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Abstract: - Programs of the NCBI BLAST family have been widely used for retrieving homologous 
sequences from existing databases. This article briefly introduces and evaluates a parallelized version of the 
BLAST algorithm, paraBLAST, using Message Passing Interface (MPI) on a multi-node compute cluster. A 
dynamical database fragmentation scheme based on the availability of a compute cluster is proposed. Its 
application in querying nucleotide sequences against large-scale sequence databases is evaluated with 
different numbers of database fragments. As the tasks are made independent of each other, a highly scalable 
solution is achieved. 
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1 Introduction 
The explosive growth in the sizes of sequence 
databases over the past several years has 
overwhelmed the standard version of NCBI BLAST 
[1, 2, 3], which yields the urgent demand of the 
development of a more efficient version of BLAST. 
This naturally leads the researchers to the world of 
highly scalable parallel and distributed computing 
[6, 7].  

At Bioinformatics Research Centre (BIRC), 
Nanyang Technology University, we have set up a 
multi-node compute cluster for high-performance 
computing. A variety of software of industry 
standard, such as MPI for parallel applications, has 
been installed. MPI allows processes in a parallel 
program to exchange information with each other 
[6].   

BLAST is a set of similarity search programs 
designed to explore all of the available sequence 
databases regardless of whether the query is protein 
or DNA [1]. The BLAST programs have been 
designed for speed, with a minimal sacrifice of 
sensitivity to distant sequence relationships. The 
scores assigned in a BLAST search have a well-
defined statistical interpretation, making real 
matches easier to distinguish from random 
background hits [1, 2, 3]. BLAST uses a heuristic 
algorithm that seeks local as opposed to global 
alignments and is therefore able to detect 
relationships among sequences that share only 
isolated regions of similarity. The basic BLAST [1] 
procedure is illustrated in Flow Chart 1. 

Filter query sequence
to remove low

complexity regions

Seed Generation -
Word Size:
3: Protein

11: Nucleotides

Compute BLOSUM62
substitution scores with

any sequence in database

Threshold selected
to reduce number of

possible matches

All seeds in query
Sequence Processed?

High-scoring
words to generate

search tree

Find Exact Matches
for all database

entries with those
high-score seeds

Any match
found?

Do small
alignments

Find possible
High Scoring
Pairs (HSP)

Better HSPs
generate Local

Alignments

E value
met?

Report Searching
Results

Flow Chart 1. Basic BLAST Algorithm 
Description 
A typical BLAST job assesses the similarities 
between each of input query sequences and all 
of the sequences in one or more large sequence 
databases.  
 
 
2 Methods and Implementation 
Our analyses indicate that some BLAST 
processes are highly scalable, for example, from 



seed generation to finding better HSP. To speed up 
computation, the proposed paraBLAST processes 
all the tasks in parallel and integrates the results in a 
unified output. paraBLAST includes one Master 
process and several Slave process. The Master 
oversees the entire program execution including the 
File Provider, an application that manages the 
storage, versioning, and distribution of the sequence 
databases. The Slaves perform all of the 
computations for paraBLAST. All of the 
components of paraBLAST make use of MPI that 
manages processor scheduling and inter-processor 
communication.  

Based on the above, we implemented a parallel 
BLAST called paraBLAST, using MPI. paraBLAST 
segments the BLAST database and distributes it into 
cluster nodes, and accordingly, it executes BLAST 
queries on multiple nodes simultaneously, resulting 
in a speedup for large-scale database queries. 
Speedup is achieved mainly through the 
development of the following techniques: 
• Task Preparation: Based on the current 

availability of processors and memory spaces in 
each compute node, we dynamically convert the 
original sequence database into virtually 
segmented databases.  

• Task Creation:  We divide the original query 
task into a number of smaller tasks in which the 
similarity of one or several query sequences is 
assessed against a portion of the sequence 
databases. The modest-sized segment of database 
for an individual task fits comfortably into the 
physical memory available to a single processor. 

• Task Execution:  The tasks are made 
independent of each other, each available 
processor can run its own copy of BLAST 
queries, reducing interference among processors 
and leading to a highly scalable solution. 

• Result Integration:  Finally, we combine the 
individual task results into a unified output that 
matches the search result of the original BLAST.  
This is done by the paraBLAST Master process 
upon the accomplishments of all the segmented 
BLAST searches. 

paraBLAST includes one Master process and 
several Slave processes. The Master oversees the 
entire program execution including a File Provider, 
an application that manages the fragmentation, 
storage and distribution of the sequence databases. 
The Slaves perform all of the computation for 
paraBLAST. All of the components of paraBLAST 
make use of MPI routines that manage processor 
scheduling and inter-processor communication.  

