
Hardware Architecture for Modified Sequential LDPC Decoder

ANGUS WU and W. L. LEE
Department of Electronic Engineering

City University of Hong Kong
Tat Chee Avenue
HONG KONG

Abstract: - Iterative decoding of Low Density Parity Check (LDPC) codes using the Parity Likelihood Ratio
(PLR) algorithm have been proved to be more efficient compared to conventional Sum Product Algorithm
(SPA). However, the nature of PLR algorithm tends to put numerious pieces of data to this decoder and perform
computation intensive operations, which is a major challenge for building a practical real-time LDPC decoder.
In this paper, it makes use of extrinsic information clipping and calculation step merging techniques to simplify
the decoding algorithm. These approaches reduce the number of quantization levels while still remaining the
algorithmic performance promised by random codes. Moreover, a modified sequential architecture is proposed
for LDPC decoding that decreases the decoding latency and reduces the memory storage compared to existing
direct sequential design. Simulation results show that the proposed architecture results in time and memory
savings of up to 92.26% and 59.56% respectively over conventional direct sequential implementation.

Key-Words: - LDPC codes, sequential architecture, VLSI implementation, PLR algorithm

1 Introduction
Turbo codes [1] and LDPC codes [2] are the two best
known codes that are capable of achieving low bit
error rates (BERs) at low signal to noise ratios
(SNRs) [3][4]. They are recent breakthroughs in
coding theory that promise to push the areal density
of the magnetic recording channel to its limits [5].
LDPC codes were proposed by Gallager in 1962 [2],
and the performance is very closed to the Shannon
limit [6]. However, LDPC codes were not pursued
for due to implementation complexity [7].
Nevertheless, the interest in iterative decoding
algorithms has led to rediscover of LDPC codes [7]
by MacKay and Neal [8], [9]. Like turbo codes,
LDPC codes also belong to the general class of
powerful concatenated codes that employing
pseudo-random encoders and iterative decoders [10].
 LDPC codes are similar to turbo codes in many
aspects but are widely considered as serious
competitors to turbo codes [11] in terms of
performance and complexity as well as their similar
philosophy bases: constrained random code
ensembles and iterative decoding algorithm [12].
Recent advances in error correcting codes (ECCs)
have shown that irregular LDPC codes can achieve
reliable transmission at SNRs extremely close to the
Shannon limit on the additive white Gaussian noise
(AWGN) channel, outperforming turbo codes of the
same block size and code rate [13].

 There are some variation of LDPC decoding
algorithm, Sum Product Algorithm (SPA) and Parity
Likelihood Ratio (PLR) algorithm. Although all
current implementations of the decoder employ SPA
for decoding, direct implementation of SPA can be
very sensitive to the quantization effect. It has been
proven that PLR technique can greatly reduce the
quantization level requirement [14], which leads to
significant reduction in decoding costs. As the
horizontal step of PLR algorithm only involve look
up table for the PLR function, their respective
realization are straightforward and involve only table
searching.
 LDPC code applications become more on
handling parity check in communication systems
such as cellular mobile phone and video conferencing
which requires real-time encoding or decoding of
transmitted data. However, the randomness of LDPC
code and large amount of intermediate processing
data results in stringent memory requirements that
amount to an order of magnitude increase in
complexity [4]. Therefore, reducing the size of
decoder becomes an increasingly concern for feasible
VLSI implementation.
 A direct approach for implementing a sequential
decoder architecture [16] would be to alleviates the
use of complex operations, apply in-place algorithm,
synchronise timing signal, incorporate address
counter and look-up tables for simplifying
combinational arithmetic, solving latency problem
due to interleaving process, utilising memory

modules and further optimizing chip area. Besides, it
takes the most significant bit in output section to
eliminate exponent calculation and employs simple
decision logic at output section for termination of
iteration. These simplified the architecture
complexity and results in a sub-optimal decoder
design. However, a major problem with this
approach is that even though many simplifications
have been made, the size of chip is still significantly
large due to the memory requirement and the big
finite state machine. In addition, the 6-bit
architecture has been shown to be only marginally
satisfied with the specification of real-time
transaction. Therefore, both decoding time and chip
size is the main drawback of the direct sequential
architecture for practical VLSI implementation.
 In this paper, we have taken into account the
clipping of extrinsic information [14] and combining
horizontal backward step with extrinsic information
calculation to simplify decoding process. Here, in
our proposed architecture, we modify the direct
sequential decoder with the clipping and merging
technique to boost decoding performance.
Simulation results show that the proposed
architecture is more efficient and less storage
requirement than the direct sequential one.
 The rest of paper is organized as follows. Section
2 presents the two algorithm simplification
approaches of PLR algorithm for decoding LDPC
codes. Then, Section 3 proposes a new optimized
version of modified sequential architecture for
reducing decoding time and memory requirement.
Next, Section 4 presents some simulations results
followed by some concluding remarks provides in
Section 5.

