
Efficient VLSI Parallel Implementation for LDPC Decoder

ANGUS WU and W. L. LEE
Department of Electronic Engineering

City University of Hong Kong
Tat Chee Avenue
HONG KONG

Abstract: - Iterative decoding of Low Density Parity Check (LDPC) codes using the Parity Likelihood Ratio
(PLR) algorithm have been proved to be more efficient compared to conventional Sum Product Algorithm
(SPA). However, the nature of PLR algorithm tends to put numerious pieces of data to this decoder and perform
computation intensive operations, which is a major challenge for building a practical real-time LDPC decoder.
In this paper, we employ extrinsic information clipping and calculation step merging techniques, which are used
in modified sequential architecture, into the parallel implementation of LDPC decoder. The proposed parallel
architecture decreases the decoding latency without increases the memory storage compared to existing
modified sequential design. Simulation results show that the proposed architecture results in time savings of up
to 96.12% and 37.94% over conventional direct sequential implementation and modified sequential design
respectively.

Key-Words: - LDPC codes, parallel architecture, VLSI implementation, PLR algorithm

1 Introduction
Like turbo codes [1], LDPC codes [2] belong to the
general class of powerful concatenated codes that
employing pseudo-random encoders and iterative
decoders [3]. They are the two best known codes that
are capable of achieving low bit error rates (BERs) at
low signal to noise ratios (SNRs) [4], [5]. They are
recent breakthroughs in coding theory that promise to
push the areal density of the magnetic recording
channel to its limits [6]. LDPC codes were proposed
by Gallager in 1962 [2], and the performance is very
closed to the Shannon limit [7]. However, LDPC
codes were not pursued due to implementation
complexity [8]. Nevertheless, the interest in iterative
decoding algorithms has led to rediscover of LDPC
codes [8] by MacKay and Neal [9], [10].
 LDPC codes are similar to turbo codes in many
aspects but are widely considered as serious
competitors to turbo codes [11] in terms of
performance and complexity as well as their similar
philosophy bases: constrained random code
ensembles and iterative decoding algorithm [12].
Recent advances in error correcting codes (ECCs)
have shown that irregular LDPC codes can achieve
reliable transmission at SNRs extremely close to the
Shannon limit on the additive white Gaussian noise
(AWGN) channel, outperforming turbo codes of the
same block size and code rate [13].
 There are some variation of LDPC decoding
algorithm, Sum Product Algorithm (SPA) and Parity

Likelihood Ratio (PLR) algorithm. Although all
current implementations of the decoder employ SPA
for decoding, direct implementation of SPA can be
very sensitive to the quantization effect. It has been
proven that PLR technique can greatly reduce the
quantization level requirement [14], which leads to
significant reduction in decoding costs. As the
horizontal step of PLR algorithm only involve look
up table for the PLR function, their respective
realization are straightforward and involve only table
searching.
 LDPC code applications become more on
handling parity check in communication systems
such as cellular mobile phone and video conferencing
which requires real-time encoding or decoding of
transmitted data. However, the randomness of LDPC
code and large amount of intermediate processing
data results in stringent memory requirements that
amount to an order of magnitude increase in
complexity [5]. Therefore, reducing the size of
decoder becomes an increasingly concern for feasible
VLSI implementation.
 In [15], a modified sequential decoder
architecture has been taken into account the clipping
of extrinsic information [14] and combining
horizontal backward step with extrinsic information
calculation to simplify decoding process to boost
decoding performance. Extrinsic information
clipping decrease number of quantization levels and
iterations required so as to reduce the size of finite
state machine in the control unit and reduce the size

of look-up table. Decoding step merging eliminate
the need to store intermediate variable of horizontal
backward step and result in minimize memory
storage and number of read-write cycles. These
simplified the architecture complexity and results in a
sub-optimal decoder design. Therefore, further
improvement in the design of LDPC decoder can take
advantage of these techniques used in modified
sequential architecture for practical VLSI
implementation.
 In this paper, we propose a parallel architectural
to employ the clipping and merging technique so as
to propose a high performance but a comparatively
low cost parallel decoder. Simulation results show
that the proposed architecture is more efficient than
and with same storage requirement as the modified
sequential decoder in [15].
 The rest of paper is organized as follows. Section
2 presents the two sequential LDPC decoders that use
PLR algorithm for decoding. Then, Section 3
proposes a new optimized version of parallel
architecture for reducing decoding time. Next,
Section 4 presents some simulations results followed
by some concluding remarks provides in Section 5.

