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Abstract: - A complex eigen-energy method is presented to investigate lifetimes of the quasistationary states in 
open quantum heterostructures, open superlattices. The transfer matrix approach is employed to discretize the 
conduction-band profile of the heterostructure and form a dispersion equation whose zeros correspond to the 
complex eigen-energies. The quasistationary states are extracted numerically in the complex plane by Newton's 
method. Both the energy level and the lifetime of the quasistationary state are obtained simutaneously. The 
method has been proved numerically efficient and accurate by comparing with some results of the APM 
approach.The differences in lifetime between the quasistationary states in the open superlattices can be easily 
realized as all the wave functions are specially adjusted to form the relative probability density distributions.  
 
Key-Words: - Lifetime, quasistationary states, complex eigen-energy, transfer matrix, open superlattices 
 

1   Introduction 
Resonant phenomena through quantum 
heterostructures have been the subject of intense 
scientific research. These phenomena are very 
important in the design of today's quantum devices 
such as lasers [1], electro-absorption modulators [2], 
photodetectors [3], and high-frequency 
negative-differential resistivity tunneling, and 
quantum interference devices [4,5]. In general, these 
devices are complex multiple quantum wells and 
their performance depends on the characteristics of 
quantum resonances therein, ie., the electron 
eigen-energy levels E and their corresponding 
lifetimes τ, the time that electrons remain confined 
inside the heterostructure at the given eigen-energy. 
The fastest possible time response of the device is 
dictated by the lifetime of its quasistationary state. A 
complex eigen-energy approach to the (E, τ) 
determination is the numerical solution of 
Schrödinger equation in the complex plane. The real 
part of the complex solution corresponds to E and the 
imaginary part corresponds to - /2τ [6]. In multiple 
quantum wells, the barriers are thick enough that the 
wave functions in the neighboring wells do not 
overlap. In contrast, coupled quantum wells (CQWs), 
or superlattices, have thin barriers so the electronic 
wave functions overlap. Superlattices and their 
transport properties were first investigated by Esaki 
and Tsu [7]. They predicted negative differential 
conductance associated with electrons transfer into 
the negative mass regions of the minizone and Bloch 
oscillations. Kazarinov and Suris theoretically 

studied the current-voltage (I-V) characteristic of 
multiple quantum-well structures with weak coupling 
between wells and predicted the existence of peaks 
corresponding to resonant tunneling (RT) between 
the ground and excited states of adjacent wells [8,9]. 
Calculations of RT through multiple barriers, CQWs, 
were also presented by Tsu and Esaki [10], and they 
found that there would be an (n-1)-fold degeneracy 
splitting for n barriers, (n-1) CQWs, followed by the 
observation of RT through double barriers [11]. 
Esaki and Chang observed oscillatory conductance 
along the superlattice axis in an AlAs/GaAs 
multiplayer unipolar structure [12]. In recent decades, 
owing to the advancement of modern crystal-growth 
techniques and computers, the quantum 
heterostructures have been extensively studied via 
experiments and simulations. For quasistationary 
states determination, one can select one of the 
methods including the WKB approach [13], the 
projected Green's function method [14] and four 
numerical methods, namely the argument principle 
method (APM) [15], the perturbed wavevector 
method [16], the quantum reflection pole method 
[17], and the modified density of states method 
[18,19]. The later four numerical methods are 
capable of determining the quasistationary-state 
eigen-energies and their lifetimes in quantum 
heterostructures having arbitrary potential profiles 
and shown to both numerically efficient and accurate 
[20]. All of these solve the time-independent 
effective mass equation, using the transfer matrix 
approach to discretize the conduction-band profile. 



In the present paper, the differences in lifetime 
between the quasistationary states in open 
superlattices are concerned. A complex eigen-energy 
method is employed to investigate the 
quasistationary states, and the transfer matrix 
approach is used to discretize the conduction-band 
profile of the heterostructure and form a dispersion 
equation whose zeros correspond to the complex 
eigen-energies. Both the  energy levels and the 
corresponding lifetimes are extracted numerically in 
the complex plane by Newton's method (NM). The 
numerical method is proved useful by comparing 
with some results of the APM approach, which is one 
of the best numerical methods currently being used 
[20]. Furthermore, the differences in lifetime 
between the quasibound states in superlattices can be 
easily realized as all the wave functions are specially 
adjusted to form the relative probability density 
distributions. 
 

