
paraBLAST: A Highly Scalable Parallelized BLAST Solution

YUTAO QI and KIN KEONG WONG
Bioinformatics Research Centre, School of Computer Engineering

Nanyang Technological University,
Nanyang Avenue,

SINGAPORE

Abstract: - Programs of the NCBI BLAST family have been widely used for retrieving homologous
sequences from existing databases. This article briefly introduces and evaluates a parallelized version of the
BLAST algorithm, paraBLAST, using Message Passing Interface (MPI) on a multi-node compute cluster. A
dynamical database fragmentation scheme based on the availability of a compute cluster is proposed. Its
application in querying nucleotide sequences against large-scale sequence databases is evaluated with
different numbers of database fragments. As the tasks are made independent of each other, a highly scalable
solution is achieved.

Key-Words: Computational biology, BLAST, Sequence searching, Parallel computing, High performance
computing, MPI

1 Introduction
The explosive growth in the sizes of sequence
databases over the past several years has
overwhelmed the standard version of NCBI BLAST
[1, 2, 3], which yields the urgent demand of the
development of a more efficient version of BLAST.
This naturally leads the researchers to the world of
highly scalable parallel and distributed computing
[6, 7].

At Bioinformatics Research Centre (BIRC),
Nanyang Technology University, we have set up a
multi-node compute cluster for high-performance
computing. A variety of software of industry
standard, such as MPI for parallel applications, has
been installed. MPI allows processes in a parallel
program to exchange information with each other
[6].

BLAST is a set of similarity search programs
designed to explore all of the available sequence
databases regardless of whether the query is protein
or DNA [1]. The BLAST programs have been
designed for speed, with a minimal sacrifice of
sensitivity to distant sequence relationships. The
scores assigned in a BLAST search have a well-
defined statistical interpretation, making real
matches easier to distinguish from random
background hits [1, 2, 3]. BLAST uses a heuristic
algorithm that seeks local as opposed to global
alignments and is therefore able to detect
relationships among sequences that share only
isolated regions of similarity. The basic BLAST [1]
procedure is illustrated in Flow Chart 1.

Filter query sequence
to remove low

complexity regions

Seed Generation -
Word Size:
3: Protein

11: Nucleotides

Compute BLOSUM62
substitution scores with

any sequence in database

Threshold selected
to reduce number of

possible matches

All seeds in query
Sequence Processed?

High-scoring
words to generate

search tree

Find Exact Matches
for all database

entries with those
high-score seeds

Any match
found?

Do small
alignments

Find possible
High Scoring
Pairs (HSP)

Better HSPs
generate Local

Alignments

E value
met?

Report Searching
Results

Flow Chart 1. Basic BLAST Algorithm
Description
A typical BLAST job assesses the similarities
between each of input query sequences and all
of the sequences in one or more large sequence
databases.

2 Methods and Implementation
Our analyses indicate that some BLAST
processes are highly scalable, for example, from

seed generation to finding better HSP. To speed up
computation, the proposed paraBLAST processes
all the tasks in parallel and integrates the results in a
unified output. paraBLAST includes one Master
process and several Slave process. The Master
oversees the entire program execution including the
File Provider, an application that manages the
storage, versioning, and distribution of the sequence
databases. The Slaves perform all of the
computations for paraBLAST. All of the
components of paraBLAST make use of MPI that
manages processor scheduling and inter-processor
communication.

Based on the above, we implemented a parallel
BLAST called paraBLAST, using MPI. paraBLAST
segments the BLAST database and distributes it into
cluster nodes, and accordingly, it executes BLAST
queries on multiple nodes simultaneously, resulting
in a speedup for large-scale database queries.
Speedup is achieved mainly through the
development of the following techniques:
• Task Preparation: Based on the current

availability of processors and memory spaces in
each compute node, we dynamically convert the
original sequence database into virtually
segmented databases.

• Task Creation: We divide the original query
task into a number of smaller tasks in which the
similarity of one or several query sequences is
assessed against a portion of the sequence
databases. The modest-sized segment of database
for an individual task fits comfortably into the
physical memory available to a single processor.

• Task Execution: The tasks are made
independent of each other, each available
processor can run its own copy of BLAST
queries, reducing interference among processors
and leading to a highly scalable solution.

