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Abstract: - In this paper, the Drift-Diffusion (DD), Schrödinger –Poisson transport (SP) and Density Gradient 
transport models (DG) are computed by parallel direct method and three different meshes. According to the 
results, the DD and DG model cannot be good approximation of SP model with respect to electron density 
simulation. In addition, a dense mesh is necessary for simulation of quantum effect. Therefore, parallel 
computing is an important technique of semiconductor devices. Generally, simulation with two and four 
processors is about 1.6 ~ 1.8 and 2.8 ~ 3 times faster than that with one processor, respectively. In the case of 
efficiency, 0.8 ~ 0.9 and 0.7 ~ 0.75 are obtained for two and four processors, respectively. 
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1   Introduction 
As the progress of semiconductor fabrication 
technology for the advanced metal oxide 
semiconductor field effect transistor (MOSFET) has 
been of great interests in recent years, computer- 
aided simulation for semiconductors, which provides 
a software driven approach to explore new physics 
and device also acquires a crucial role in the 
development of semiconductor. Semiconductor 
device models, such as Drift-Diffusion (DD) and 
Hydrodynamic (HD) models [1-8], is the classical 
device simulation. In order to understand the 
characteristics of nanoscale devices, it is important to 
take quantum mechanical effects into account with 
the classical models. In principle, the Schröedinger 
equation coupled with DD model (SP model) is the 
most accurate way to solve the carrier concentration, 
but it is not suitable for engineering 
applicationsespecially for the two- and three 
dimensional cases. This is not only because it is 
computationally expensive but also because it is 
difficult to model the multi-dimensional cases. 
Therefore, quantum correction models, which 
produce a similar results to quantum mechanically 
calculated one but requires only about the same 
computation cost as that of the classical calculation, 
are developed. Among the quantum correction 
models, such as Hänsch model [9], van Dort model 
[10], Effective-Potential (EP) approach [11-12], 
Density Gradient (DG) method [13-16] and modified 
local density approximation (MLDA) [17], DG 

model is considered a good approximation of the 
quantum effect. However, numerical results of DG 
and SP model are still different. The difference 
between them is more significant as the size of device 
is smaller. That is, solving SP model is still 
necessary.  

Fortunately, the dilemma of time consuming or 
rough approximation can be overcame by advanced 
computing technique, such as parallel computing and 
adaptive computation. Parallel numerical simulation 
of semiconductor devices has been proven to be an 
indispensable tool for fast characterization and 
optimal design of semiconductor devices [8, 18 ~ 22]. 
In this paper, we employ a parallel direct solving 
method to simulate a 90 nm metal oxide 
semiconductor field effect transistor and compare the 
results of DD, DG and SP models. To show the 
difference between classical and quantum models, 
electron density distribution and drain current are 
discussed. The remaining content of this study is 
given as follows. Sec. 2 briefly explains the 
simulation models and the computational method. 
Sec. 3 shows the simulation results and discussion. 
Sec. 4 draws the conclusion. 

 
 

2   Device Models and Algorithm 
The DD, SP and DG models are employed to 
simulate and compare the difference of drain current 
and electron concentration by 1, 2 and 4 processors. 



The models and computing algorithm are described 
as the following subsections.  
 
2.1 Classical and Quantum Models 
The three governing equations of DD model are listed 
as follows. The Poisson equation is 
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where ε is the electrical permittivity, q is the 
elementary electronic charge, n and p are the electron 
and hole densities, and ND and NA are the number of 
ionized donors and acceptors, respectively. The 
current densities are given by: 
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ppp qp φµ ∇−=J ,                        ( 3 ) 
 
where Jn and Jp are the electron and hole current 
density satisfying the continous equations, µn and µp 
are the electron and hole mobility, and nφ  and pφ  are 
the electron and hole quasi-Fermi potentials, 
respectively. The mobility model used herein is 
Masetti’s model. The continuity equations are as 
follows: 
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With continued scaling into the deep sub-micron 
regime, neither internal nor external characteristics of 
stateof-the-art semiconductor devices can be 
described properly using the conventional DD model.  

