will output results of the last 
dimension which are stored in memory module.  
Upon that, received data moves into the memory to 
overwrite previous data block in the input state and 
all extrinsic information variables will be 
reinitialized in the initialization state.  This ends the 
first iteration. 
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Fig. 4  State machine for iteration controller of the 

control unit. 
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Fig. 5  State machine for dimension controller of the 

control unit. 
 
Started from second iteration is the data processing 
state, it follows the state machine as shown in Fig. 5.  
For sequential implementation, four states are carried 
out consecutively.  If it reaches maximum number of 
dimensions, it will carry on to next iteration and start 
horizontal forward state without re-initialize any 
variables.  Until it reaches maximum number of 
iterations, it will back to output state and repeats the 
same cycle.  Moreover, dimension controller, which 
incorporating a big finite state machine, for memory 
read-write controlling is employed so that all control 
signals employed are being well matched and 
synchronized. 
 With the proposed methodology, the timing 
controller, iteration controller and four dimension 
controllers can be combined into one single control 
unit.  It consists only one finite state machine but 
perform the same operation and have the same 
decoding effect as the direct sequential architecture. 



 
3.4   Memory 
Although there are a large number of intermediate 
variables, some values that serve as local variables, 
which will not be referenced again in the next 
dimension or iteration, can share a temporary register 
inside the control unit.  According to this motivation, 
the size of memory can be reduced so that the overall 
average cost of implementation can be minimized. 
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Fig. 6  RAM configuration for one dimension. 
 
Both data and intermediate results will be stored into 
the RAM.  The allocation of variables referred to as a 

memory map for a RAM is shown in Fig. 6.  The 
memory map allows a RAM that performs decoding 
to become switching received data, intermediate 
variables and extrinsic information.  The switch 
happens simply by telling the control unit to execute 
at a given location in the RAM.  Treating 
intermediate variables in the same way as decoding 
data greatly simplifies the RAM address calculation 
in the control unit.  Fig. 7 shows the formats of RAM 
address to connect the fields of decoding step to the 
algorithm. 
 

dim var col row 
2 bits 2 bits 2 bits 8 bits 

Fig. 7  RAM address format. 
 
Each iteration share same memory space in the RAM.  
This sharing is made possible by not assigning 
iteration field in the range of RAM address.  The 
“dim” field is contained in bits 13~12.  The 8-bit row 
number is in positions 7~0.  The data and 
intermediate variables to be read or write are 
specified by “var” fields at position 11~10.  The 
column number is in bit position 9~8.  However, this 
is not true for field var=102 while the “col” field will 
be used to indicate intermediate variables to be 
access as well.  The two kinds of datapath can then 
use one address format. 
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Fig. 8  ROM configuration. 
 
 
Look-up tables are resided in ROM as shown in Fig. 
8.  The four kinds of operation in logarithm domain 
that it implements are f-function, addition, clipped 
addition and subtraction.  Starting top down, the 
f-function starts at 00016.  At the other end, the 
subtraction starts at C0016.  The addition starts at 
40016.  Clipped addition is next and it can look up 
from 80016 to BFF16. 
 

opcode operand 1 operand 2 
2 bits 5 bits 5 bits 



Fig. 9  ROM address format. 
 
The ROM address format is set to make it easy to 
perform table look-up.  It is concatenated by a 2-bit 
opcode and two 5-bit operands as shown in Fig. 9.  
The 5-bit operand fields are sign-and-magnitude 
notation and the look-up result is also 5-bit 
sign-and-magnitude index in logarithm domain.  
Address format for f-function operation, which has 
an opcode of 002, can be implemented by a 
combinational circuit.  Then, the opcode becomes a 
select signal input to the multiplexer for choosing 
between combinational result and ROM output. 
 
 
4   Simulation Results 
The direct sequential, modified sequential and the 
proposed parallel decoder were synthesized with 
Synopsys computer aided design tool using 0.38 
microns technology under 3V supply based on a 1024 
bit, rate-1/2 LDPC code.  This corresponds to one of 
the block sizes and code rates proposed for 3G 
wireless turbo codes.  In our simulation, we adopt 4 
dimensions of each 256 rows and 4 columns with 16 
iterations including one iteration for input-output 
section.  The effect of using clipping and merging 
under Virtex implementation is shown in Fig. 10 and 
Fig. 11. 
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Fig. 10  Performance of direct and modified 
sequential LDPC decoder. 
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Fig. 11  Memory requirement comparison between 
direct and modified sequential architecture. 

 

It can be observed that the performance of parallel 
decoder with dual-port scheme is very superior to 
that of the sequential case.  The total decoding time of 
the parallel decoder is 650752 clock cycles which 
was 96.12% and 37.94% less than the direct 
sequential decoder and the modified sequential 
design respectively.  In addition, the memory 
requirement of the modified one was 151552 bits 
which was the same as the modified sequential one.  
Although dual-port memories may imply more 
silicon is required for implementing such decoder, 
the chip area increase is nearly negligible because it 
is only a small portion of logic in the whole design.  
As far as both speed and memory requirement is 
concerned, the proposed architecture shortens the 
decoding latency and without increasing memory 
storage.  Hence, it is more feasible in real-time 
mobile communication applications. 
 
 
5 Conclusions 
 This paper presented a parallel architecture for LDPC 
decoder.  The decoder is simulated and synthesized 
with Synopsys computer aided design tool for Virtex 
implementation.  We propose to employ dual-port 
parallel implementation to the modified sequential 
architecture to achieve high performance low 
requirement decoder without increasing memory 
requirement.  By comparing the simulation results, it 
can be observed that with the parallel design, the 
decoding speed is nearly one-third of and the 
required memory storage remains the same as 
modified sequential decoder under 3V supply. 
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