2 Algorithm Simplifications
PLR algorithm [14] is an efficient decoding
algorithm for LDPC code. It is obtained by changing
the subtraction operation into division on the
probabilities in the original SPA. In PLR algorithm,
there are several decoding steps including
initialization, updating, horizontal forward step,
vertical backward step, vertical forward step,
horizontal backward step, extrinsic information
calculation and output step. Among these steps,
except initialization and output step, are carried out
iteratively.

2.1 Extrinsic Information Clipping
By incorporating the clipping methodology into the
sequential architecture, both low complexity and low
decoding latency can be achieved. Clipping is an

algorithm that the index of extrinsic information is
clipped between +7 and –7 inclusive before updating
the whole dimension. During the whole iterative
calculation process, if clipping algorithm is applied,
then only 15 iterations are enough to decode a block
of data. More important, the decoder can operated in
logarithmic domain using 5-bit sign-magnitude
representing quantization level index ±0, ±1, ±2, …,
±15. This 1-bit reduction in architecture not only
decrease the size of finite state machine inside the
control unit but also reduce the size of look-up table
by four times. Although it seems that extra clock
cycle are needed for handling clipping process, there
exist some wait states in the original sequential
design. Those extra clock cycle for clipping can be
fitted into those wait states so as to maintain the
decoding time. Therefore, the decrease in
quantization levels and number of iterations becomes
more significant in reducing hardware requirements.

2.2 Decoding Steps Merging
The operations of horizontal backward step and
extrinsic information calculation on the decoding
process are two of the computation steps inside
iterative cycle. Therefore, combining of horizontal
backward step

⎩
⎨
⎧ =

=
− otherwisebaf

mifb
v

mm

m
m),(

1
ˆ

1

 (1)

and extrinsic information calculation
)ˆ,ˆ(,,, mnmnmnm vqfdu ⋅= (2)
can be rewritten in the following form.

⎩
⎨
⎧

⋅
=⋅

=
− otherwisebaqfq

mifbqfq
u

mmnmnm

mnmnm
nm),,~(

1),~(

1,,

,,
, (3)

Then, there is no need to store the intermediate
variable mv̂ of horizontal backward step. The PLR
result f(.) of horizontal backward step can be
temporary stored in the registers of control unit
during calculation of extrinsic information um,n as in
other steps. As a result, merging equation not only
reduce memory storage for intermediate variables but
also further minimize the size of finite state machine
due to the decrease in number of read-write cycles.

3 Implementation of Modified

Sequential Architecture
Due to the inherent sequential nature of the decoding
algorithm, sequential architecture only consists of a
small number of units. The architecture has a control
unit for controlling enable and read-write signal of
memory modules. RAMs are used for storing data

and intermediate variables while ROMs are design
for holding look-up tables and shuffle rule. The
design of the interconnection of these blocks is
simplified to take advantage of information exchange
so as to increase the decoding efficiently.

Fig. 1 Block diagram of sequential decoder

architecture for LDPC code.

The block diagrams are illustrated in Fig. 1. It
implements LDPC decoder by employing PLR
algorithm and realizing 4 dimensions. The
synthsized LDPC code block has a total of 1024 data
and 256 parity checks, where each parity check
computed using entries from 4 information.

3.1 Input and Output Section
In each iteration, there are four equal time slots for
performing large amount of calculations in the four
dimensions. However, the first iteration is not for
calculation but for input and output data. The output
step will process when the signal of first iteration is
asserted. Resulting value will be outputted after the
decoding of the last dimension in the last iteration
before next decoder input. The resulting values can
be reduced by only taking the most significant bit.
This design reduces the exponent computation to
convert the indices back from logarithmic domain.
After that, information and parity will be inputted to
the decoder respectively. Once data are inputted
from ADC to decoder, the updating step and the
horizontal forward step can be carried out
simultaneously.

