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Abstract: - De-noising of electrocardiogram signal is studied by the application of wavelet-based approaches. A 
new thresholding method for linear and non-linear denosing procedure is offered. The threshold value newly 
defined is assigned by considering the maximum transform coefficient and decomposition level dependably. 
The new thresholding method is applied to a set of biorthogonal, orthogonal wavelets and an optimized 
wavelet-packet decomposition. The quantitative comparison of the method with the existing nonlinear 
denoising method is done in terms of the peak-signal to noise ratio and visual inspection of electrocardiogram 
signal. The error is measured in the high frequency region QRS complex of the electrocardiogram signal. It is 
observed that the soft thresholding approach is effective then hard one with the defined threshold. 
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1 Introduction 
The wavelet transform [1] is a time-scale 
representation that has successfully found a broad 
range of applications, particularly in biomedical 
signal processing. Recently, wavelets have been 
applied  to  several problems in electrocardiology as 
data compression [2], detection of electro-
cardiogram (ECG) signal characteristic points [3]. 
Wavelet transform has been used in removing noise 
from the signals. The bandpass filter structure of the 
wavelet [4] decomposition defines the 
multiresolution analysis and the subbands of the 
signal which gives the high frequency components 
at different levels and low frequency components at 
the last level of the decomposition. The ECG signal 
having well localized QRS high frequency complex 
and P and T waves low frequency parts. This is the 
reason why multiresolution analysis is suitable in 
the ECG signal decomposition. The wavelet-packets  
[5] are a generalization of the wavelet transform that 
allow for arbitrary tree-shaped bandpass filtering. 
Wavelet packet decomposition can be optimized by 
considering the characteristics of the signal to be 
analyzed. De-noising methods of ECG signal 
involving thresholding selection rule is studied for 
the stimulated and real signals [6-7]. Recently, 
Tikkanen [8] studied to de-noise the ECG signal by 
applying the orthogonal wavelets as Coiflets 
wavelet and optimized wavelet packet for soft and 
hard thresholding method. It was concluded that 
wavelet de-noising approach were more efficient 
than wavelet packet de-noising and performance of 
the de-noising in the high frequency part of ECG 
signal is generally better for soft thresholding than 

hard thresholding. However, the application of 
wavelet and wavelet-packet based approaches has 
not yet been largely studied.  

In this paper, two main parts are 
emphatically studied. Firstly, the thresholding to 
characterize the signal being analyzed is expressed 
dependably to the signal properties as wavelet 
coefficients in the transformed domain not to the 
number of samples identifying the signal as in the 
previous works. Secondly, using the new 
thresholding approach, a different class of wavelets 
as biorthogonal wavelets and wavelet packets is 
largely studied in order to de-noise ECG signal 
simulated by Gaussian and uniformly distributed 
white noise. The paper is organized as follows: In 
section 2, A short description of wavelet transform 
and wavelet packet decomposition. In section 3, it is 
described the new thresholding and de-noising 
scheme.In the following section, summary of the 
experimental results and major findings, and finally, 
quantitative comparison of the results and 
conclusions is given. 
 
 
2 Wavelet Transform 
A wavelet is a “small wave” having the oscillating 
wavelike characteristic and the ability to allow 
simultaneous time and frequency analysis by the 
way of a time-frequency localization of the signal. 
Wavelet systems [9] are generated by dilating and 
translating a single prototype basic wavelet ψ(t) 
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where the scaling factor a and translation factor b 
are real (a≠0). The basic wavelet is stretched by a 
large value of a to analyze the low frequency 
components of the signal. A small value of a gives a 
contracted version of the basic wavelet and thus 
allows the analysis of high-frequency components. 
The mother wavelet ψ must satisfy ∫ ψ(x) dx=0, 
(i.e.The condition on ψ should be Cψ = ∫ |ω| -1 |Ψ|2 
dω < ∞, where Ψ is the Fourier transform of ψ ;  if 
ψ ( t)  decays faster  than  | t | -1 for t → ∞ , then this 
condition is equivalent to the one above). The 
continuous wavelet transform of f(t) with respect to 
the wavelet ψ(t) is then  
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The wavelet transform coefficients are given as 
inner products of the function being transformed 
with each of the basis functions. 

The inverse continuous wavelet transform is 
defined [10] as 
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The second type of wavelet transform is 
defined as the wavelet series expansion. Again, a 
basic wavelet is scaled by binary scaling and 
translated by a dyadic translations to form a set of 
basis functions. For the wavelet expansion, a two-
parameter system which is defined for a signal f(t) 
becomes 
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where the ψ  formed from the mother wavelet 

ψ(t) are the wavelet expansion functions that usually 
form an orthogonal basis of L
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where both j and k are integer indices, and j 
determines the dilation while k specifies the 
translation. The two-dimensional set of coefficients 

 is called the discrete wavelet transform (DWT) 
of f(t) used in multiresolution analysis constituting 
an orthonormal (biorthogonal) basis for L

kja ,

kja ,

2(R) 
[Db92] . A more specific form indicating how the 

’s are calculated by writing inner products as  
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are integers, δ  is the Kronecker delta function, 
and <. , .> indicates inner product.)
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 [9-10]. In DWT, 
f(t) signal decomposition on different scales can be 
expanded as 
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where  are discrete analysis wavelet and (k,jψ

