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Abstract: - Iterative decoding of Low Density Parity Check (LDPC) codes using the Parity Likelihood Ratio 
(PLR) algorithm have been proved to be more efficient compared to conventional Sum Product Algorithm 
(SPA).  However, the nature of PLR algorithm tends to put numerious pieces of data to this decoder and perform 
computation intensive operations, which is a major challenge for building a practical real-time LDPC decoder.  
In this paper, it makes use of extrinsic information clipping and calculation step merging techniques to simplify 
the decoding algorithm.  These approaches reduce the number of quantization levels while still remaining the 
algorithmic performance promised by random codes.  Moreover, a modified sequential architecture is proposed 
for LDPC decoding that decreases the decoding latency and reduces the memory storage compared to existing 
direct sequential design.  Simulation results show that the proposed architecture results in time and memory 
savings of up to 92.26% and 59.56% respectively over conventional direct sequential implementation. 
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1   Introduction 
Turbo codes [1] and LDPC codes [2] are the two best 
known codes that are capable of achieving low bit 
error rates (BERs) at low signal to noise ratios 
(SNRs) [3][4].  They are recent breakthroughs in 
coding theory that promise to push the areal density 
of the magnetic recording channel to its limits [5].  
LDPC codes were proposed by Gallager in 1962 [2], 
and the performance is very closed to the Shannon 
limit [6].  However, LDPC codes were not pursued 
for due to implementation complexity [7].  
Nevertheless, the interest in iterative decoding 
algorithms has led to rediscover of LDPC codes [7] 
by MacKay and Neal [8], [9].  Like turbo codes, 
LDPC codes also belong to the general class of 
powerful concatenated codes that employing 
pseudo-random encoders and iterative decoders [10]. 
 LDPC codes are similar to turbo codes in many 
aspects but are widely considered as serious 
competitors to turbo codes [11] in terms of 
performance and complexity as well as their similar 
philosophy bases: constrained random code 
ensembles and iterative decoding algorithm [12].  
Recent advances in error correcting codes (ECCs) 
have shown that irregular LDPC codes can achieve 
reliable transmission at SNRs extremely close to the 
Shannon limit on the additive white Gaussian noise 
(AWGN) channel, outperforming turbo codes of the 
same block size and code rate [13]. 

 There are some variation of LDPC decoding 
algorithm, Sum Product Algorithm (SPA) and Parity 
Likelihood Ratio (PLR) algorithm.  Although all 
current implementations of the decoder employ SPA 
for decoding, direct implementation of SPA can be 
very sensitive to the quantization effect.  It has been 
proven that PLR technique can greatly reduce the 
quantization level requirement [14], which leads to 
significant reduction in decoding costs.  As the 
horizontal step of PLR algorithm only involve look 
up table for the PLR function, their respective 
realization are straightforward and involve only table 
searching. 
 LDPC code applications become more on 
handling parity check in communication systems 
such as cellular mobile phone and video conferencing 
which requires real-time encoding or decoding of 
transmitted data.  However, the randomness of LDPC 
code and large amount of intermediate processing 
data results in stringent memory requirements that 
amount to an order of magnitude increase in 
complexity [4].  Therefore, reducing the size of 
decoder becomes an increasingly concern for feasible 
VLSI implementation. 
 A direct approach for implementing a sequential 
decoder architecture [16] would be to alleviates the 
use of complex operations, apply in-place algorithm, 
synchronise timing signal, incorporate address 
counter and look-up tables for simplifying 
combinational arithmetic, solving latency problem 
due to interleaving process, utilising memory 



modules and further optimizing chip area.  Besides, it 
takes the most significant bit in output section to 
eliminate exponent calculation and employs simple 
decision logic at output section for termination of 
iteration.  These simplified the architecture 
complexity and results in a sub-optimal decoder 
design.  However, a major problem with this 
approach is that even though many simplifications 
have been made, the size of chip is still significantly 
large due to the memory requirement and the big 
finite state machine.  In addition, the 6-bit 
architecture has been shown to be only marginally 
satisfied with the specification of real-time 
transaction.  Therefore, both decoding time and chip 
size is the main drawback of the direct sequential 
architecture for practical VLSI implementation. 
 In this paper, we have taken into account the 
clipping of extrinsic information [14] and combining 
horizontal backward step with extrinsic information 
calculation to simplify decoding process.  Here, in 
our proposed architecture, we modify the direct 
sequential decoder with the clipping and merging 
technique to boost decoding performance.  
Simulation results show that the proposed 
architecture is more efficient and less storage 
requirement than the direct sequential one. 
 The rest of paper is organized as follows.  Section 
2 presents the two algorithm simplification 
approaches of PLR algorithm for decoding LDPC 
codes.  Then, Section 3 proposes a new optimized 
version of modified sequential architecture for 
reducing decoding time and memory requirement.  
Next, Section 4 presents some simulations results 
followed by some concluding remarks provides in 
Section 5. 
 