3.2 Interleavers and Deinterleaver
The randomness of the interleaver output sequence
makes it difficult to realize in low complexity
combinational circuit. A direct interleaver
implementation uses two banks of buffers alternating

between read and write for consecutive sectors of
data. The latency through an interleaver is therefore
equal to the block size [15].

ROM

4K address 12-bit address

Fig. 2 Interleavers and deinterleaver implemented
using ROM.

The basic block interleaver design uses a minimal
amount of control logic. Using ROM for high-speed
implementation, the interleaver inputs are data
position in current dimension, while outputs are data
position in previous dimension. In updating step,
when reading in shuffled extrinsic information from
last dimension, the RAM address is read from ROM
data and the ROM address is read from control unit.
This decreases the latency problem due to data
interleaving since a long duration stage for data
shuffle process is eliminated. The read-read
operations are then repeated alternating between
ROM and RAM as in sequential design. More
sophisticated interleaver designs yield improved
error rate performance, but result in increased
implementation complexity [15]. Therefore, the
implementation of the described basic interleaver
provides a lower limit on complexity [15].

3.3 Control Unit
In the control unit, timing controller, iteration
controller and dimension controllers are responsible
for implementing decoding steps recursively. For
that reason, iteration controller is to activate one
necessary dimension controller at a time and pass
iteration number for dimension controller to use. The
whole control unit incorporates simple decision logic
that uses a sign-controlled signal from the timing
controller to indicate the first and final iteration of a
data block. A simple state machine like the one
shown in Fig. 3 is used to maintain the state of each
iteration in the decoder. A cycle can be in one of four
states: output state will output results of the last
dimension which are stored in memory module.
Upon that, received data moves into the memory to
overwrite previous data block in the input state and
all extrinsic information variables will be

reinitialized in the initialization state. This ends the
first iteration.

 Start

 set
 iteration
 = 1
 iteration = 16

 iteration Output
 + 1
 iteration
 < 16

 Decode Input

 Initiali-
 zation

Fig. 3 State machine for iteration controller of the

control unit.

 Next iteration Initialization
 dimesnion
dimension = 4 = 1, 2, 3

 Horizontal
 dimension forward
 + 1 step

Horizontal Vertical
backward backward
step step

 Vertical
 forward
 step

Fig. 4 State machine for dimension controller of the

control unit.

Started from second iteration is the data processing
state, it follows the state machine as shown in Fig. 4.
For sequential implementation, four states are carried
out consecutively. If it reaches maximum number of
dimensions, it will carry on to next iteration and start
horizontal forward state without re-initialize any
variables. Until it reaches maximum number of
iterations, it will back to output state and repeats the
same cycle. Moreover, dimension controller, which
incorporating a big finite state machine, for memory
read-write controlling is employed so that all control
signals employed are being well matched and
synchronized.
 With the proposed methodology, the timing
controller, iteration controller and four dimension
controllers can be combined into one single control

unit. It consists only one finite state machine but
perform the same operation and have the same
decoding effect as the direct sequential architecture.

for all iterations {
 if (first iteration) {
 output decoded data block;
 input received data block;
 initialize extrinsic information;
 }
 else {
 for all dimensions {
 for all rows {
 registers shuffled information from last dimension –

extrinsic information from current
dimension;

 for all columns {
 temporary RAM block f(all data in the row except

current column);
 }
 d̂ f(all data in the row);
 }
 255255 da ˆ=
 for (row = 254 downto 0) {
 arow prow+1 + f(rowd̂ , arow+1);
 }
 000 dpb ˆ+=
 for (row = 1 to 255) {
 bi pi + f(rowd̂ , brow-1);
 }
 for all rows {
 register q add with clipped f(q̂ , a, b);
 extrinsic information register – q;
 q register;
 }
 } // end for
 } // end if
} // end for
Fig. 5 Implementation of PLR algorithm in the

control unit with processing details abstracted.

In iterative programs, like LDPC code decoding,
execution proceeds as a sequence of sequential
iterations, where at each iteration all parallel
processes corresponding to logical function and
variables can execute independently, but each logical
function then needs to communicate values computed
during that iteration with other variables it is
connected, before it can commence its next iteration.
As shown in Fig. 5, the control flow is done in such a
way that every iteration, a logical function sends data
to its logical neighbours and then waits until it
receives messages back from all of next iteration to
any of these neighbours.

