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Abstract: In the Greek island of Thera extraordinary wall-paintings dated from 1650 B.C.are excavated in many 
thousands of widely scattered fragments whose depiction manifests inhomogeneous colour decay, odd texture, cracks, 
added extraneous material etc. In this paper a colour image segmentation method as well as a pattern analysis in 
connection with these wall-paintings, are presented. The colour image segmentation method takes into account these 
problems and eventually offers very satisfactory, clear-cut and precise colour regions and region borders for each 
fragment depiction. Extensive pattern analysis to the obtained regions borders leads to the conclusion that 3650 years 
ago, the artist most probably used advanced geometrical methods in order to construct handcrafted “French curves” 
(stencils or templates) and use them to draw certain figures. On the basis of the above results, specific pattern 
matching techniques are employed for the reconstruction of wall-paintings depicting spirals, from their constituent 
fragments. 
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1   Introduction 
The discovery of the wall-paintings at Akrotiri of the 
Greek island Thera (Santorini), is of outstanding 
importance for human knowledge of the early Aegean 
world and not only. According to prominent 
archaeologists these wall-paintings rank alongside the 
greatest archaeological discoveries. The late professor 
Marinatos originated the excavations, which are now 
continued by Professor Christos Doumas. The wall-
paintings of Thera were preserved due to the seal of the 
pumice from the great eruption of a volcano [1]. As a 
rule the walls decorated with paintings collapsed 
together with their painted coat before the volcanic 
eruption, due to particularly strong earthquakes. Thus, a 
single painting is usually scattered into many fragments 
mixing with the fragments of other wall-paintings too. 
The restoration of the wall-paintings from the fragments 
is very painstaking and time consuming process. 
Therefore, the development of a system that will 
contribute to the automatic reconstruction of these wall-
paintings is of fundamental importance for this 
archaeological research, but for many others too, which 
face the problem of an image reconstruction from 
excavated fragments. If one wishes to develop such a 
system, one may take into account many parameters, 
such as a) matching between external contours of the 
fragments ([9]) b) region borders continuation between 
actually adjacent fragments c) colour continuation d) 

continuation of the thematic content e) crack 
continuation f) geological texture of the side opposite to 
the painted one, etc. 
For parameters b), c), d) above, it is absolutely 
necessary and essential to automatically extract as clear-
cut and precise as possible colour regions and region 
borders from each fragment. For this reason, employing 
an efficient colour image segmentation method is 
absolutely critical. There are numerous publications 
dealing with the problem of segmenting a greyscale or 
colour image using various techniques such as split and 
merge [2], watershed [3], and other ([4], [5]). In 
addition, there are other particularly useful publications 
evaluating such methods [6]. Since each fragment is 
characterized by inhomogeneous colour decay, odd 
texture, presence of cracks, added extraneous material 
etc, it has been necessary to develop a colour image 
segmentation method specifically oriented to achieve an 
as clear-cut and accurate as possible fragment region 
and region borders extraction. We would like to point 
out that the originality of the developed method lies 
mainly on the employed sequence of already existing 
partial techniques, their variation, as well as the proper 
choice of the used parameters. The developed 
segmentation method is equally well applicable to other 
cases than the present archaeological application, too. 
Detailed inspection of the fragments depiction gave us 
the feeling that the artist 1650 years B.C. used 



prototypes to draw parts of the wall-paintings. 
Therefore, the developed segmentation method and the 
obtained clear-cut boundaries have been extensively 
used: 
1. To unambiguously spot and describe models used 
by the artist and 
2. To achieve corresponding wall paintings parts 
reconstruction.  
In connection with curve fitting, various publications 
exist, using statistical methods, parameterized families 
of polynomials, parametric deformable models, 
simplicial models, normalized primitives ([7], [8]) etc. 

 
Figure 1 

 
2 Colour Image Segmentation Method 
More than four thousand (4000) fragments belonging to 
several wall-paintings, have been, for the first time, 
photographed and “extracted” using the methodology 
described in [9]. The fragments digital images are stored 
in a database and processed for quality improvement. 
The initial fragment positioning together with axes is 
considered to be "the absolute reference system" for 
each fragment separately, in all subsequent analysis (see 
Figure 1). 
 