 
2   Algorithm Simplifications 
PLR algorithm [14] is an efficient decoding 
algorithm for LDPC code.  It is obtained by changing 
the subtraction operation into division on the 
probabilities in the original SPA.  In PLR algorithm, 
there are several decoding steps including 
initialization, updating, horizontal forward step, 
vertical backward step, vertical forward step, 
horizontal backward step, extrinsic information 
calculation and output step.  Among these steps, 
except initialization and output step, are carried out 
iteratively. 
 
2.1   Extrinsic Information Clipping 
By incorporating the clipping methodology into the 
sequential architecture, both low complexity and low 
decoding latency can be achieved.  Clipping is an 

algorithm that the index of extrinsic information is 
clipped between +7 and –7 inclusive before updating 
the whole dimension.  During the whole iterative 
calculation process, if clipping algorithm is applied, 
then only 15 iterations are enough to decode a block 
of data.  More important, the decoder can operated in 
logarithmic domain using 5-bit sign-magnitude 
representing quantization level index ±0, ±1, ±2, …, 
±15.  This 1-bit reduction in architecture not only 
decrease the size of finite state machine inside the 
control unit but also reduce the size of look-up table 
by four times.  Although it seems that extra clock 
cycle are needed for handling clipping process, there 
exist some wait states in the original sequential 
design.  Those extra clock cycle for clipping can be 
fitted into those wait states so as to maintain the 
decoding time.  Therefore, the decrease in 
quantization levels and number of iterations becomes 
more significant in reducing hardware requirements. 
 
2.2   Decoding Steps Merging 
The operations of horizontal backward step and 
extrinsic information calculation on the decoding 
process are two of the computation steps inside 
iterative cycle.  Therefore, combining of horizontal 
backward step 
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Then, there is no need to store the intermediate 
variable mv̂  of horizontal backward step.  The PLR 
result f(.) of horizontal backward step can be 
temporary stored in the registers of control unit 
during calculation of extrinsic information um,n as in 
other steps.  As a result, merging equation not only 
reduce memory storage for intermediate variables but 
also further minimize the size of finite state machine 
due to the decrease in number of read-write cycles. 
 
 
3   Implementation of Modified 

Sequential Architecture 
Due to the inherent sequential nature of the decoding 
algorithm, sequential architecture only consists of a 
small number of units.  The architecture has a control 
unit for controlling enable and read-write signal of 
memory modules.  RAMs are used for storing data 



and intermediate variables while ROMs are design 
for holding look-up tables and shuffle rule.  The 
design of the interconnection of these blocks is 
simplified to take advantage of information exchange 
so as to increase the decoding efficiently. 
 

 
Fig. 1  Block diagram of sequential decoder 

architecture for LDPC code. 
 
The block diagrams are illustrated in Fig. 1.  It 
implements LDPC decoder by employing PLR 
algorithm and realizing 4 dimensions.  The 
synthsized LDPC code block has a total of 1024 data 
and 256 parity checks, where each parity check 
computed using entries from 4 information. 
 
 
3.1   Input and Output Section 
In each iteration, there are four equal time slots for 
performing large amount of calculations in the four 
dimensions.  However, the first iteration is not for 
calculation but for input and output data.  The output 
step will process when the signal of first iteration is 
asserted.  Resulting value will be outputted after the 
decoding of the last dimension in the last iteration 
before next decoder input.  The resulting values can 
be reduced by only taking the most significant bit.  
This design reduces the exponent computation to 
convert the indices back from logarithmic domain.  
After that, information and parity will be inputted to 
the decoder respectively.  Once data are inputted 
from ADC to decoder, the updating step and the 
horizontal forward step can be carried out 
simultaneously. 
 
 
3.2   Interleavers and Deinterleaver 
The randomness of the interleaver output sequence 
makes it difficult to realize in low complexity 
combinational circuit.  A direct interleaver 
implementation uses two banks of buffers alternating 

between read and write for consecutive sectors of 
data.  The latency through an interleaver is therefore 
equal to the block size [15]. 
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Fig. 2  Interleavers and deinterleaver implemented 
using ROM. 

