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Abstract 
 We present in this paper a methodology for the 
industrial Automation Engineer to help him design, build 
and run computer-based systems containing, physical 
and software parts. This methodology enables him to 
define a system through its requirements and its 
specifications, and it allows him to validate and then to 
run it (for instance on a PLC, a Programmable Logical 
Controller). This methodology is based on the description 
of the computer based systems in terms of  hierarchical 
temporal-components, which are described as 
synchronous subsystems validated through the use of 
temporal logic. The concept of temporal-component is an 
extension of the concept of objects, it is made of four 
parts : (i) a declarative part giving the links with other 
components, the signals and the variables, (ii) a set of 
local operations (hard/soft), (iii) a requirements part 
(named ‘Goals') and (iv) a working specification part 
(named 'Behavior’ or ‘Controller’), these two last parts 
are written using an "engineering dialect" of  the 
Temporal logic. The validation process consists in 
proving that the Behavior specification of the whole 
embedded-system satisfies its main goal using all the 
subcomponents' Goals (for this, one can use an 
automatic prover such as the Stanford's STEP prover). 
These Temporal logic requirements and specifications 
can easily be translated in Ladder Diagrams and run on 
a PLC (Programmable Logical Controller) using for 
instance the international standard IEC 1131-3. Our 
"engineering dialect" of the Temporal logic is built so 
that the translation rules from the TCOM notation to 
provable Temporal Logic and also to executable Ladder 
Diagrams (PLC) are simple. A bottle filler system 
example is presented.  
Keywords : Components methodology, Temporal Logic, 
CBS, Automation, PLC. 

Introduction 
In the process of building a computer-based 

systems, the ultimate goal of the engineer should be the 
satisfaction of the client’s demands and expectations. 

All engineering methods include at some level 
the expression of what the client expects from the system. 
At some point in the process, there must be a formal 
description of what is expected from the product (i.e. the 
specification), and also a validation step, meaning an 
argumentation that what the system does is conform to 
the specifications. 

One of the main difficulties is how to go from an 
informal specification (usually described in a natural 
language) to a formal specification. Only from this 
formal specification a validation diagnosis can be 
deduced. 

For embedded systems this problem is 
particularly important, but also particularly hard, since 
real time constraints, distribution and safety are crucial 
issues. In these cases, temporal logic has shown to be a 
powerful tool for specification and for validation [1]. 
However, temporal logic specifications are hard to make, 
they have been used for large systems (such as avionics, 
train design etc.) and could be used even more by the 
industrial automation engineers. 
 The aim of this paper is three-folds : 

� First, we want to introduce a notation that is 
relatively "clear and natural" for the automation 
engineer to express the expected properties 
(requirements and specification) of the system he 
wants to design.  

� Second, this notation must be close enough to 
classical notations of temporal logic [1][6]  (such as 
PTL[1][2], TLA [3], Metatem [4]) so that it can be 
used relatively easily by temporal logic provers such 
as Stanford's STEP [5]. 



 
 

� Third, we want that this use of Temporal Logic can 
be integrated in today's development methods based 
on the notions of objects, components, and reuse[7]. 

 
I  The TCOM approach 

A computer-based system can be viewed as a 
large active component composed of various other 
components described in a hierarchical form. 
Each component is made of  

� other active sub-components,  
� a logical controller  
� physical or software passive parts. 
The active part of a component is its logical controller 

which reacts to conditions coming from internal or 
external components or physical/software parts, and 
orders the elementary actions of its sub-components or 
physical/software parts. 

Each component must satisfy a functionality which 
has to be specified, and validated with respect to its 
specification. 
 
I.1 Development process 

In order to build a new component, an engineer can 
use a set of validated existing components and  
physical/software parts. He will write a control software 
to control these components. Associated to the controller, 
there is a set of temporal  formulas which express the 
behavior of the controller.  This new component has itself 
a goal defined also with temporal  formulas. It is possible 
to use  
� either a bottom up approach: from the sub-

components, the new component’s behavior- 
controller is  conceived to obtain the new goal,  

� or a top down approach : from the goal of the new 
component to build, existing components are chosen, 
and the new controller is designed. 

