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Abstract: - A numerical model for physical characteristics simulation of nanoscale double-gate 
and gate-all-around Metal-Oxide-Semiconductor (MOS) under strong inversion is presented. 
Together with an effective potential quantum correction, one-dimensional (1D) Poisson 
equation with symmetric boundary conditions is solved in both Cartesian and cylindrical 
coordinates for single-gate, double-gate, and gate-all-around MOS structures. Comparison on 
these three different MOS structures is explored in terms of the total inversion layer charge and 
the average inversion charge depth. By considering the same surface potential, it is found that 
the concentration of the induced inversion charge for the gate-all-around MOS is significantly 
higher than the others. Therefore, this implies the gate-all-around MOS structure has better gate 
controllability and higher current density.  
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1    Introduction 
Study of advanced nanoscience and nanotechnology 
has recently been of great interest, in particular 
nanoscale semiconductor structures and devices [1-3]. 
The channel length of metal-oxide semiconductor 
field effect transistors (MOSFETs) is currently in the 
nanoscale regime (e.g. 10-90 nm). Two promising 
structures such as the symmetric double-gate (DG) 
and gate-all-around (GAA) MOS have attracted 
increased research interests [13-17]. They introduce 
the concept of volume inversion: the inversion charge 
spreads throughout the whole ultrathin silicon (Si) 
body, which improves the device characteristics (e.g., 
higher current due to the substrate mobility). Strong 
inversion plays an important role in nanoscale MOS 
device physics as it provides the information of the 
swept charge as well as the saturation current. 
Systematical examination on intrinsic physical 
properties is necessary for the development of 
nanoscale DG and GAA MOS structures.  

In this paper we numerically solve the classical 
1D Poisson equation together with the effective 
potential (EP) quantum correction model in the 
Cartesian and cylindrical coordinates for nanoscale 
DG and GAA MOS structures [7-12]. Firstly, without 

considering the quantum mechanical effect, the 
classical potential and electron density are simulated 
and compared among single gate (SG), DG, and 
GAA MOS structures. Under the same bias condition, 
the GAA MOS has higher classical electron density 
than the SG and DG’s. To accurately account the 
quantum mechanical effect [4-7, 18-19] for the 
nanoscale MOS structures, we further solve the 
classical 1D Poisson equation with the EP model self 
- consistently. Simulation of inversion-layer charge 
density with various Si film thickness, oxide 
thickness, and gate bias voltage is performed on DG 
and GAA MOS structures. For the same surface 
potential, it is found that the concentration of the 
induced inversion charge for the GAA MOS is 
significantly higher than the others. The GAA MOS 
has larger average inversion charge depth than that of 
DG MOS.  

This paper is organized as follow. Mathematical 
model for the SG, DG, and GAA MOS structures are 
described in Section 2. Simulation procedure for the 
quantum correction model is discussion in the section. 
Section 3 presents the simulation results and 
discussion. Finally, Section 4 draws conclusions and 
suggests the future work. 



2    Computational Model  
Simply considering the Boltzmann statistics for the 
carrier concentrations, a general model to describe 
the electrostatic potential distribution for 
semiconductor MOS structures is known as the 
Poisson equation [5, 7]: 
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In 1D situation, (1) becomes: 
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Fig. 1. Illustration of the structures of (a) SG (b) DG  

and (c) GAA MOS.  
 

For the DG MOS structure in the Cartesian 
coordinate, m is set to be zero in (2). For the GAA 
MOS structure in the cylindrical coordinate: m = 1. 
The schematic description of the device structure is 
shown in Fig. 1. In (2), Na is the doping concentration 
of the Si body and Nd is the doping concentration of 
the poly-silicon. The symmetric boundary conditions 
for both structures are:  
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Here r = r0 is at the center of the Si body and r =0 is 
on the surface, sϕ  is the surface potential. 