 
The basic block interleaver design uses a minimal 
amount of control logic.  Using ROM for high-speed 
implementation, the interleaver inputs are data 
position in current dimension, while outputs are data 
position in previous dimension.  In updating step, 
when reading in shuffled extrinsic information from 
last dimension, the RAM address is read from ROM 
data and the ROM address is read from control unit.  
This decreases the latency problem due to data 
interleaving since a long duration stage for data 
shuffle process is eliminated.  The read-read 
operations are then repeated alternating between 
ROM and RAM as in sequential design.  More 
sophisticated interleaver designs yield improved 
error rate performance, but result in increased 
implementation complexity [15].  Therefore, the 
implementation of the described basic interleaver 
provides a lower limit on complexity [15]. 
 
 
3.3   Control Unit 
In the control unit, timing controller, iteration 
controller and dimension controllers are responsible 
for implementing decoding steps recursively.  For 
that reason, iteration controller is to activate one 
necessary dimension controller at a time and pass 
iteration number for dimension controller to use.  The 
whole control unit incorporates simple decision logic 
that uses a sign-controlled signal from the timing 
controller to indicate the first and final iteration of a 
data block.  A simple state machine like the one 
shown in Fig. 3 is used to maintain the state of each 
iteration in the decoder.  A cycle can be in one of four 
states: output state will output results of the last 
dimension which are stored in memory module.  
Upon that, received data moves into the memory to 
overwrite previous data block in the input state and 
all extrinsic information variables will be 



reinitialized in the initialization state.  This ends the 
first iteration. 
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Fig. 3  State machine for iteration controller of the 

control unit. 
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Fig. 4  State machine for dimension controller of the 

control unit. 
 
Started from second iteration is the data processing 
state, it follows the state machine as shown in Fig. 4.  
For sequential implementation, four states are carried 
out consecutively.  If it reaches maximum number of 
dimensions, it will carry on to next iteration and start 
horizontal forward state without re-initialize any 
variables.  Until it reaches maximum number of 
iterations, it will back to output state and repeats the 
same cycle.  Moreover, dimension controller, which 
incorporating a big finite state machine, for memory 
read-write controlling is employed so that all control 
signals employed are being well matched and 
synchronized. 
 With the proposed methodology, the timing 
controller, iteration controller and four dimension 
controllers can be combined into one single control 

unit.  It consists only one finite state machine but 
perform the same operation and have the same 
decoding effect as the direct sequential architecture. 
 
for all iterations { 
    if (first iteration) { 
        output decoded data block; 
        input received data block; 
        initialize extrinsic information; 
    } 
    else { 
        for all dimensions { 
            for all rows { 
                registers  shuffled information from last dimension – 

extrinsic information from current 
dimension; 

                for all columns { 
                    temporary RAM block  f(all data in the row except 

current column); 
                } 
                d̂  f(all data in the row); 
            } 
            255255 da ˆ=  
            for (row = 254 downto 0) { 
                arow  prow+1 + f( rowd̂ , arow+1); 
            } 
            000 dpb ˆ+=  
            for (row = 1 to 255) { 
                bi  pi + f( rowd̂ , brow-1); 
            } 
            for all rows { 
                register  q add with clipped f( q̂ , a, b); 
                extrinsic information  register – q; 
                q  register; 
            } 
        } // end for 
    } // end if 
} // end for 
Fig. 5  Implementation of PLR algorithm in the 

control unit with processing details abstracted. 
 
In iterative programs, like LDPC code decoding, 
execution proceeds as a sequence of sequential 
iterations, where at each iteration all parallel 
processes corresponding to logical function and 
variables can execute independently, but each logical 
function then needs to communicate values computed 
during that iteration with other variables it is 
connected, before it can commence its next iteration.  
As shown in Fig. 5, the control flow is done in such a 
way that every iteration, a logical function sends data 
to its logical neighbours and then waits until it 
receives messages back from all of next iteration to 
any of these neighbours. 
 
 



3.4   Memory 
 
   12 bit  ⎯⎯  5 bit  ⎯⎯  

000 
 
 
 
 
 
 
 
 
 
 

3FF 

 
 
 
 
 
q 
 
 
 
 
 
 

400 
 
 
 
 
 
 
 
 
 
 

7FF 

 
 
 
 
 
q̂  
 
 
 
 
 

800 
 

8FF 

q̂  
 

900 
 

9FF 

 
p 
 

A00 
 

AFF 

 
a 
 

B00 
 

BFF 

 
b 
 

C00 
 
 
 
 
 
 
 
 
 
 

FFF 

 
 
 
 
 
u 
 
 
 
 
 
 

Fig. 6  RAM configuration for one dimension. 
 