In either case, the validation will consist in showing  
(B) and (SCG) implies (G) 

where B is the formula expressing the behavior of the 
controller, G is the formula expressing the desired 
property (Goals) of the new component, SCG is the 
conjunction of all the Goals of its sub-components. 

If we want such a proof to be carried out, goals and 
behaviors must be expressed in the same logical notation 
(here it will be in Temporal Logic). 

The conditions can be based on internal boolean flags 
or external valued fugitive signals exchanged between 
components, or exchanged between some components 
and the outside world. Actions are started, and possibly 
stopped by the logical controller through the use of 

fugitive signals or permanent flags, they can also induce 
the emission of other signals or the setting of other flags. 

We consider systems (such as industrial PLCs) where 
the fugitive signals and the persistent flags are taken into 
account in a periodic way using clock cycles, and at each 
cycle the elementary actions of the logical controller are 
completed before a new clock cycle arrives. This allows 
us to follow the synchronous model [8], and has the 
consequence that a fugitive typed signal, emitted during a 
cycle of the system’s clock, is present and detected only 
during the same cycle. In addition we have also typed 
variables and boolean flags whose values are persistent 
during several clock cycles until they are changed or 
reset. 

 
I.2 Components specification : 

When using this method, the engineer will first 
specify each embedded component (software and/or 
hardware) using four types of specification : 
a) Signals, variables and sub-components declarations 

(D). In these declarations, the interface of the 
component with other components is also given. 

b) Description of the actions to perform in the 
component (hardware or software) they can be 
described by function activated by the behavior 
Controller when some conditions are fulfilled. 

c) The goal of the component (G) meaning the temporal 
properties that the component must satisfy, 

d) The component behavior (B), which describes the 
ordering of the operations, this describes the logical 
controller properties. 

The TCOM specification can also serve for simulation 
and prototyping , in addition to the validation. 
Therefore this method can be used : 

� by the client to express his requirements,  
� by the application engineer to specify the system,  
� and also by the certification engineer to validate 

the system. 
Let us describe intuitively our paradigm and the syntax 
we are led to use. 
 
Each component is described in the following manner : 
COMPONENT     X 
{ DECLARATIONS : ... 
   OPERATIONS : 
   GOALS : ... 
   BEHAVIOR : ... 
} 
 



 
 

Let us describe each paragraph of the component 
specification 
Declarations (D) 
Each Component contains a set of variables (they can be 
simple boolean flags or typed values). The exchange 
between components, or between components and the 
outside world, may be done through a set of valued 
fugitive signals or persistent variables. 
The Declarations are described using sentences of the 
form : 
DECLARATIONS: 

 IN   list of typed fugitive signals or persistent 
variables which can be received from other components 

OUT   list of typed fugitive signals or persistent 
variables which can be sent to other components 
     LOCAL  list of internally used typed fugitive 
signals and persistent variables 
     INCLUDES  list of sub-components 
 
Operations (O) : 
To each Operation is associated a flag (true or false) 
indicating that the operation has to be performed or not. 
The Behavior controller orders the Operations by setting 
or resetting these flags, the operations can be done 
through hardware, physical parts or software (function 
calls). 
The Operations are declared using sentences of the 
form: 
OPERATIONS : list of the operation-flags and their 
corresponding software/hardware/physical functions. 
 
Goals(G) 
The goals express the logical properties that the 
component has to fulfill. 
The goals are described using sentences of the form :  
GOAL :  When (Condition) Then (Property) ;  
this corresponds in PTL notation to   
"Condition ==> Property  "  
(Condition true implies that Property is also  true) 
 
Behavior (B) 
The Behavior expresses the logical work of the 
component controller . 
The behavioral propositions are described using 
sentences of the form :  
BEHAVIOR :  When (Condition) Then (Reaction);  
this corresponds in PTL notation to   
"Condition ==> Action"  
(Condition true implies that Action becomes true) 

 
For the conditions, the properties and the actions, we 
adopted a dialect of Temporal logic which is sufficiently 
close to the automation engineer vernacular language: 
For instance <> is replaced by “later”, [] is replaced by 
“always”, () is replaced by “next”, (-) is replaced by 
“before”,  “A Until C” means that action A is performed 
until the first clock-cycle when C  becomes true (which is 
the usual interpretation of the English  word “Until”), etc. 
 