3.4 Memory

 12 bit ⎯⎯ 5 bit ⎯⎯

000

3FF

q

400

7FF

q̂

800

8FF

q̂

900

9FF

p

A00

AFF

a

B00

BFF

b

C00

FFF

u

Fig. 6 RAM configuration for one dimension.

Although there are a large number of intermediate
variables, some values that serve as local variables,
which will not be referenced again in the next
dimension or iteration, can share a temporary register
inside the control unit. According to this motivation,
the size of memory can be reduced so that the overall
average cost of implementation can be minimized.
 Both data and intermediate results will be stored
into the RAM. The allocation of variables referred to
as a memory map for a RAM is shown in Fig. 6. The

memory map allows a RAM that performs decoding
to become switching received data, intermediate
variables and extrinsic information. The switch
happens simply by telling the control unit to execute
at a given location in the RAM. Treating
intermediate variables in the same way as decoding
data greatly simplifies the RAM address calculation
in the control unit. Fig. 7 shows the formats of RAM
address to connect the fields of decoding step to the
algorithm.

dim var col row
2 bits 2 bits 2 bits 8 bits

Fig. 7 RAM addrress format.

Each iteration share same memory space in the RAM.
This sharing is made possible by not assigning
iteration field in the range of RAM address. The
“dim” field is contained in bits 13~12. The 8-bit row
number is in positions 7~0. The data and
intermediate variables to be read or write are
specified by “var” fields at position 11~10. The
column number is in bit position 9~8. However, this
is not true for field var=102 while the “col” field will
be used to indicate intermediate variables to be
access as well. The two kinds of datapath can then
use one address format.

 12 bit ⎯ 5 bit ⎯

000

3FF

f-function

400

7FF

addition

800

BFF

clipped addition

C00

FFF

subtraction

Fig. 8 ROM configuration.

Look-up tables are resided in ROM as shown in Fig.
8. The four kinds of operation in logarithm domain
that it implements are f-function, addition, clipped
addition and subtraction. Starting top down, the
f-fucntion starts at 00016. At the other end, the
subtraction starts at C0016. The addition starts at
40016. Clipped addition is next and it can look up
from 80016 to BFF16.

opcode operand 1 operand 2
2 bits 5 bits 5 bits

Fig. 9 ROM address format.

The ROM address format is set to make it easy to
perform table look-up. It is concatenated by a 2-bit
opcode and two 5-bit operands as shown in Fig. 9.
The 5-bit operand fields are sign-and-magnitude
notation and the look-up result is also 5-bit
sign-and-magnitude index in logarithm domain.
Address format for f-fucntion operation, which has
an opcode of 002, can be implemented by a
combinational circuit. Then, the opcode becomes a
select signal input to the multiplexer for choosing
between combinational result and ROM output.

4 Simulation results
The direct sequential and the proposed modified
sequential decoder were synthesized with Synopsys
computer aided design tool using 0.38 microns
technology under 3V supply based on a 1024 bit,
rate-1/2 LDPC code. This corresponds to one of the
block sizes and code rates proposed for 3G wireless
turbo codes. In our simulation, we adopt 4
dimensions of each 256 rows and 4 columns with 16
iterations including one iteration for input-output
section. The effect of using clipping and merging
under Virtex implementation is shown in Fig. 10 and
Fig. 11.

0

0.1

0.2

0.3

10 30 50 70 90 110 130 150 170 190

Clock frequency (MHz)

D
ec

od
in

g
tim

e
(s

)

direct sequential modified sequential

Fig. 10 Performance of direct and modified
sequential LDPC decoder.

direct
sequential

modified
sequential

0

50000

100000

150000

200000

250000

300000

350000

400000

m
em

or
y

re
qu

ire
m

en
t (

bi
t)

I/DI
ROM
RAM

Fig. 11 Memory requirement comparison between

direct and modified sequential architecture.

It can be observed that the performance of sequential
decoder with the proposed modified scheme is very
superior to that of the original direct case. The total
decoding time of the modified decoder is 1298432
clock cycles which was 92.26% less than the direct
sequential decoder. In addition, the memory
requirement of the modified one was 151552 bits
which was 59.56% less than the direct sequential one.
The reduction in control logic implies that less silicon
is required for implementing such decoder.
Simulation results suggested that the proposed
decoder is more efficient in terms of decoding speed
and chip area. As far as both speed and area is
concerned, the proposed architecture shortens the
decoding latency and requires less memory storage.
Hence, it is more feasible in real-time mobile
communication applications.