• Result Integration: Finally, we combine the
individual task results into a unified output that
matches the search result of the original BLAST.
This is done by the paraBLAST Master process
upon the accomplishments of all the segmented
BLAST searches.

paraBLAST includes one Master process and
several Slave processes. The Master oversees the
entire program execution including a File Provider,
an application that manages the fragmentation,
storage and distribution of the sequence databases.
The Slaves perform all of the computation for
paraBLAST. All of the components of paraBLAST
make use of MPI routines that manage processor
scheduling and inter-processor communication.

Two different database fragmentation schemes
are allowed. A simple way follows the requirement

of the user to segment the database to the
desired number accordingly. A more
sophisticated one is based on the available
resources of the used compute cluster. In
particular, if the database to be queried can be
fitted into the main memory, the searching time
[8] will be greatly reduced. Based on a series of
experiments (refer to Fig.1 and 2), we determine
the size of database fragment using the
following algorithm:

3 Results
We executed the programs to evaluate the
performance improvement of paraBLAST by
querying an arbitrarily selected nucleotide
sequence on a large nucleotide sequence
database [3, 9] as shown in Table 1.
Table 1: Experimental nucleotide sequence data

 Database for Testing
Name Nt

Description

All Non-redundant GenBank [4] +
EMBL + DDBJ + PDB [5]
sequences (but no EST, STS, GSS,
or HTGS sequences)

Physical Size 8,187,091,720 bytes (unformatted)

Biological Size 1,682,174 sequences; 7,887,316,358
total letters (formatted)

if (User_Defined_No_of_Fragments) {
Size_Of_Fragments = Database_Size /
Number_Of_Fragments + 1;

/* Here add 1 to make sure that the
database can be divided into
Number_Of_Fragments partitions. */

Number_Of_Fragments =ceil
(Database_Size / Size_Of_Fragments);

} else if (Nucleotide_Sequence_Database) {
if (Database_Size<=700.0Mb) {

 Number_Of_Fragments = 2;
/* In order to use paraBLAST

*/
Size_Of_Fragments =

Database_Size / Number_Of_Fragments
+ 1;
} else {

 Size_Of_Fragments = 700;
 Number_Of_Fragments =

ceil (Database_Size /
Size_Of_Fragments);
 }
} else {
 …

/* Only Fragment_Size is different from
the NS one, identical implementation. */

}

Upon completion of the execution, paraBLAST
outputs the same search result of all significantly
matched sequences from the database as those of
the NCBI BLAST. The top 10 matches from the
output files are listed in the followings (Note that
the most significantly matched sequence is one of E.
coli that is a superset of the query sequence.):

 Score E
Sequences producing significant alignments:

 (bits) Value

gb|AF487900.1| Escherichia coli aspartokinase... 589 e-165
gb|U14003.1|ECOUW93 Escherichia coli K-12... 589 e-165
gb|AE000111.1|AE000111 Escherichia coli K12... 589 e-165
gb|AE015038.1| Shigella flexneri 2a str. 301... 579 e-162
gb|AE005177.1|AE005177 Escherichia coli... 567 e-159
dbj|AP002550.1| Escherichia coli O157:H7... 567 e-159
gb|AE005671.1|AE005671 Escherichia coli O157... 472 e-130
gb|AE016755.1| Escherichia coli CFT073 s... 468 e-129
emb|V00361.1|ECTHRA First structural... 428 e-117
dbj|D10483.2|ECO110K Escherichia coli gen… 428 e-117

The evaluation of execution time was done with
different number of fragments of the database;
hence different number of CPUs were utilized each
time. For comparison, the original BLAST program
running on a single CPU was also executed.
(paraBLAST produces the same query result as that
of the original BLAST.) In order to find the
fragment number with the best performance, the
database was first split into fragments in the number
of 2’s powers, and then the number was adjusted.
The experimental result is shown in Fig.1.

Execution Time of Single Sequence Query

27.2

19.3672

14.6484

7.30078

6.80078

8.83594
6.125

4.99219
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Database Fragment No. (nt)

Ti
m

e
(in

 S
ec

on
ds

)

Fig.1. Analysis on Execution Time
As shown in Fig.1, the serial BLAST program

takes 27.2 seconds to complete the search and
paraBLAST takes much less time. The execution
time is consistently reduced when the database
fragment number is increased from 2 to 16, with up
to 444.9% speedup.