2 Current Design Solutions
Sequential implementation is one of the solutions for
digital LDPC decoder since it alleviates the use of
complex operations, apply in-place algorithm,
synchronise timing signal, incorporate address
counter and look-up tables for simplifying
combinational arithmetic, solving latency problem
due to interleaving process, utilising memory
modules and further optimizing chip area. Besides, it
takes the most significant bit in output section to
eliminate exponent calculation and employs simple
decision logic at output section for termination of
iteration. These simplified the architecture
complexity and results in a sub-optimal decoder
design. However, a major problem with this
approach is that even though many simplifications
have been made, the size of chip is still significantly
large due to the memory requirement and the big
finite state machine. In addition, the 6-bit
architecture has been shown to be only marginally
satisfied with the specification of real-time
transaction. Therefore, both decoding time and chip
size is the main drawback of the direct sequential
architecture for practical VLSI implementation.
 Modified sequential architecture, which
incorporates clipping of extrinsic information and

combining horizontal backward step with extrinsic
information calculation, further reduce memory
storage by a half and double the decoding speed.
However, the big finite state machine inside the
control unit makes further development of sequential
decoder limited.

3 Implementation of Parallel

Architecture
In general, parallel architectures for a given
algorithm are attractive from an implementation
perspective giving low power, high throughput, and
simple control logic [16]. Parallel architectures are
even more favorable for iterative algorithms if the
data converges and codes that can iteratively decoded
in a block parallel fashion. One such family of codes
is LDPC codes [16]. LDPC codes are linear block
codes with a sparse parity check matrix [16]. Above
a code rate dependent minimum block size, powerful
LDPC codes and PLR decoding algorithm maps quite
well to a parallel decoder architecture in which the
algorithm is directly instantiated in hardware. As
illustrated in Fig. 1, higher throughput with a parallel
decoder can be achieved by simply implementing a
code with same block size and maintaining the same
clock frequency compared to a sequential
architecture [16]. The main challenge of
implementing parallel decoder architecture for LDPC
codes is the cycle arrangement of the control units.
However, by careful management of the read-write
process, it is possible to avoid address conflict and
timing allocation problems.
 The decoding sequence of LDPC code by PLR
algorithm is carried out iteratively except
initialization and output step. These recursive steps
operated on a dimension can be classified into 4
categories. Updating step and horizontal forward
step can be operated concurrently and can be
classified as the “Horizontal Forward” category.
However, vertical backward step and vertical
horizontal step, which depends on the computation
result of Horizontal Forward category, can be
classified as another two categories. Finally,
horizontal backward step merge with extrinsic
information calculation can be classified as
“Horizontal Backward” category and its computation
depends on the two vertical steps, while the
calculation result will be used in Horizontal Forward
category of next dimension.

category (row #) port A port B

0

255

Horizontal forward (0)
 ↓
Horizontal forward (127)

Horizontal forward (128)
 ↓
Horizontal forward (255)

255

Vertical backward (255)
 ↓
Vertical backward (0)

Vertical forward (0)
 ↓
Vertical forward (255)

511

Horizontal backward (0)
 ↓
Horizontal backward (127)

Horizontal backward (128)
 ↓
Horizontal backward (255)

Cycle(t)

Fig. 2 Timing of decoding steps in a dimension.

Therefore, by carefully arranging timing of
instructions in a dimension, the four categories of
operations can actually work in parallel. Since
nowadays dual-port memory modules are available,
the categories can be re-arranged in parallel using
two data ports. By applying the decoding steps
arrangement shown in Fig. 2 to the modified
sequential decoder, decoding speed can be doubled.
Since dual-port memory units are used, the total
number of memory bits can remain unchanged.

3.1 Input and Output Section
In each iteration, there are four equal time slots for
performing large amount of calculations in the four
dimensions. However, the first iteration is not for
calculation but for input and output data. The output
step will process when the signal of first iteration is
asserted. Resulting value will be outputted after the
decoding of the last dimension in the last iteration
before next decoder input. The resulting values can

be reduced by only taking the most significant bit.
This design reduces the exponent computation to
convert the indices back from logarithmic domain.
After that, information and parity will be inputted to
the decoder respectively. Once data are inputted
from ADC to decoder, the updating step and the
horizontal forward step can be carried out
simultaneously.