Two different database fragmentation schemes 
are allowed. A simple way follows the requirement 

of the user to segment the database to the 
desired number accordingly. A more 
sophisticated one is based on the available 
resources of the used compute cluster. In 
particular, if the database to be queried can be 
fitted into the main memory, the searching time 
[8] will be greatly reduced. Based on a series of 
experiments (refer to Fig.1 and 2), we determine 
the size of database fragment using the 
following algorithm: 

 

 
3 Results 
We executed the programs to evaluate the 
performance improvement of paraBLAST by 
querying an arbitrarily selected nucleotide 
sequence on a large nucleotide sequence 
database [3, 9] as shown in Table 1. 
Table 1: Experimental nucleotide sequence data 

 Database for Testing 
Name Nt 

Description 

All Non-redundant GenBank [4] + 
EMBL + DDBJ + PDB [5] 
sequences (but no EST, STS, GSS, 
or HTGS sequences) 

Physical Size 8,187,091,720 bytes (unformatted) 

Biological Size 1,682,174 sequences; 7,887,316,358 
total letters (formatted) 

if (User_Defined_No_of_Fragments) { 
Size_Of_Fragments = Database_Size / 
Number_Of_Fragments + 1; 
 
/* Here add 1 to make sure that the 
database can be divided into 
Number_Of_Fragments partitions. */ 
 
Number_Of_Fragments =ceil 
(Database_Size / Size_Of_Fragments); 

} else if (Nucleotide_Sequence_Database) { 
if (Database_Size<=700.0Mb) { 

  Number_Of_Fragments = 2;  
/* In order to use paraBLAST 

*/ 
Size_Of_Fragments = 

Database_Size / Number_Of_Fragments 
+ 1; 
} else { 

  Size_Of_Fragments = 700; 
  Number_Of_Fragments =  

ceil (Database_Size / 
Size_Of_Fragments); 
 } 
} else { 
 …  

/* Only Fragment_Size is different from 
the NS one, identical implementation. */ 

}



Upon completion of the execution, paraBLAST 
outputs the same search result of all significantly 
matched sequences from the database as those of 
the NCBI BLAST. The top 10 matches from the 
output files are listed in the followings (Note that 
the most significantly matched sequence is one of E. 
coli that is a superset of the query sequence.): 
                        
     Score   E 
Sequences producing significant alignments:                       
      
     (bits) Value 
 
gb|AF487900.1| Escherichia coli aspartokinase...    589   e-165 
gb|U14003.1|ECOUW93 Escherichia coli K-12...   589   e-165 
gb|AE000111.1|AE000111 Escherichia coli K12...     589   e-165 
gb|AE015038.1| Shigella flexneri 2a str. 301...   579   e-162 
gb|AE005177.1|AE005177 Escherichia coli...  567   e-159 
dbj|AP002550.1| Escherichia coli O157:H7...      567   e-159 
gb|AE005671.1|AE005671 Escherichia coli O157...  472   e-130 
gb|AE016755.1| Escherichia coli CFT073 s...             468   e-129 
emb|V00361.1|ECTHRA First structural...    428   e-117 
dbj|D10483.2|ECO110K Escherichia coli gen…    428   e-117 
 

The evaluation of execution time was done with 
different number of fragments of the database; 
hence different number of CPUs were utilized each 
time. For comparison, the original BLAST program 
running on a single CPU was also executed. 
(paraBLAST produces the same query result as that 
of the original BLAST.) In order to find the 
fragment number with the best performance, the 
database was first split into fragments in the number 
of 2’s powers, and then the number was adjusted. 
The experimental result is shown in Fig.1. 
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Fig.1. Analysis on Execution Time 
As shown in Fig.1, the serial BLAST program 

takes 27.2 seconds to complete the search and 
paraBLAST takes much less time. The execution 
time is consistently reduced when the database 
fragment number is increased from 2 to 16, with up 
to 444.9% speedup. 

To evaluate the proposed fragmentation scheme, 
we further used 100 and 500 DNA sequences, each 
with an average length 2021bps, to query the same 
database. The performance is shown in Fig.2. 
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Fig.2. Batch Queries of DNA Sequences by 
ParaBLAST 

To our expectation, as shown in Fig.2, the 
scalability of paraBLAST on multiple sequence 
queries is even better, up to 682.23% for 100 
sequences (a) and 786.4% for 500 sequences (b) 
respectively, compared with 444.7% in the 
single sequence query.  

The focus here is on the sensitivity of the 
database fragmentation. In Fig.2a, when the 
database was segmented into 8 fragments the 
execution time was sharply reduced. With 16 
processors available in the cluster, paraBLAST 
system worked out a fragmentation with 12 
(system desired number calculated through the 
proposed algorithm) fragments and each with 
700MB. The execution time (695.125s) is very 
close to that of 8 fragments (752.848s) and 16 
fragments (691.867s), which were manually set 
for comparison.  This experimental series also 
prove that our proposed dynamic database-
fragmentation scheme is practical. 

Similarly, the sharp reduction of execution 
time is achieved in Fig.2b. The difference is 
that, in this case, with 24 processors available in 
the cluster, paraBLAST system worked out a 
full fragmentation with 24 fragments for more 
query sequences. We do observed the consistent 
reduction of execution time when the number of 
fragments increases from 8 to 24. In other 



words, the fragmentation scheme is proved to be 
robust for a variety of sequence queries.  
 
 
4 Conclusions 
In conclusion, paraBLAST is developed to speedup 
the database searching through parallelization. It is 
by adapting the serial BLAST algorithm and 
applying MPI communication tools on a multi-node 
compute cluster. paraBLAST faithfully implements 
the BLAST searching algorithm while works at a 
much faster speed. Furthermore, paraBLAST is 
especially efficient for mess queries and large-scale 
databases. Better scalability is achieved. It helps 
bioinformatics researchers save much time in their 
routine work on the sequence similarity search. 
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