I.3 Composition of components 
The declaration part of a component specifies internal 
names of signals that are exchanged between the 
component and other components (the "outside world" 
being also considered as a component). One simplified 
architecture could be that all the signals and variables of 
the system, are global and known by all the components.    
In an encapsulated architecture, each component would 
have private local signals and variables that it can 
exchange with other components. Input signals of a 
component should be identified with output signals of 
other components. For the purpose of reusability and 
maintainability, we should need to describe the 
correspondence of the different signals emitted and 
received by the different components. This could be done 
using an approach similar to the ROOM (Real-Time OO 
model [11] is is based on capsules communicating with 
other capsules through ports. The ports communicate 
with each other using signal-based connectors. These 
capsules and ports are modeled as UML classes 
augmented by stereotypes to denote input and outputs 
methods.  It can also be done using ideas of configuration 
languages [9][10][11]which describes the links between 
components, so that in case of an architectural change, it 
is only necessary to change this link description. So, with 
this option the links between the components are 
described in a loose manner allowing to change them 
easily without changing the internal components 
specifications. 
 
II Semantic of the TCOM notation  
TCOM is based on the Temporal Logic as defined in [1-
3], so TCOM describes the evolution of the system using 
the reactive model to describe the controller behavior. 
In this paper, for brevity's sake, we present the version of 
TCOM based on classical Propositional Temporal Logic 
[1] [2].  Formulas are constructed from 

a) A set of propositional variables, 
b)  boolean connectors, 



 
 

c) Temporal operators. 
The temporal operators are designated with clear names 
so that an engineer can express easily different behaviors. 
They can be translated directly into PTL. 

 
II.1 Propositional variables are typed according to their 
semantics: 
a) Presence of a fugitive signal 

If I is a fugitive signal, Pres_I is the 
propositional variable which has the value True 
when I is present at the logical instant in the 
synchronous model, meaning it is detected only 
during the present cycle of the synchronous 
clock 

b) Emission of a fugitive signal 
If O is a fugitive signal, Em_O is the proposition 
which has the value True when O is emitted by 
the component's controller, during a cycle of the 
synchronous clock. This emission implies that 
this signal is present, and can be detected in a 
condition only during the same cycle of the 
synchronous clock . This is compatible with the 
synchronous model [8] according to the axiom :
 []Em_S → Pres_S 

c)       Permanent variables : are typed variables which    
              have values which remain during several cycles. 
              Boolean permanent variables are called Flags. 
d) Setting of Flags 

If F is a flag , the propositional variable Set_F 
has the value True when the flag is set to the 
value True. 
If F is a flag, the propositional variable Reset_F 
has the value True when the flag is set to the 
value False 

e) Value of Flags 
For each flag F, the propositional variable Val_F 
has the value True ( or False) when the flag has 
the value True ( or False) 
There is an implicit axioms :   
When Set_F then Val_F Until Reset_F 
When Reset_F then not Val_F Until Set_F 

 This expresses the fact that the Flag retains its  
value until it is changed by Set or Reset. 

f) Properties 
 A property P is associated with the propositional  

variable p, p has the value True when the 
 property is satisfied. Formulas will define when 
a property P is true, i.e;. when p has value True 

 

II.2 Conditions 
An elementary condition is a formula of the type 
Pres_S  or  Val_F 
An elementary condition is a condition, 
a boolean combination of conditions is a condition. 
A condition can be a boolean combination of presence of 
signals, or conditions on the values of variables and 
signals, or a temporal logic formula, which does not 
involve future temporal operators. 
 