)t(k,Kφ  are discrete scaling functions, d j (k) are the 
detailed signal which are wavelet coefficients at 
scale 2 j , and  a K (k) is the approximated signal 
which are scaling coefficients at scale 2 K .  
 The discrete wavelet transform can be 
implemented by the scaling and wavelet filters 
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being quadrature mirror filters (QMF) [1]. 
Computation by the convolution of the approximate 
signal at level (j-1) with the coefficients h(k) ( g(k) ) 
gives the estimation of the approximate (detailed) 
signal at level j. 
 Wavelet packet analysis is a generalization 
of wavelet analysis offering a richer decomposition 
procedure. A set of detailed and approximations 
components of the signal is called wavelet packet 
decomposition tree. Discrete wavelet decomposition 
allows searching an optimal decomposition among 
L trees with the signal length N=2L where the signal 
has been decomposed at L levels. Wavelet packet 
analysis involves the selection of an optimal 
decomposition tree mostly from the 2L different 
subtrees of depth L which is optimized by the 
minimization of the entropy of the signal to be 
analyzed. A wavelet packet can be considered as a 
waveform whose oscillations persists for many 
cycles but is still finite. In order to apply wavelet 
packet analysis let us define the scaling function 
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The analysis functions [1,8] called wavelet packet 
atoms are given in an orthogonal case as 
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where j and n are the scale and time-localization 
parameters respectively, and parameter m gives the 
roughly the number of ‘cycles’ included in the 
oscillating waveform. The function Wj, m, n (t) 
analyzes the signal around the position 2 j.n at the 
scale 2 j with fixed value of j and the analyzed 
frequencies are roughly given by n/2N with n=0, 1, 
…, (2j-1). 
 
 
3 The New Thresholding and Denoising  
    Scheme 
The wavelet transform decorrelates a signal and 
concentrates its information into a relatively small 
number of coefficients with large magnitudes  
containing more energy than the small coefficients. 
This makes possible to compare these coefficients 
with a threshold. The threshold value (th) is defined 
as a function of the largest transform coefficient ci 
and the depth of the decomposition level L as 
follows: 
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It is seen that the signal is whether high frequency 
or low frequency concentrated. Also it is modified 
that the threshold level is newly defined for each 
decomposition level concerned with the heavy 
noised signals. In literature [11], the threshold is 
expressed as a function of the signal length for hard 
or soft thresholding.  
 In denoising algorithm, the signal is 
decomposed into the detail components by using 
wavelet and wavelet packet, then identifying the 
noise components and reconstructing the signal 
without those components using the inverse wavelet 
transform. In the procedure, mainly two 
assumptions arise, the former says that the noise 
components can be found within the finest scales 
and the coarsest scale becomes noise-free. In this 
case, only the coarse scale transform coefficients are 
considered and used to reconstruct the signal to treat 
as a linear denoising approach. The latter one 
assumes that the noise component appears in all 
wavelet coefficients and in each scale and using the 
nonlinear threshold approach that discards the 
coefficients exceeding the defined threshold [6]. 
 The quantitative comparison of the results is 
done by the computation of the signal-to-noise ratio 
(SNR) defined in equation (14) where the f(i) and   
fd(i) denotes  the  noisy and  denoised  ECG  signals,  
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respectively. Performance evaluation is not only 
measured as SNR but also visual performance is 
observed. 
 
 
4 Experimental Results 
In this study, the different number of noise-free ECG 
signals are used as a 512 Hz sampling frequency with 
the resolution of 12 bits. They are simulated by 
adding uniformly distributed white noise with the 
SNR=–1.1165 dB for the noise free to the noise 
signal ratio. The noisy ECG signal is studied for 3 
period QRS complex seen in Figure 1. Considering 
biorthogonal and compactly supported wavelet 
families (bior1.3, bior2.6, bior3.5, bior5.5, bior3.7) 
for the 3-level and 5-level decompositions with 
discrete wavelet transform, the performances are 
very close to each other and they generally give 
better results for soft thresholding than hard 
thresholding denoising rule. Additionally, as a 
orthogonal wavelet  Daubachies Db1, Db3, Db3, 
Db8 is studied. Wavelet packet analysis is still 
applied for the same set of wavelet family. A sample 
ECG signal is shown in Figure 1 part (a). A 
uniformly distributed white noise added ECG signal 
is depicted in part (b) of Figure 1. It is seen that 5-
level decomposition gives better denoising for soft 
thresholding than hard one for th defined in equation 
(13) and shown for wavelets in Figure 1 (c) and (d) 
parts, and wavelet packet analysis in Figure 1 parts 
(e) and (f), respectively. The visual inspection of the 
denoised signal for the bior2.6 and bior5.5 is better 
than the rest of the biorthogonal set of wavelets and 
wavelet packet analysis which are seen in Figure 1 
parts (g) and (h). The computed signal-to-noise ratios 
are approximately 10.5 dB for the used biorthogonal 
wavelets family.  
 
 
5 Conclusions 
In this work, compactly supported biorthogonal 
wavelets and wavelet packet-based noise removal is 
studied for new thresholding using the uniform white 
noise simulated ECG signal. Basically, wavelets and 
wavelet packet analysis show different results, 
however, generally the soft thresholding for the 
newly defined threshold gives better results than 
threshold defined in the literature. When the high 
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Figure 1 The performance of the noise reductiun method for unfiromly distributed noise: (a) noise free ECG 
signal, (b) Corrupted ECG signal with uniformly distributed noise, (c) Denoised ECG signal with hard 
thresholding and bior2.6 filter, (d) Denoised ECG signal with soft thresholding and bior2.6 filter (e) Denoised 
ECG signal with hard thresholding , wavelet packet and bior2.6 filter (f) Denoised ECG signal with soft 
thresholding , wavelet packet and bior2.6 filter (g) Denoised ECG signal with hard thresholding and bior5.5 
filter (h) Denoised ECG signal with hard thresholding , wavelet packet and bior5.5 filter. 

  



frequency part QRS complex of ECG signal is 
considered, the measured quantitative error is 
decreased by the soft thresholding and it has also 
good visual quality. In general aspect, this newly 
defined  threshold gives better approach for  the soft  
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