Currently the thickness of gate oxide is scaling 
down to the 0.8-3 nm and the DG and GAA Si film 
body is within 50 nm; therefore it is necessary to 
include quantum mechanical effects when modeling 
their physical transport phenomena. Various 
theoretical approaches have been considered to study 
the quantum confinement effects, such as full 
quantum mechanical model (e.g. nonequilibrium 
Green’s function) and quantum corrections to the 
Boltzmann, drift-diffusion and hydrodynamic 
transport models. A set of Schrödinger-Poisson 
equations has been applied to study the quantum 
effect in the inversion layers, but it is a 
time-consuming task in the application to realistic 
device simulations. We apply the EP model to the 
simulation of inversion-layer charge density. This 
model is based on the following integral 
transformation from the classical potential V(x) to EP 
Veff(x) as [7-12] 
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Fig. 2. Solution procedure for the quantum correction 
model.  



The classical potential initially calculated from the 
Poisson equation. After the quantum correction 
potential is obtained from the EP equation, the 
electron concentration n(x) is calculated using the 
Boltzmann statistics. We then solve the Poisson 
equation again until a consistency is reached. As 
shown in Fig. 2, the classical Poisson equation is 
solved with the finite difference and the Newton’s 
method iteratively. Once the computed classical 
potential is convergent, we calculate the quantum 
correction potential with (5). Therefore, the electron 
density is solved with the Boltzmann statistics. For 
device with heavily doping concentration, we can 
replace the Boltzmann statistics with the Fermi-Dirac 
statistics in Eq. (1) 
 
3    Results and Discussion  
The three structures, SG, DG, and GAA MOS system 
are solved with the 1D Poisson equation and EP 
model. The effective mass m* shown in the EP model 
is as an adjusting parameter. For the simplicity, m is 
chosen as 1.0 in our simulation.  The potential and 
inversion charge concentration of the classical model, 
both as a function of the distance r from the oxide and 
substrate interface, are calculated and Shown in Figs. 
3(a) and 3(b). The DG and GAA structures are with a 
30-nm-thick body (e.g., r0 = 15 nm, Na = 1017 cm-3, 
and Vg = 1.0 V), and SG structure with the same 
condition except the 100-nm-thick body.  

As shown in Fig. 3(a), the solid line is the 
classical potential of SG MOS, the dash and dot lines 
are for DG and GAA MOS, respectively.  The GAA 
MOS has higher electron density, shown in Fig. 3(b), 
in comparing with the others. Due to the totally 
surrounding geometry on the gate, it is no surprise 
that the GAA MOS structure has better charge 
controllability than those others.  
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Fig. 3. Computed classical (a) potential and (b) 
electron density for the three structures. 

 
Fig. 4 shows the ratio of the potential and the 

carrier concentration for the GAA and DG structures, 
respectively. They are computed by only considering 
the classical Poisson equation. In Fig. 4(a), we see 
that the classical potential of the GAA MOS is 
always smaller than that of DG MOS in the silicon 
film region. From the calculated results, it is found 
when the two structures have the same current, the 
GAA MOS dissipate lower power than DG MOS. In 
Fig. 4(b), the ratio of the electron concentration is 
always bigger than one. It means the electron 
concentration of the GAA MOS is larger than that of 
DG MOS (~ 1.8 times). According to the results 
above, we may have a better controllability for the 
charge of GAA MOS structure. In other words, in 
comparing with the DG MOs structures, a lower gate 
voltage is enough to produce the same charge for 
GAA MOS structures under the inversion layer.  
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Fig. 4.  (a) Potential ratio of the GAA vs. DG MOS 
and (b) ratio of the electron concentration of 
the GAA vs. DG MOS, where the symbols 
are the same as fig. 4(a). 

 
To investigate the quantum mechanical effect 

on the devices, we add the EP model to the Poisson 
equation in our following studies. Fig. 5 shows the 
electron density calculated by the EP model which is 
different from the classical results shown in Fig. 3(b). 
While keeping the same gate voltage, the GAA MOS 
has a higher peak of the electron density than the 
others. It is found that the peak density of GAA MOS 
is about 1.5 times larger than that of SG MOS. The 
peak location for all cases shifts away from the 
interface of Si/SiO2 about 1 nm. Fig. 6 shows the 
examination on the ratio of the electron concentration 
for GAA and DG MOS structures. The ratio 
calculated with the EP model is similar to Fig. 4(b). 
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Fig. 5. Electron density with the EP model. The solid, 

dash, and dot lines are for SG, DG and GAA 
MOS, respectively. 
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Fig. 6. Ratio of the electron concentration of the 

GAA vs. DG MOS with the EP model, 
where the symbols are the same as fig. 4.  