2 Formulation 
The system of superlattices considered here is an 
n-barrier quantum heterostructure. The potential 
profile of a five-barrier four-well case is 
schematically illustrated in Fig. 1, where the right- 
and left-hand contacts correspond to pure GaAs, 
periodically introduced Al0.5Ga0.5As layers give rise 
to regions having a barrier height of approximately 
0.5 eV. The barrier and well widths are 20 Å and 50 
Å, respectively, and the effective mass within each 
region is taken into account via (0.067+0.083x)m0. 
By symmetry, the Hamiltonian can be split into 
transverse and longitudinal parts, and the problem 
can be simplified as solving the time-independent 
single-band effective mass equation with complex 
eigenenergies Ê along z direction,                               

[ ] , 0),(t)V(z,-Ê
2),(

)(
1

2
=+








− ∗ tz

dz

tzd

zmdz

d ψψ            (1)  

0 40 80 120 160 200 240 280 320
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Potential Profile of Superlattices

P
ot

en
tia

l V
0(z

) 
(e

V
)

Z-axis (Angstrom)

 
Figure 1 Schematic view of the potential profile of the 
system of superlattices, a five-barrier four-well quantum 
heterostructure. 

where the longitudinal complex eigen-energies Ê are 
complex numbers, i.e. Ê =ER-iEI. The lifetime is τ= 

/(2EI). Transfer matrix approach is employed to 
discretize the conduction-band profile of the 
heterostructure. For an n-barrier open superlattice, 
V(z,0-), V(z, 0+) and m*(z) can be divided into p=1, 
2, ...,(2n+1) layers with a piecewise constant 
potential energy Vp and constant effective mass mp, 
respectively. The discretized time-independent 
single-band effective mass equation, for the pth 
region with constant potential energy Vp and constant 
effective mass mp can be written as                                           
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where ψp(z) represents the envelope wave function in 
the pth layer, and kp defines the complex wavevector 
in the same layer along z direction. The solution of 
Eq.(2) can be written as a superposition of a forward 
and a backward traveling wave functions              
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                                                                                (4) 
The boundary conditions ψ(z) at the interface 
between layers p and (p+1) at position  z=zp where 
p=1,2,...,(2n) are                                              
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By matching the boundary conditions at each 
discontinuity, we arrive at                                   

, 
1

1

2221

1211

1

1
12

12

12

















=








⋅⋅⋅⋅⋅⋅=









+

+

b

a

MM

MM

b

a
MMM

b

a
pn

n

n                (6) 

where 
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Using Eq.(6) with  a1=1, b1=R, a2n+1=S, b2n+1=0, the 
reflection and transmission amplitudes can be 
obtained by                                          
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The transmission coefficient T=m1k2n+1|S|2/(m2n+1k1) 
can be represented as a function of the longitudinal 



energy, and the resonant energies can be quickly 
determined. We have calculated four structures, a 
double-barrier single-well, a three-barrier 
double-well, a four-barrier three-well, and a 
five-barrier four-well heterostructure, and the results 
are in excellent agreement with Ref. [10]. To get a 
better insight to understand the characteristics of the 
resonant phenomena in the open superlattices, we 
also solve Eq.(6) but this time with a1=0, b1=R, 
a2n+1=S, b2n+1=0, to yield the dispersion equation 
M22(Ê)=0. The eigen-energies of the quasistationary 
states can be determined by solving the dispersion 
equation whose zeros are extracted numerically in the 
complex plane via Newton's method. 
 