To evaluate the proposed fragmentation scheme,
we further used 100 and 500 DNA sequences, each
with an average length 2021bps, to query the same
database. The performance is shown in Fig.2.

a.
Execution Time of 100 Sequences Multi Queries

691.867
695.125

752.848 5412.01

0 1000 2000 3000 4000 5000 6000

1

8

12

16

D
at

ab
as

e
Fr

ag
m

en
t N

o.

Time (s)

b.
Execution Time of 500 Sequences Multi Queries

2480.3
2584.25 3016.43

3832.5 21985

0 5000 10000 15000 20000 25000

1

8

12

16

24

D
at

ab
as

e
Fr

ag
m

en
t N

o.

Time (s)

Fig.2. Batch Queries of DNA Sequences by
ParaBLAST

To our expectation, as shown in Fig.2, the
scalability of paraBLAST on multiple sequence
queries is even better, up to 682.23% for 100
sequences (a) and 786.4% for 500 sequences (b)
respectively, compared with 444.7% in the
single sequence query.

The focus here is on the sensitivity of the
database fragmentation. In Fig.2a, when the
database was segmented into 8 fragments the
execution time was sharply reduced. With 16
processors available in the cluster, paraBLAST
system worked out a fragmentation with 12
(system desired number calculated through the
proposed algorithm) fragments and each with
700MB. The execution time (695.125s) is very
close to that of 8 fragments (752.848s) and 16
fragments (691.867s), which were manually set
for comparison. This experimental series also
prove that our proposed dynamic database-
fragmentation scheme is practical.

Similarly, the sharp reduction of execution
time is achieved in Fig.2b. The difference is
that, in this case, with 24 processors available in
the cluster, paraBLAST system worked out a
full fragmentation with 24 fragments for more
query sequences. We do observed the consistent
reduction of execution time when the number of
fragments increases from 8 to 24. In other

words, the fragmentation scheme is proved to be
robust for a variety of sequence queries.

4 Conclusions
In conclusion, paraBLAST is developed to speedup
the database searching through parallelization. It is
by adapting the serial BLAST algorithm and
applying MPI communication tools on a multi-node
compute cluster. paraBLAST faithfully implements
the BLAST searching algorithm while works at a
much faster speed. Furthermore, paraBLAST is
especially efficient for mess queries and large-scale
databases. Better scalability is achieved. It helps
bioinformatics researchers save much time in their
routine work on the sequence similarity search.

References:
[1] Altschul,S.F, Gish,W., Miller,W., Myers,E.W.

and Lipman,D.J. 1990. Basic local alignment
search tool, J. Mol. Biol., 215:403-410.

[2] Altschul,S.F., Madden,T.L., Schaffer,A.A.,
Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J.
1997. Gapped BLAST and PSI-BLAST: a new
generation of protein database search
programs, Nucleic Acids Res., 25:3389-3402.

[3] Ostell,J., The NCBI Software Development
Toolkit, ftp://ftp.ncbi.nlm.nih.gov

[4] Bairoch,A. and Apweiler,R. 2000. The SWISS-
PROT protein sequence data bank and its
supplement TrEMBL in 2000, Nucleic Acids
Res., 28:45-48.

[5] Berman, H.M., Westbrook, J., Feng, Z., lliland,
G., Bhat, T.N., Weissig, H., Shindyalov, I.N.,
and Bourne, P.E. 2000. The Protein Data Bank,
Nucleic Acids Res., 28:235–242.

[6] Gropp,W., Lusk,E. Doss,N.; Skjellum, A.
1966. A high performance, portable
implementation of the MPI Message-Passing
Interface standard. Parallel computing, 22:789-
828.

[7] Pacheco,P.S. 1997. Parallel programming with
MPI, Morgan Kaufmann, San Francisco

[8] Altschul,S.F., Boguski,M.S., Gish,W. and
Wootton,J.C. 1994. Issues in searching
molecular sequence databases, Nat. Genet,
6:119-129.

[9] Barker,W., George,D., and Hunt,L. 1990.
Protein sequence database, Methods Enzymol.,
183:31-49.