2.1 An initial colour region extraction    
First, one defines the notion of “decay noise”, which 
describes the random colour and texture decay that has 
occurred to the fragment in hand. A simple method to 
calculate this decay noise is the following: One 
transforms the initial fragment coloured image into a 
grey scale one and computes the resulting intensity 
“finite gradient” 

)()1()()1(),( jIjIiIiIjiG yxf −++−+=∆+∆=

), ji

GE GR
),( jiG f GN

( )GGGG RERE

 at 

each fragment pixel ( . Next, one computes the 
mean value  and the root mean square  of 

 and checks the number of pixels  that lie 

in the interval +− , GN

GP 8.0=G

. If  is less 
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application in hand) of the total number of fragment 
pixels N , then one considers that a serious degree of 
decay noise exists and so a 9x9 pixels mask is used in 
order to achieve image colour smoothing. 
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Subsequently, we define a proper multidimensional 
colour histogram and obtain its maxima as follows: We 
estimate the minimum and maximum value of each 
colour component R, G, B for all fragment image pixels, 
say  and we divide each 
one of the intervals 
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( ) pXX mlX= . We consider the Cartesian product of 
all these one-dimensional intervals, thus obtaining a 
three dimensional partition of the parallelepipedon 
[ ] [ ]MmMm BBGGR ,,mR , × . Next, we classify all 
fragment image pixels into these 3-d intervals in a 
straightforward manner. Notice, that the value 32=p , 
offered very good results for all the available fragments. 
Subsequently, we count the number of pixels  

belonging to each cell  and we spot the local 

maxima of  that include, 

however, a number of pixels greater than a certain 
threshold 

kjiM ,,

kjiI ,,

kj,, = piM kji ,...,2,1,,,

MTH . For the present application and the 
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We consider that the ensemble of pixels belonging to 
this “extended” cell is a first rude approximation of an 
image region. Notice, that with this procedure one 
obtains a class of regions  that are possibly 

overlapping but they do not necessarily cover the entire 
colour image.  
Subsequently, we make the plausible assumption that, in 
a unique colour region, the colour variations may be 
considered as random variables following a normal 
distribution. Based on this assumption, one can extend 
the previously defined regions by means of the 
following procedure: 
1. One computes the mean value Xµ  and the root 
mean square BGRXX ,,, =σ  of the three colour 
components  in every previously defined set of 
pixels . 
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2. Since the decisively greatest part of a normal 
distribution population lies in the three-dimensional 
interval 
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including all pixels having colour components in 
. 

The above procedure generates a class of broader 
regions , which are still, most probably, 

overlapping. 
),,( kjiJ

The final goal is to classify each image pixel into a 
single region. In order to do so, first one, quite 
classically, defines a distance d  of a pixel P  with 
colour components PPP BGR ,, , from an arbitrary 
region U  with mean values Xµ ,  of its 
pixels colour components , via the formula: 
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Now, if a pixel is classified to more than one region, say 
 via the previous process, one attributes 

this pixel to the region from which it has the minimum 
distance, i.e. 
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With the same method, one attributes to a certain region 
all pixels that have not been classified to any region 
during the process of section 2.2. 
Finally, in every pixel of the fragment image one 
assigns a colour content equal to the average values 

Xµ ,  of the region the pixel belongs to. In 
this way, one obtains a “first homogenised 
approximation” of the fragment image. 
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2.2 Decay noise reduction and edge refining 
After dividing the fragment image into regions and 
obtaining the “homogenised” fragment image one uses 
the procedure described below to reduce decay noise: 
A  mask, m and n odd, slides throughout the 
whole fragment image each time centred at a pixel P of 
it. At each mask position one counts the number of 
pixels of the mask perimeter belonging to each defined 
region separately. Let 

nm ×

MU  be the region with the 
greater number of perimeter pixels, say MN . If MN  is 
greater than a percentage, say nm,Π  of the number of 

the mask perimeter pixels, then all mask pixels are 
assigned to region MU . The aforementioned procedure 
is continually repeated, until no mask pixel assignment 
is reported. Next, then mask dimensions are reduced by 
2 and the whole process is repeated until m=n=3.  
The above procedure eliminates the decay noise in the 
internal of each region successfully. However, a certain 
amount of decay noise still remains in the regions 

borders. In order to reduce this decay noise too, one 
may apply the following: 
A nm ×  mask, m and n odd, slides throughout the 
whole fragment image each time centred at a pixel P of 
it. At each mask position one counts the number of 
mask pixels belonging to each defined region separately 
and let U  and max minU  be the regions with the greater 
and smaller number of pixels respectively, say , maxN

minN . Then one checks if the following conditions are 
satisfied: 
1. The mask centre belongs to the region minU . 
2. minN  is smaller than a percentage, say ),min( nmΠ  

of the number of the mask pixels. 
3.  is greater than a percentage, say maxN ),max( nmΠ  

of the number of the mask pixels. 
If so, the central pixel of the mask is assigned to region 