To include quantization effects in a classical 
device simulation, a simple approach is to introduce 
an additional potential, such as quantity Λ, in the 
classical density formula, which reads: 
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where CN  is the conduction band density of states, 

CE  is the conduction band energy, and FE  is the 
electron Fermi energy. It is not possible to describe 
all quantum mechanical effects in terms of a variable 
Λ . For the SP-DD model, we include the 
quantization effects in the classical DD model by 

considering a Schrödinger equation along the 
semiconductor substrate (z - direction)  
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Together with the 2DEG formula [18] the Eq. (7) 

is introduced to the self-consistent DD model. ħ is the 
reduced Planck constant, EC is the conduction band 
energy, v is the band valley, mz,v, is the effective mass 
for valley in quantization direction, Ψj,v is the j-th 
normalized eigenfunction in valley v; and , Ej,v  is the 
j-th eigenenergy. Solving the equations above, the 
device current can be directly computed. T denotes 
the carrier temperature, k denotes the Boltzmann 
constant, CN  is the conduction band density of states, 

CE  is the conduction band energy, and FE  is the 
electron Fermi energy. It is not possible to describe 
all quantum mechanical effects in terms of a variable
Λ . Therefore, several quantum correction 
formalisms are suggested to approximate the effects. 
Among the models, the density gradient model gives 
a good approximation [13-16]. It gives a reasonable 
description of terminal characteristics and charge 
distribution inside the device. In addition, the 
adjustable parameter of density gradient 
approximation is nearly a constant for a wide range of 
applied gate voltage. Therefore, density gradient 
model is chosen as the quantum correction formalism 
in this study. For the density gradient model, Λ is 
given by 
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where �  is the reduced Planck constant, m is the 
density of states mass, and γ is a fit factor. The 
computing flowchart is illustrated as Fig. 1. Firstly, 
the stop criteria, mesh, output variables and 
simulation models are chosen. If density gradient 
model is chosen, the modified potential is added in 
Poisson equation. Then, Poisson equation is solved 
iteratively until the result converges. If Schrödinger 
equation is chosen, solving it until it converges is the 
next step. Otherwise, continuity equations are solved. 
After all equations converge, we’ll check the whole 
system converges or not. If the whole system 
converges, then stop computing. Otherwise, the outer 
loop should be iterated again until the whole 
converges. This scheme makes sure the solution will 
self-consistent.  
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Fig. 1. Flowchart of a self-consistent simulation scheme

 
 
 
2.2 Parallel Algorithm 
Parallel algorithm employed in this work is base 
on the parallel direct method of linear system. If a 
matrix A is factorized as A = LU. Direct solvers 
for sparse matrices involve much more 
complicated algorithms than for dense matrices. 
The main complication is due to the need for 
efficiently handling the fill-in in the factors L and 
U. The solving strategy of the fill-in reduction is 
integrated by multilevel recursive [19] or 

minimum-degree based approaches [20]. The 
numerical factorization algorithm utilizes the 
supernode structure of the numerical factors L and 
U to reduce the number of memory references. 
The result is a greatly increased sequential 
factorization performance. Furthermore, a 
left-right looking super node algorithm [21-22] 
for the parallel sparse numerical factorization on 
shared-memory multiprocessors is used.  
 

 
3   Results and Discussion 
In the numerical studies, a 90 nm MOSFETs is 
simulated. Oxide thickness is 2 nm. A super steep 
retrograde with S/D halo doping profile is given. 
Figure 2 illustrates the structure of the simulated 
device. DD, DG and SP models are simulated and 
discussed. Numerical results of MOSFETs are 
simulated by ISE-DESSIS ver. 8.0.3 [23] on HP 4000 
workstation with 4 processors.  
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Fig. 2. A 90 nm NMOSFET with super steep retrograde
           channel doping and S/D halo

 
 
Figures 3 shows that drain current (IDS) and 

electron density distribution simulated by classical 
model are different to that simulated by quantum 
model. Classical model overestimates a 30% drain 
current than quantum model. The simulated electron 
density distribution of both model are in different 
shape.  

Figures 4 ~ 5 compares the numerical results of 
classical and quantum models with different meshes. 
Three meshes, which are 678, 2602 and 5409 vertices, 
are compared. The refinement of mesh is focused on 
5 nm below Si/SiO2 interface. Minimal lengths of 
mesh are 0.05, 0.02 and 0.01 nm, respectively. It is 
found that mesh size affects the result of quantum 
model, but does not affect the result of classical 
model. Since quantum effect can not be neglected, a 
dense mesh is needed when a deep sub-micron 
semiconductor device is simulated. However, the 



computing time of SP model is much longer than that 
of DD and DG. Also, a simulation with dense mesh 
takes longer computing time than a sparse one and 
computing time increases rapidly when the model is 
complex. Figure 6 gives the computing time of 
different models with different meshes.  