II.3 Actions 
When some action-signals or flags are turned on, it will 
perform corresponding Operations (on hardware or on 
physical parts or software function calls) 
An elementary action is a formula of the type 
Em_S  or  Set_F or  Reset_F 
An elementary action is an action,  
A boolean combination of actions is an action, 
 
NOTE : To simplify the engineer’s notation, in our 
Temporal dialect, instead of writing explicitly Val_F or 
Set_F etc., when the context has no unimbiguity, we shall 
simply write 'F' in the Conditions to indicate Val_F, or 
'F' for Actions to indicate Set_F, and '!F' for Reset_F. We 
shall use analogous conventions for signals (to avoid 
writing each time Em_S , Pres_S  etc.). 
 
II.4 Behavior Controller  
The reactions of the controller is described by a set of 
sentences of the form : 

When (Condition) Then (Reaction) 
At each cycle of the synchronous clock, the controller is 
activated, all conditions are evaluated, and for each true 
condition the corresponding reaction is done, right away. 

This correspond to the notion of guard. 
A reaction can be simple of combined. For example, a 
simple reaction can consist in the emission of a signal,  
A combined reaction can be of the form  

� A reaction and another reaction 
� A reaction and a reaction starting at next instant 
� a reaction is performed done until a condition is 

fulfilled 
 
We do not introduce conditional reaction or looped 
reaction. We want to stick to what can be described 
simply by a PLC (programmable Logical controller). 
 
II. 5 Goals 
Goals  will be expressed as temporal formulas, of the 
form When (Condition  and Properties) then (Properties)  



 
 

The Properties can contain both past and future temporal 
operators. 
 
III  Example : the bottle filler system 
The following example is a simplification of the 
Production Cell (see Fig. 1).  
 
 
 
 
 
 
 
 
 

Figure 1 : the Bottle filling system 
 
III.1 Informal Specification 
It is composed of a conveyor belt, with a start-location, 
an end-location, and two special locations (under a 
Filling station and under a Sealing station) where the 
bottle must arrive, in order to be filled and sealed.  
The bottles enter through the start-location on the belt, 
the goal is that when the bottles reach the end-location , 
they are filled and sealed. 
The belt moves the bottles to each station. When a bottle 
reaches the “Fill_station” it is filled, and when it reaches 
“Seal_station” it is sealed.  

Each time the belt is given an order "doMove" it 
moves to the next station and stops automatically. When 
a bottle arrives to a station, a sensor detects it and emits a 
signal corresponding to the Station: “S_BatF” when the 
bottle arrives at the Filling station and “S_BatS” at the 
Sealing station. When a bottle is put on the first slot of 
the belt, a signal "S_EnterB " is emitted. When a bottle 
passes to the last step of the belt, a signal " S_ ExitB " is 
emitted. 
 
III.2  Methodological issues : 
1) Our approach relies heavily on the classical notion of 
reuse. For example, to build a main component named 
“Bottle_filling_system”, we shall reuse existing 
components such as a machine that fills a bottle (the 
“Fill_station”). One of the properties of the “Fill_station” 
will be that when it receives a 'S_Fill' signal from the 
“Bottle_filling_system” controller, it will fill the bottle 
and will send back a 'S_Full” Signal to it, with the 
semantic that the bottle have been filled ( the property : 
'P_BottleFilled' is satisfied, and when a bottle is filled, it 
stays filled) , and this does not have to be proven again 

(the action has not to be redefined, it is internal to the 
existing “Fill_station” component ).  
2) In our approach, the engineer does not describe the 
execution program, but the specification of the program, 
a compiler will translate directly this specification in an 
executable code. 
 
III.3 Writing the components 
Here are the text of the components specifications : 
COMPONENT   Fill_station 
{ DECLARATIONS : ... 
 IN  S_Fill :boolean signal; 
 OUT   P_Full: flag ; 
                 S_Full: boolean signal; 
   OPERATIONS :   doFilling : FillingFunction( ); 
   GOALS :  when (S_Fill) then ( (later(S_Full)); 

 when (S_Full) then ( always(P_Full)); 
   BEHAVIOR :  
when (S_Fill) then (doFilling Until S_Full); 
when (S_Full) then ( always(P_Full));    } 
 
COMPONENT   Seal_station 
{ DECLARATIONS:  
 IN  S_Seal :boolean signal; OUT  
 P_Sealed: flag ; 

               S_ Sealed: boolean signal; 
OPERATIONS : doSealing : SealingFunction( ); 
 GOALS: when (S_Seal) then( later( S_Sealed) ); 
           when (S_Sealed) then (always P_Sealed);  
BEHAVIOR: . 
when (S_ Seal) then (doSealing Until  S_ Sealed );  
when (S_ Sealed) then( always(P_ Sealed));    } 
The goals of the filling and sealing stations stipulate that 
a signal is emitted at the end of the operation(S_Full , 
S_Sealed), so that other components' controllers can start 
other operations. The goals stipulate also the conditions 
on the working property flags (P_Full , P_Sealed), so that 
they can be tested in other components' goals. 
 