3.2 Interleavers and Deinterleaver
The randomness of the interleaver output sequence
makes it difficult to realize in low complexity
combinational circuit. A direct interleaver
implementation uses two banks of buffers alternating
between read and write for consecutive sectors of
data. The latency through an interleaver is therefore
equal to the block size [16].

Dual-port ROM

4K address 12-bit address

Fig. 3 Interleavers and deinterleaver implemented
using dual-port ROM.

Fig. 1 Block diagram of parallel decoder architecture for LDPC code.

The basic block interleaver design uses a minimal
amount of control logic. Using ROM for high-speed
implementation, the interleaver inputs are data
position in current dimension, while outputs are data
position in previous dimension. In updating step,
when reading in shuffled extrinsic information from
last dimension, the RAM address is read from ROM
data and the ROM address is read from control unit.
This decreases the latency problem due to data
interleaving since a long duration stage for data
shuffle process is eliminated. The read-read
operations are then repeated alternating between
ROM and RAM as in sequential design. More
sophisticated interleaver designs yield improved
error rate performance, but result in increased
implementation complexity [16]. Therefore, the
implementation of the described basic interleaver
provides a lower limit on complexity [16].

3.3 Control Unit
In iterative programs, like LDPC code decoding,
execution proceeds as a sequence of sequential
iterations, where at each iteration all parallel
processes corresponding to logical function and
variables can execute independently, but each logical
function then needs to communicate values computed
during that iteration with other variables it is
connected, before it can commence its next iteration.
As shown in Fig. 4 and Fig. 5, the control flow is
done in such a way that every iteration, a logical
function sends data to its logical neighbours and then
waits until it receives messages back from all of next
iteration to any of these neighbours.
 In the control unit, timing controller, iteration
controller and dimension controllers are responsible
for implementing decoding steps recursively. For
that reason, iteration controller is to activate one
necessary dimension controller at a time and pass
iteration number for dimension controller to use. The
whole control unit incorporates simple decision logic
that uses a sign-controlled signal from the timing
controller to indicate the first and final iteration of a
data block. A simple state machine like the one
shown in Fig. 4 is used to maintain the state of each
iteration in the decoder. A cycle can be in one of four
states: output state will output results of the last
dimension which are stored in memory module.
Upon that, received data moves into the memory to
overwrite previous data block in the input state and
all extrinsic information variables will be
reinitialized in the initialization state. This ends the
first iteration.

 Start

 set
 iteration
 = 1
 iteration = 16

 iteration Output
 + 1
 iteration
 < 16

 Decode Input

 Initiali-
 zation

Fig. 4 State machine for iteration controller of the

control unit.

 Next iteration Initialization
 dimension
dimension = 4 = 1, 2, 3

 Horizontal
 dimension forward
 + 1 step port A

 port B
Horizontal Vertical
backward backward
step port A step

 port B Vertical
 forward
 step

Fig. 5 State machine for dimension controller of the

control unit.

Started from second iteration is the data processing
state, it follows the state machine as shown in Fig. 5.
For sequential implementation, four states are carried
out consecutively. If it reaches maximum number of
dimensions, it will carry on to next iteration and start
horizontal forward state without re-initialize any
variables. Until it reaches maximum number of
iterations, it will back to output state and repeats the
same cycle. Moreover, dimension controller, which
incorporating a big finite state machine, for memory
read-write controlling is employed so that all control
signals employed are being well matched and
synchronized.
 With the proposed methodology, the timing
controller, iteration controller and four dimension
controllers can be combined into one single control
unit. It consists only one finite state machine but
perform the same operation and have the same
decoding effect as the direct sequential architecture.

3.4 Memory
Although there are a large number of intermediate
variables, some values that serve as local variables,
which will not be referenced again in the next
dimension or iteration, can share a temporary register
inside the control unit. According to this motivation,
the size of memory can be reduced so that the overall
average cost of implementation can be minimized.