Although there are a large number of intermediate 
variables, some values that serve as local variables, 
which will not be referenced again in the next 
dimension or iteration, can share a temporary register 
inside the control unit.  According to this motivation, 
the size of memory can be reduced so that the overall 
average cost of implementation can be minimized. 
 Both data and intermediate results will be stored 
into the RAM.  The allocation of variables referred to 
as a memory map for a RAM is shown in Fig. 6.  The 

memory map allows a RAM that performs decoding 
to become switching received data, intermediate 
variables and extrinsic information.  The switch 
happens simply by telling the control unit to execute 
at a given location in the RAM.  Treating 
intermediate variables in the same way as decoding 
data greatly simplifies the RAM address calculation 
in the control unit.  Fig. 7 shows the formats of RAM 
address to connect the fields of decoding step to the 
algorithm. 
 

dim var col row 
2 bits 2 bits 2 bits 8 bits 

Fig. 7  RAM addrress format. 
 
Each iteration share same memory space in the RAM.  
This sharing is made possible by not assigning 
iteration field in the range of RAM address.  The 
“dim” field is contained in bits 13~12.  The 8-bit row 
number is in positions 7~0.  The data and 
intermediate variables to be read or write are 
specified by “var” fields at position 11~10.  The 
column number is in bit position 9~8.  However, this 
is not true for field var=102 while the “col” field will 
be used to indicate intermediate variables to be 
access as well.  The two kinds of datapath can then 
use one address format. 
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Fig. 8  ROM configuration. 
 
 
Look-up tables are resided in ROM as shown in Fig. 
8.  The four kinds of operation in logarithm domain 
that it implements are f-function, addition, clipped 
addition and subtraction.  Starting top down, the 
f-fucntion starts at 00016.  At the other end, the 
subtraction starts at C0016.  The addition starts at 
40016.  Clipped addition is next and it can look up 
from 80016 to BFF16. 
 

opcode operand 1 operand 2 
2 bits 5 bits 5 bits 

Fig. 9  ROM address format. 



 
The ROM address format is set to make it easy to 
perform table look-up.  It is concatenated by a 2-bit 
opcode and two 5-bit operands as shown in Fig. 9.  
The 5-bit operand fields are sign-and-magnitude 
notation and the look-up result is also 5-bit 
sign-and-magnitude index in logarithm domain.  
Address format for f-fucntion operation, which has 
an opcode of 002, can be implemented by a 
combinational circuit.  Then, the opcode becomes a 
select signal input to the multiplexer for choosing 
between combinational result and ROM output. 
 
 
4   Simulation results 
The direct sequential and the proposed modified 
sequential decoder were synthesized with Synopsys 
computer aided design tool using 0.38 microns 
technology under 3V supply based on a 1024 bit, 
rate-1/2 LDPC code.  This corresponds to one of the 
block sizes and code rates proposed for 3G wireless 
turbo codes.  In our simulation, we adopt 4 
dimensions of each 256 rows and 4 columns with 16 
iterations including one iteration for input-output 
section.  The effect of using clipping and merging 
under Virtex implementation is shown in Fig. 10 and 
Fig. 11. 
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Fig. 10  Performance of direct and modified 
sequential LDPC decoder. 
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Fig. 11  Memory requirement comparison between 

direct and modified sequential architecture. 

 
It can be observed that the performance of sequential 
decoder with the proposed modified scheme is very 
superior to that of the original direct case.  The total 
decoding time of the modified decoder is 1298432 
clock cycles which was 92.26% less than the direct 
sequential decoder.  In addition, the memory 
requirement of the modified one was 151552 bits 
which was 59.56% less than the direct sequential one.  
The reduction in control logic implies that less silicon 
is required for implementing such decoder.  
Simulation results suggested that the proposed 
decoder is more efficient in terms of decoding speed 
and chip area.  As far as both speed and area is 
concerned, the proposed architecture shortens the 
decoding latency and requires less memory storage.  
Hence, it is more feasible in real-time mobile 
communication applications. 
 
 
5 Conclusions 
 This paper presented a modified architecture for 
sequential LDPC decoder.  The decoder is simulated 
and synthesized with Synopsys computer aided 
design tool for Virtex implementation.  We proposed 
incorporate extrinsic information clipping and 
calculation step merging into a sequential 
architecture to achieve high performance low 
requirement decoder.  By comparing the simulation 
results, it can be observed that with the proposed 
scheme, the decoding speed is nearly doubled and the 
required memory storage is nearly halved under 3V 
supply. 
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