COMPONENT   Belt 
{ DECLARATIONS: ... 
     IN  S_EnterB, S_BleaveF, S_LeaveS, 

 S_Full, S_Sealed :boolean signal; 
    OUT  S_BatF, S_BatS, S_ExitB :boolean signal; 
    LOCAL :oneStep: integer=10; 
OPERATIONS : doMove : MoveFunction(oneStep); 
GOALS: when (S_EnterB) then (later (S_BatF)); 

 when (S_BleaveF) then (later (S_BatS)) 
  when (S_BLeaveS) then (later (S_ExitB)) 

belt 

fill_station      



 
 

 BEHAVIOR:  
 when (S_EnterB) then (doMove Until S_BatF ); 
when (S_ BleaveF) then (doMove Until S_ BatS); 
when (S_ BleaveS) then (doMove Until S_ ExitB);    } 
The goal of the belt expresses the fact that when a bottle 
enters, later it reaches the filler, when a bottle leaves the 
filler, later it reaches the sealer. 
 
COMPONENT   MainSystem 
{ DECLARATIONS : 

IN   S_BatF, S_BatS, 
       S_EnterB,  S_ExitB , 
       S_Full, S_Sealed :boolean signal; 
OUT     S_BleaveF, S_LeaveS, 
             S_Fill, S_Seal :boolean signal; 

 GOALS: when (S_EnterB) then  
    (later (S_ExitB and P_Full and  P_Sealed) ); 

 BEHAVIOR:  
when( S_BatF) then( S_Fill); 
when( S_Full ) then (S_BleaveF); 
 when( S_BatS ) then (S_Seal); 
 when( S_Sealed) then (S_BLeaveS); 
} 
 
The Main System behavior expresses the fact that when a 
bottle reaches the filler, the signal S_fill is emitted to the 
filler, when the signal S_full that tells the bottle is full 
arrives, the bottles leaves the filler...etc. 
 
IV Translation into PTL and Validation 
The translation is straightforward : 
the key words When, then, later, next, always etc... are 

replaced by the classical PTL notation : ==> , <> , (), [] 

etc... The name of the signals and flags are unchanged. 

The formula given to the Stanford's STEP linear PTL 

validity checker [5], is :  

the conjunction of the goals of the components and of the 
behavior implies the goal of the main-system. Here is the 
formula given to the prover : 
 
SPEC 
variable S_Fill, S_Full, P_Full, S_Seal, 
S_Sealed, P_Sealed, S_EnterB, S_BatF, 
S_BleaveF, S_BatS, S_BleaveS, S_ExitB : 
bool Flexible 
macro Filler_Goal:  bool where Filler_Goal  
=  
((S_Fill ==> <>S_Full)/\(S_Full 
==>[]P_Full) ) 

macro Sealer_Goal:  bool where Sealer_Goal  
=   
(      ( S_Seal    ==> <> S_Sealed ) 
    /\ (S_Sealed  ==> [] P_Sealed )   ) 
macro Belt_Goal:  bool where Belt_Goal  =   
(    (S_EnterB  ==> <>S_BatF ) 
   /\ (S_BleaveF ==> <>S_BatS ) 
   /\ ( S_BleaveS ==> <>S_ExitB )   ) 
macro System_Behavior:  bool  
where System_Behavior  =  
 (     (S_BatF    ==>   S_Fill) 
   /\  (S_Full    ==>   S_BleaveF) 
   /\  (S_BatS    ==>   S_Seal ) 
   /\  (S_Sealed  ==>   S_BleaveS )   ) 
macro System_Goal:  bool  
where System_Goal  =   
( S_EnterB  ==> <>(S_ExitB /\ P_Full /\ 
P_Sealed) ) 
PROPERTY: 
(     Filler_Goal /\ Sealer_Goal /\ 
Belt_Goal      
   /\ System_Behavior) ==> System_Goal 
 