3  Results and discussion 
The eigen-energies and lifetimes of a double-barrier 
single-well and a three-barrier double-well 
heterostructure are listed in Table I, compared with 
the APM approach (Ref. [15]) in excellent agreement. 
All the wave functions of the quasistationary states 
are adjusted to have the same amplitude |R|, the wave 
function amplitude of the right- and left-hand 
contacts. The relative probability density 
distributions in which each subband has the same 
coupling strength with outside contacts can be 
obtained. The relative probability density 
distributions of lower and up well subbands in a 
three-barrier double-well heterostructure are shown 
in Fig. 2. The relative probability density, |ψ|2, of the 
lower well subbands, E1 and E2, are centralized about 
the well center, but the ones of the up well subbands, 
E3 and E4, are decentralized. The relative 
probabilities, the areas of the relative density 
probability distributions, of the lower well subbands 
are apparently much larger than that of the 
corresponding up well subbands, so the lifetimes of 
the lower well subbands are much larger than that of 
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Figure 2 Relative probability density distributions of well 
and barrier subbands in the three-barrier double-well 
superlattices. 

TableI. Calculation of the eigen-energies and lifetimes of 
the bound and quasibound states of a double-barrier 
single-well and a three-barrier double-well heterostructure, 
comparing with the APM approach in excellent agreement. 

                                Double-Barrier Case 
Energy      Quasistationary States (NM)    Quasistationary States (APM)
Level #    E(meV)            τ (psec)                     E(meV)    τ (psec) 

E1           93.8665          0.254212                          93.9             0.254 

E2        376.7840           0.024502                        376.8             0.024 

Three-Barrier Case 
Energy    Quasistationary States (NM)        Quasistationary States (APM)
Level #    E(meV)     τ (psec)                            E(meV)    τ (psec) 
     E1           87.9702           0.581543                          87.9             0.581 

E2        100.4360            0.441723                       100.4             0.442 

E3        351.4360            0.058833                        351.4            0.059 

E4        407.2350            0.039658                        407.2            0.039 

 
the up well subbands, respectively, as shown in Table 
I. One can further judge that the lifetime of the lower 
well subband, E1, is larger than that of E2, and the 
lifetime of the up well subband, E3, is larger than that 
of  E4. Figure 3 shows the relative probability density 
distributions of lower well subbands in the 
five-barrier four-well heterostructure, and Figure 4 
shows that of up well subbands. Similarly, the 
relative probability density of the lower well 
subbands, E1, E2, E3 and E4, are centralized about the 
well center, but that of the up well subbands, E5, E6, 
E7 and E8, are decentralized.  The lower well 
subbands corresponding to the well-centralized 
probability density are more stable than the up well 
subbands corresponding to the well-decentralized 
probability density. From the probability density 
distributions, one can realize that the lifetimes of the 
lower well subbands, E1 and E4, are much larger than 
that of  E2 and E3, and the lifetimes of the up well 
subbands, E5 and E8, are much larger than that of E6 
and E7. Even small differences can be distinguished.  
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Figure 3 Relative probability density distributions of well 
subbands in the five-barrier four-well superlattices. 
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Figure 4 Relative probability density distributions of 
barrier subbands in the five-barrier four-well superlattices. 
 
The lifetime of the lower well subband, E1, is larger 
than that of E4, and τ(E2)＞τ(E3). The lifetime of the 
up well subband, E5, is larger than that of E8, and τ(E6)
＞τ(E7). So, the differences in lifetime between the 
quasibound states in the open superlattices can be 
easily realized with the relative probability density 
distributions. 
 

4 Conclusion 
In this study, we have presented a complex 
eigen-energy method to investigate lifetimes of the 
quasistationary states in superlattices, using the 
transfer matrix approach to discretize the 
conduction-band profile of the heterostructure and 
form a dispersion equation whose zeros correspond 
to the complex eigen-energies. Both the energy levels 
and the corresponding lifetimes are extracted 
numerically in the complex plane via Newton's 
method. The method has been proved numerically 
efficient and accurate by comparing with some 
results of the APM approach. All the wave functions 
of the quasistationary states have been specially 
adjusted to form the relative probability density 
distributions. With the relative probability density 
distributions, the differences in lifetime between the 
quasibound states in the open superlattices can be 
easily realized. 
 
The author is also with Institute of Nanotechnology, 
National Chiao Tung University, Hsinchu, Taiwan 
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