5 Conclusions
 This paper presented a modified architecture for
sequential LDPC decoder. The decoder is simulated
and synthesized with Synopsys computer aided
design tool for Virtex implementation. We proposed
incorporate extrinsic information clipping and
calculation step merging into a sequential
architecture to achieve high performance low
requirement decoder. By comparing the simulation
results, it can be observed that with the proposed
scheme, the decoding speed is nearly doubled and the
required memory storage is nearly halved under 3V
supply.

Acknowledgement:
This work is supported by CityU PAG grant
7100049.

References:
[1] C. Berrou, A. Glavieux and P. Thitimajshima,

“Near Shannon Limit Error-correcting Coding
and Decoding: Turbo Codes,” IEEE ICC, 1993,
pp. 1064-1070.

[2] R. G. Gallager, “Low Density Parity Check
Codes,” IRE Transactions on Information
Theory, vol. 8, January 1962, pp.21-28.

[3] Igal Sason, Shlomo Shamai, “Improved Upper
Bounds on the Ensemble Performance of ML
Decoded Low Density Parity Check Codes,”

IEEE Communications Letters, vol. 4, no. 3,
March 2000, pp. 89-91.

[4] Mohammad M. Mansour and Naresh R.
Shanbhag, “Low-power VLSI Decoder
Architectures for LDPC Codes,” Proceedings
of the International Symposium on Low Power
Electronics and Design, 2002, pp. 284-289.

[5] Thomas Mittelholzer, Ajay Dholakia and
Evangelos Eleftheriou, “Reduced-complixity
Decoding of Low Density Parity Check Codes
for Generalized Partial Response Channels,”
IEEE Transactions on Magnetics, vol. 37, no. 2,
March 2001, pp. 721-728.

[6] Hisashi Futaki and Tomoaki Ohtsuki,
“Low-density Parity-check (LDPC) Coded
OFDM Systems,” IEEE Vehicular Technology
Conference, vol. 1, 2001, pp. 82-86.

[7] Chris Howland and Andrew Blanksby, “A
200mW 1Gb/s 1024-bit Rate-1/2 Low Density
Parity Check Code Decoder,” IEEE Conference
Custom Integrated Circuits, 2001, pp. 293-296.

[8] D. J. C. Mackay and R. M. Neal, “Near
Shannon Limit Performance of Low Density
Parity Check Codes,” Electronic Letters, vol.
32, August 1996, pp. 16454-1646.

[9] D. J. C. Mackay and R. M. Neal, “Near
Shannon Limit Performance of Low Density
Parity Check Codes,” Electronic Letters, vol.
33, March 1997, pp. 457-458.

[10] Ping Li and Keying Y. Wu, “Concatenated Tree
Codes: A Low-complexity, High-performance
Approach,” IEEE Transactions on Information
Theory, vol. 47, no. 2, February 2001, pp.
791-799.

[11] Tong Zhang, Zhongfeng Wang and Keshab K.
Parhi, “On Finite Precision Implementation of
Low Density Parity Check Codes Decoder,”
IEEE International Symposium on Circuits and
Systems, vol. 4, 2001, pp. 202-205.

[12] Thomas J. Richardson and Rudiger L. Urbanke,
“Efficient Encoding of Low-density
Parity-check Codes,” IEEE Transactions on
Information Theory, vol. 47, no. 2, February
2001, pp. 638-656.

[13] Jilei Hou, Paul H. Siegel, Laurence B. Milstein,
“Performance Analysis and Code Optimization
of Low Density Parity-check Codes on
Rayleigh Fading Channels,” IEEE Journal on
Selected Areas in Communications, vol. 19, no.
5, May 2001, pp. 924-934.

[14] Ping Li and W. K. Leung, “Decoding Low
Density Parity Check Codes With Finite
Quantization Bits,” IEEE Communications
Letters, vol. 4, no. 2, February 2000, pp. 62-64.

[15] Engling Yeo, Payam Pakzad, Borivoje Nikolic
and Venkat Anantharam, “VLSI Architectures
for Iterative Decoders in Magnetic Recording
Channels,” IEEE Transactions on Magnetics,
vol. 37, no. 2, March 2001, pp. 748-755.

[16] W. L. Lee and Angus Wu, “VLSI
Implementation for Low Density Parity Check
Decoder,” Proceedings of IEEE International
Conference on Electronics, Circuits and
Systems, September 2001, pp. 1223-1226.