. The aforementioned procedure is continually 
repeated, until no mask pixel assignment is reported. 
Next, then mask dimensions are reduced by 2 and the 
whole process is repeated until m=n=3. 

maxU

Notice, that there is an intimate relation between the 
degree of decay noise the fragments have suffered and 
the proper values of the thresholds , nm,Π ),min( nmΠ  and 

),max( nmΠ . After estimating the decay noise of all 

available fragments we have set 7.0, =Π nm , 

25.0),min( =Π nm  and 5.0),max( =Π nm . 

 
Figure 2 

In this way, one obtains the “final homogenised” 
fragment image (see Figure 2). If one wants to obtain an 
even more homogenised segmentation one may repeat 
the smoothing procedure referred to in section 2.1 to 
each obtained region separately, where, however, the 
initial colour content of the region pixels is used. The 
outcome of this procedure is once more subjected to the 
aforementioned segmentation process. At this point the 
primary goal, namely a clear-cut “final border” 
extraction, can be immediately accomplished by a direct 
application of any respectable edge detection algorithm, 
as well as any boundary extraction one, to the final 
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homogenized fragment image. Examples of the obtained 
very satisfactory results are shown in Figure 3. 

 
Figure 3 

 
3 Spotting Various Geometrical Shapes - 
Estimation Of The Mathematical Models 
At first, we have observed that some thematic areas 
boundaries belong to well known geometrical shapes 
like straight lines, circles, spirals, crescents etc. We 
have observed too, that all geometrical shapes parts 
depicted on numerous fragments are smooth and 
manifest noticeable similarities. This imposed the idea 
that the artist, 1650 years B.C., used specific 
geometrical methods and/or templates to draw these 
geometrical shapes. To test this conjecture we have tried 
to find proper mathematical functions describing these 
shapes. 
At this point, employing clear-cut boundaries of these 
geometrical shapes is absolutely essential. Such 
boundaries parts are extracted from the final borders of 
the homogenized segmented image (Figure 3). The most 
difficult and interesting related problem is the 
demonstration that all found spiral parts depicted in 
numerous fragments belong to specific spiral models. In 
order to tackle this problem we have proceeded as 
follows: 
It is well known that the general spiral equation is of the 
form: 
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where )(θR  is any increasing function of θ  , ( )00 , yx  
the spiral centre coordinates and )(θα  is any function 
of θ . If the parameters of the model spiral are 

 and if the actual spiral part is a curve 
, we recursively find the proper values of the 

parameters  that make a specific model 
part best fit in the Least Squares sense to ( . 
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In this way we have tested if the drawn spirals 
correspond to a number of prototype spirals that for 
which, from the archaeological point of view, one 
cannot exclude the possibility that the artist was capable 

of constructing them by means of a geometrical method:  
1. Archimedes spiral, namely θθ *)( kR = , and 

0)( φθθα −= , where 0φ  accounts for a possible spiral 
rotation. 
2. The spiral that corresponds to unwrapping a thread 
wrapped around a nail, with equation  

( ) ( )( )θθθθ arctancos*1 2
00 −++= rxx

( )
,

( )( )θθθθ arctansin*1 2
00 −++= ryy    

3. The logarithmic spiral with , θβθ **)( eaR =

0)( φθθα −= , where βα ,  are constants and 0φ  
accounts for a possible spiral rotation. 
After applying this method to all available actually 
drawn spiral parts we have reached the following 
conclusions: 
a) Model spirals 2 and 3 poorly approximate the 
drawn spirals.  
b) The prototype linear (Archimedes) spiral with 

69.23=κ  very well approximates all the actually 
drawn parts of the large class presented in this paper. 
The approximation becomes excellent if one makes the 
assumption, fully compatible with all the archaeological 
observations so far, that the artist had divided the initial 
linear spiral prototype into “French curves” (stencils or 
templates) in order to draw the spirals (see Figure 4).    

 
Figure 4 

The aforementioned conclusion may be used to fit the 
many hundreds of wall-paintings fragments depicting 
these spirals to their proper position as uniquely as 
possible. It seems that the novel method described 
below is the most appropriate for reconstructing the 
wall-paintings from their constituent parts even if no 
conduct between the various fragments exists [9]. 
 