 12 bits ⎯ 5 bits ⎯

000

3FF

q

400

7FF

q~

800

8FF

q̂

900

9FF

p

A00

AFF

a

B00

BFF

b

C00

FFF

u

Fig. 6 RAM configuration for one dimension.

Both data and intermediate results will be stored into
the RAM. The allocation of variables referred to as a

memory map for a RAM is shown in Fig. 6. The
memory map allows a RAM that performs decoding
to become switching received data, intermediate
variables and extrinsic information. The switch
happens simply by telling the control unit to execute
at a given location in the RAM. Treating
intermediate variables in the same way as decoding
data greatly simplifies the RAM address calculation
in the control unit. Fig. 7 shows the formats of RAM
address to connect the fields of decoding step to the
algorithm.

dim var col row
2 bits 2 bits 2 bits 8 bits

Fig. 7 RAM address format.

Each iteration share same memory space in the RAM.
This sharing is made possible by not assigning
iteration field in the range of RAM address. The
“dim” field is contained in bits 13~12. The 8-bit row
number is in positions 7~0. The data and
intermediate variables to be read or write are
specified by “var” fields at position 11~10. The
column number is in bit position 9~8. However, this
is not true for field var=102 while the “col” field will
be used to indicate intermediate variables to be
access as well. The two kinds of datapath can then
use one address format.

 12 bits ⎯ 5 bits ⎯

000

3FF

f-function

400

7FF

addition

800

BFF

clipped addition

C00

FFF

subtraction

Fig. 8 ROM configuration.

Look-up tables are resided in ROM as shown in Fig.
8. The four kinds of operation in logarithm domain
that it implements are f-function, addition, clipped
addition and subtraction. Starting top down, the
f-function starts at 00016. At the other end, the
subtraction starts at C0016. The addition starts at
40016. Clipped addition is next and it can look up
from 80016 to BFF16.

opcode operand 1 operand 2
2 bits 5 bits 5 bits

Fig. 9 ROM address format.

The ROM address format is set to make it easy to
perform table look-up. It is concatenated by a 2-bit
opcode and two 5-bit operands as shown in Fig. 9.
The 5-bit operand fields are sign-and-magnitude
notation and the look-up result is also 5-bit
sign-and-magnitude index in logarithm domain.
Address format for f-function operation, which has
an opcode of 002, can be implemented by a
combinational circuit. Then, the opcode becomes a
select signal input to the multiplexer for choosing
between combinational result and ROM output.

4 Simulation Results
The direct sequential, modified sequential and the
proposed parallel decoder were synthesized with
Synopsys computer aided design tool using 0.38
microns technology under 3V supply based on a 1024
bit, rate-1/2 LDPC code. This corresponds to one of
the block sizes and code rates proposed for 3G
wireless turbo codes. In our simulation, we adopt 4
dimensions of each 256 rows and 4 columns with 16
iterations including one iteration for input-output
section. The effect of using clipping and merging
under Virtex implementation is shown in Fig. 10 and
Fig. 11.

0

0.1

0.2

10 20 30 40 50 60 70 80 90 100

Clock frequency (MHz)

D
ec

od
in

g
tim

e
(s

)

direct sequential modified sequential proposed parallel

Fig. 10 Performance of direct and modified
sequential LDPC decoder.

0

50000
100000
150000

200000
250000

300000

350000
400000

m
em

or
y

re
qu

ire
m

en
t (

bi
t)

direct sequential modified sequential proposed parallel

RAM ROM I/DI

Fig. 11 Memory requirement comparison between
direct and modified sequential architecture.

It can be observed that the performance of parallel
decoder with dual-port scheme is very superior to
that of the sequential case. The total decoding time of
the parallel decoder is 650752 clock cycles which
was 96.12% and 37.94% less than the direct
sequential decoder and the modified sequential
design respectively. In addition, the memory
requirement of the modified one was 151552 bits
which was the same as the modified sequential one.
Although dual-port memories may imply more
silicon is required for implementing such decoder,
the chip area increase is nearly negligible because it
is only a small portion of logic in the whole design.
As far as both speed and memory requirement is
concerned, the proposed architecture shortens the
decoding latency and without increasing memory
storage. Hence, it is more feasible in real-time
mobile communication applications.