 
Fig. 7 shows the total inversion layer charge 

<Q> with respect to the applied gate voltage. <Q> is 
the integration of the inversion layer charges defined 
as 
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where n(r) is the electron density. As the gate 
voltages increase, the total inversion layer charges 
increase. We see that the GAA MOS (dot line) has 
the largest inversion layer charges under the same 
gate voltage. It also demonstrates larger variation of 
the inversion layer charges when VG varies from 0.5 
to 2.0 V.  
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Fig. 7. The total inversion layer charge <Q> with 

respect to the applied gate voltage. The solid, 
dash, and dot lines are for SG, DG and GAA 
MOS, respectively.  



Fig. 8 shows the average inversion charge depth 
(i.e., average distance) versus various gate voltages 
for the three MOS structures. The average inversion 
charge depth <X> is defined as  
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Due to the surrounding topology for the GAA 

MOS structure, it is obvious that the GAA MOS has 
larger average inversion charge depth than those of 
DG and SG MOS. As the average inversion charge 
depth increases, the friction between the free electron 
and oxide layer (SiO2/Si) interface decreases. 
Therefore, the channel mobility increases. 
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Fig. 8. The average inversion charge depth versus the 

gate bias for the three MOS structures. The 
symbols are the same as Fig. 7.  
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Fig. 9. Ratio of the inversion layer charges. 
 

Fig. 9 shows the ratio of <Q>GAA to <Q>DG with 
respect to the applied voltages for different thickness 

of Si film. <Q> is the integration of the inversion 
layer charges as defined above. Notice the upper 
limitation in the integral of (6) is 30 nm (Because the 
thickness of Si body is 30 nm). We find that the ratio 
of <Q>GAA to <Q>DG is slightly decreases when the 
VG increases. It also shows the ratio of the inversion 
layer charges for EP model increases with the film 
thickness decrease. Due to the mention above, we 
find the quantum effect near to the SiO2/Si interface 
of the MOS is more noticeable when the film 
thickness is decreased.  
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Fig. 10. Ratio of the average inversion charge depth.  
 

Fig. 10 shows the ratio of <X>GAA to <X>DG with 
respect to the applied gate voltages for different 
thickness of Si film. The average inversion charge 
depth <X> is defined above. We find that the ratio of 
<X>GAA to <X>DG increases when the Tsi increases. 
The ratio is independent of VG. With the film 
thickness decrease, the quantum effect near to the 
Si/SiO2 interface of the MOS is more noticeable. The 
peak of the electron density moves to the structure 
center. The peak in the left side is more closed to the 
right side one. However, the electron charges in the 
both side are the same polarization. They are both 
negative charge. Due to the physical formula that the 
two same polarization charges repulsive, the peak in 
the both side move slowly when the film thickness 
decrease.   The ratio of the average inversion charge 
depth for EP mode is smaller when the film thickness 
is decrease.  
 
 
5   Conclusions  
A numerical model for physical characteristics 
simulation of ultrasmall nanoscale double-gate and 
gate-all-around MOS under strong inversion has 
been presented. Together with the effective potential 



quantum correction formulation, the 1D Poisson 
equation with symmetric boundary conditions has 
been solved in both Cartesian and cylindrical 
coordinates for single-gate, double-gate, and 
gate-all-around MOS structures. Comparison on 
these three different MOS structures has been 
explored in terms of the total inversion layer charge 
and the average inversion charge depth. By 
considering the same surface potential, it has been 
found that the concentration of the induced inversion 
charge for the gate-all-around MOS is significantly 
higher than the others. Therefore, this implies 
gate-all-around MOS structure has better gate 
controllability and higher current density.  
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