4 Fitting Fragments Into Specific Models 
In this section, a general methodology is chosen to fit a 
part to a proper model. Consider two curves in the same 
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plain, say (  and  respectively, of equal 
length, say  pixels, with arbitrary orientation. 
Suppose that one wants to estimate the optimum 
rotation and parallel translation so as to fit curve 

 to curve (  in the Least Squares sense. In 
other words, one wants to estimate the proper angle of 
rotation 
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Figure 5 
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is minimum. After derivation and some straightforward 
calculus one obtains: 
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1. For every pixel  of the model spiral, one 
generates a  pixel arc, say C , starting from pixel 

 where  is the length of  #1 actual spiral part. 
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2. One spots all pixels m  of the model spiral having 
a distance 

i,1
εδ ±  from pixel  and such that each 

vector 
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( )im ,1,n ,1  forms an angle ξφ ±0

1n
 with the 

tangent to the spiral model at point  where, ξε ,  
small, properly chosen, scalar quantities.  
3. For every such pixel  of the model spiral, one 

generates a  pixel arc, say , starting from 

pixel  where  is the length of  #2 actual spiral 
part. 
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4. For every such pixel  one forms the “extended” 

model spiral arc 
im ,1

in ,1Γ  of length  where its 

first  points are the pixels of curve , while the 
last  points are the pixels of curve C . 
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5. Similarly, one has already defined the “extended” 
actual spiral boundary arc, say EA

N

 which is formed by 
a concatenation of spiral parts (  and 

. Once more, the first  points of 
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the pixels of boundary spiral part ( , while the 
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Finally, one obtains the pixel  where  becomes 
minimum and this is the starting position of the model 
spiral where the internal boundary part best fits.  
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One may extend the aforementioned technique to fit 
many internal boundaries – spiral parts of a fragment to 
the same single or double spiral model. In other words, 
if many spiral parts are depicted on the very same 
fragment, then one may simultaneously fit all the 
corresponding internal boundaries to a spiral model. To 
set ideas, suppose that on a certain fragment two 
internal boundaries are depicted belonging to different 
spiral parts, say  and ( , where, 
one arbitrarily defines one of the spiral parts as #1 and 
the other #2. At this point, one computes the distance 

),( ,1,1 ii yx ), ,2,2 ii yx

δ  
of the beginnings A=  and B= (  

of spiral parts #1 and #2, as well as the angle 
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0

, ,20 y,2x
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between vector AB  and the tangent to the first spiral 
part at point A (see Figure 5) and performs the 
following steps, in order to fit ,  
to a double spiral model: 

), ,1, ii y ( 2x( 1x ),i, 2,i y

6. Subsequently, for every pair of curves EA  and 

in ,1Γ  one applies the previously described method, 

namely one computes angle of rotation θ  and (  
via equations (4.4) and (4.5) that offer the Least Squares 
difference  of 

)0y,0x

),( 1 inE EA  and . in ,1Γ

7. Finally, one obtains the couple of pixels (  
where  becomes minimum and these are the 
starting positions of the model spiral where the internal 
boundaries  and (  best fit 
simultaneously. 
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Figure 6 
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In order to fit more than two internal boundaries – spiral 
parts simultaneously into a spiral model, one applies the 
aforementioned procedure by creating extended arcs 

EA  and  consisting of more than two 

actual or model spiral parts.  
mjin ,...,,,1Γ

Application of the method introduced above, allowed 
the reconstruction of all wall-paintings parts consisting 
of fragments with spiral parts depicted on them (see 
Figures 6,7,8). Finally, we would like to point out that 
the methodology introduced here is actually applied to 
reconstructing wall-paintings from its constituent 
fragments by fitting depicted figures to other 
prototypes, e.g. ellipses, parallel lines grids, too. 

 

 
Figure 7 

 
Figure 8 

 
5 Conclusion 
A colour image segmentation method as well as a 
pattern analysis has been presented, in connection with 

the extraordinary 1650 B.C. wall-paintings of the Greek 
island of Thera, excavated in many thousands of widely 
scattered fragments suffering a serious decay. The 
introduced colour image segmentation method takes 
into account the decay problems and offers clear-cut 
colour regions and region borders for each fragment 
depiction. Extensive pattern analysis to the obtained 
regions borders leads to the conclusion that 3650 years 
ago, the artist most probably used advanced geometrical 
methods in order to construct handcrafted prototypes or 
“templates” and use them to draw certain figures. On 
the basis of the above results, specific pattern matching 
techniques are employed for the reconstruction of wall-
paintings depicting spirals, from their constituent 
fragments.  
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