 

VDS [V]
0 1 2

I D
S 

[1
0-3

A
/ µ

m
]

0.0

2.0e-4

4.0e-4

6.0e-4

8.0e-4

1.0e-3

1.2e-3

1.4e-3

1.6e-3

SP model
DD model

depth [µm]
0.000 0.001 0.002 0.003 0.004 0.005

el
ec

tro
n 

de
ns

ity
 [c

m
-3

]

0

2e+20

4e+20

6e+20

8e+20

SP model
DD model

Fig. 3. Comparison of classical and quantum models by
           (a) drain current and (b) electron density distribution.

                           (a)                                               (b)

 
 

VDS [V]
0 1 2

I D
S
 [1

0-3
A

/ µ
m

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

678 vertices
2602 vertices
5409 vertices

VDS [V]
0 1 2

I D
S 

[1
0-3

A/
µm

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

678 vertices
2602 vertices
5409 vertices

Fig. 4. Comparison of IDS-VDS curves by different meshes
            with (a) DD model and (b) SP model.
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As mentioned above, simulation of deep 

sub-micron semiconductor device takes plenty of 
time. Parallel computing technique is employed to 
solve the difficulty. DD, DG and SP models are 
simulated with the three meshes. Two measures are 
used to discuss the performance. The first one is 
speedup, which is defined as 
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where p is number of processors, T1 is the runtime of 
the serial solution and T(p) is the runtime of the 

parallel solution with p processors. The second one is 
efficiency, which is defined as  
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Fig. 5. Comparison of electron density distribution by different
            meshes with (a) DD model and (b) SP model.
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Fig. 6. Computing time of DD, DG and SP models with
            different meshes.

Models
DD model DG model SP model

ru
nt

im
e 

[s
ec

]

0

5000

10000

15000

20000

25000 vertices 678
vertices 2602
vertices 5409

 
 

Speedup and efficiency are illustrated in Figs. 7 ~ 9. 
In the classical case, simulation with two and four 
processors are about 1.75 ~ 1.85 and 2.8 ~ 2.9 times 
faster than that with one processor, respectively. In 
DG case, simulation with two and four processors are 
about 1.6 ~ 1.7 and 2.5 ~ 2.7 times faster than that 
with one processor, respectively. In SP case, 
simulation with two and four processors are about 1.7 
~ 1.8  and 2.7 ~ 3 times faster than that with one 
processor, respectively. In the three cases, efficiency 
are not as good as expectation. Generally, 0.85 and 
0.7 are obtained for two and four processors, 
respectively.  

According to the numerical results mentioned 
above, we can make summary of the results. 



Classical model takes lest runtime, but the simulated 
results, such as drain current and electron density 
distribution, are different to quantum models. 
Runtime of DG model is shorter than that of SP 
model. However, the results also have difference, 
especially the electron density distribution. In 
classical case, the accuracy of numerical result does 
not sensitive to the simulated mesh. Nevertheless, 
results of quantum models depend on the quality of 
mesh. To obtain a correct result, a dense mesh, which 
takes lots of runtime, is necessary. Therefore, parallel 
computing is considered as a solution to overcome 
the difficulty. The parallel algorithm employed in 
this study focus on solving a sparse matrix. Parallel 
algorithm speeds up the computation. Waiting time 
for data communication causes the lost of efficiency. 
It is the shortcoming of point parallelization, which 
solves a point paralleled. If a much denser mesh is 
used, the efficiency will become better. If a parallel 
algorithm is designed by line parallization, which 
solves a family curves paralleled with data 
communication, a better efficiency will be obtained. 

 

Fig. 7. (a) Speedup and (b) efficiency of simulating DD model
            by different number of processors and meshes .
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Fig. 8. (a) Speedup and (b) efficiency of simulating DG model
            by different number of processors and meshes .
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Fig. 9. (a) Speedup and (b) efficiency of simulating SP model
            by different number of processors and meshes .
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4   Conclusions 
In this paper, a 90 nm MOSFET is simulated by DD, 
DG and SP models with parallel algorithm under 
three different meshes. According to the numerical 
results, quantum effect should be simulated by a 
dense mesh, which takes lots of runtime. The parallel 
direct method is employed to speed up the simulation. 
Parallel computing accelerates the simulation. The 
efficiency is not as good as expectation because the 
mesh is not dense enough and the algorithm involves 
data communication. To obtain a better result, a 
parallel technique for solving family curves without 
data communication should be employed.  
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