5 Conclusions
 This paper presented a parallel architecture for LDPC
decoder. The decoder is simulated and synthesized
with Synopsys computer aided design tool for Virtex
implementation. We propose to employ dual-port
parallel implementation to the modified sequential
architecture to achieve high performance low
requirement decoder without increasing memory
requirement. By comparing the simulation results, it
can be observed that with the parallel design, the
decoding speed is nearly one-third of and the
required memory storage remains the same as
modified sequential decoder under 3V supply.

Acknowledgement:
This work is supported by CityU PAG grant
7100049.

References:
[1] C. Berrou, A. Glavieux and P. Thitimajshima,

“Near Shannon Limit Error-correcting Coding
and Decoding: Turbo Codes,” IEEE ICC, 1993,
pp. 1064-1070.

[2] R. G. Gallager, “Low Density Parity Check
Codes,” IRE Transactions on Information
Theory, vol. 8, January 1962, pp.21-28.

[3] Ping Li and Keying Y. Wu, “Concatenated Tree
Codes: A Low-complexity, High-performance
Approach,” IEEE Transactions on Information
Theory, vol. 47, no. 2, February 2001, pp.
791-799.

[4] Igal Sason, Shlomo Shamai, “Improved Upper
Bounds on the Ensemble Performance of ML
Decoded Low Density Parity Check Codes,”
IEEE Communications Letters, vol. 4, no. 3,
March 2000, pp. 89-91.

[5] Mohammad M. Mansour and Naresh R.
Shanbhag, “Low-power VLSI Decoder
Architectures for LDPC Codes,” Proceedings
of the International Symposium on Low Power
Electronics and Design, 2002, pp. 284-289.

[6] Thomas Mittelholzer, Ajay Dholakia and
Evangelos Eleftheriou, “Reduced-complixity
Decoding of Low Density Parity Check Codes
for Generalized Partial Response Channels,”
IEEE Transactions on Magnetics, vol. 37, no. 2,
March 2001, pp. 721-728.

[7] Hisashi Futaki and Tomoaki Ohtsuki,
“Low-density Parity-check (LDPC) Coded
OFDM Systems,” IEEE Vehicular Technology
Conference, vol. 1, 2001, pp. 82-86.

[8] Chris Howland and Andrew Blanksby, “A
200mW 1Gb/s 1024-bit Rate-1/2 Low Density
Parity Check Code Decoder,” IEEE Conference
Custom Integrated Circuits, 2001, pp. 293-296.

[9] D. J. C. Mackay and R. M. Neal, “Near
Shannon Limit Performance of Low Density
Parity Check Codes,” Electronic Letters, vol.
32, August 1996, pp. 16454-1646.

[10] D. J. C. Mackay and R. M. Neal, “Near
Shannon Limit Performance of Low Density
Parity Check Codes,” Electronic Letters, vol.
33, March 1997, pp. 457-458.

[11] Tong Zhang, Zhongfeng Wang and Keshab K.
Parhi, “On Finite Precision Implementation of
Low Density Parity Check Codes Decoder,”
IEEE International Symposium on Circuits and
Systems, vol. 4, 2001, pp. 202-205.

[12] Thomas J. Richardson and Rudiger L. Urbanke,
“Efficient Encoding of Low-density
Parity-check Codes,” IEEE Transactions on
Information Theory, vol. 47, no. 2, February
2001, pp. 638-656.

[13] Jilei Hou, Paul H. Siegel, Laurence B. Milstein,
“Performance Analysis and Code Optimization
of Low Density Parity-check Codes on
Rayleigh Fading Channels,” IEEE Journal on
Selected Areas in Communications, vol. 19, no.
5, May 2001, pp. 924-934.

[14] Ping Li and W. K. Leung, “Decoding Low
Density Parity Check Codes With Finite
Quantization Bits,” IEEE Communications
Letters, vol. 4, no. 2, February 2000, pp. 62-64.

[15] W. L. Lee and Angus Wu, “Modified VLSI
Implementation for Sequential LDPC
Decoder,” Proceedings of WSEAS International
Conference on Electronics, Control and Signal
Processing, December 2002.

[16] Engling Yeo, Payam Pakzad, Borivoje Nikolic
and Venkat Anantharam, “VLSI Architectures
for Iterative Decoders in Magnetic Recording
Channels,” IEEE Transactions on Magnetics,
vol. 37, no. 2, March 2001, pp. 748-755.