********* 
the Stanford's STEP linear PTL validity checker [5] 
answer was : 
 
Checking  
Filler_Goal /\ Sealer_Goal /\ Belt_Goal /\ 
System_Behavior ==> System_Goal 
Building transition relation...done 
PTL Valid 
 
Note: This validation process is made possible only by 
the fact that the components form a synchronous system, 
i.e. that all the properties of the various components are  
tested simultaneously at each cycle of the clock. 
 
V   PLC Execution 
Here we use the Simlev PLC editor and executer [13] 
which allows to simulate Allen-Bradley, Texas-
Instruments and IEC1131-3  PLCs : (see Fig. 2) 

   
Figure 2: Simlev PLC Editor and Executer  
 

For TCOM, we could translate strictly each component-
behavior into a separate PLC, this would imply that all 
the PLCs can communicate together (for instance through 



 
 

an interconnecting common Bus which allows to transfer 
all the signals to all the PLCs). To simplify let us 
translate all the components behavior into one PLC. 
 

 
V.1 Components' Ladder Diagrams [13] 
Here is the translation into a PLC Ladder Diagram 

(see Fig. 3) : 

 
Figure 3: sub-components Ladder Diagram 
 
This means that this PLC will scan at each cycle : 
The Fill_station's behavior:  
line 00, if the action-signal S_Fill is ON (produced by the 
System's PLC), and if the current bottle is not yet full 
(signal S_Full  OFF), it will perform the local Operation 
doFilling. When the signal S_Full becomes ON, this will 
disable the line 00, and the doFilling will become false. 
line 01, When the signal S_Full becomes ON, it will set 
the persistent flag P_Full to True, so that the Bottle 
System's PLC can test it and order the further Operations. 
 
The Seal_station's behavior is described in the same 
way in the lines 02-03. 

 
The Belt's behavior : 
In the lines 04-06 we can see that this PLC will scan each 
line at each cycle and will perform the output-action 
doMove. For instance, for the line 04, doMove will be 

performed when the signal S_EnterB is ON (produced by 
the Physical System) only if the signal S_BatF is OFF. 
When the signal S_BatF becomes ON, this will disable 
the line , and the doMove will become false. The other 
lines work in the same way. 

Here is the translation of the main-System's 
behavior into a PLC Ladder Diagram (see Fig. 4) : 

 
Figure 4: the Main-System Ladder Diafram 

 
Here also the execution is simple : the outputs signals 
S_Fill, S_BleaveF etc. are produced when the input 
signals S_BatF, S_Full etc. appear. 
 
V.2  TCOM to PLC translation Rules: 
Roughly, the main translation rules are : 
1- each when-line of the behavior-controller is translated 
in a Ladder Line. 
2-  each behavior condition  is translated by a set of  
Ladder input flags or signals using the AND/OR syntax 
of the Ladders  ( i.e.  --|S_input1|-----|/F_input2|--). 
3- each behavior reaction is translated by a set of Ladder 
outputs flags or signals  (i.e. ---(S_output3)---). 
4- for each behavior-controller line, which contains an 
"until signal/flag" constraint for the reaction, we need to 
test that this "signal/flag" if OFF in the inputs of the 
Ladder-line. 
5- if there is time constraints in the behavior-controller 
conditions, we have to introduce Timer-boxes in the 
inputs of the corresponding Ladder lines. 
 
Conclusion 
 

The field of Computer Based Systems is growing and 
needs to describe the integration of some parts in 
hardware and others in software. The component-oriented 
approach facilitates the description of these systems in 
several parts; furthermore hardware parts as well as 



 
 

software parts can be modeled by objects in the same 
manner. 

Building a system hierarchically using components 
enables to build it by refinements. By defining gradually 
each component it permits the requirements, 
specification, and validation of each part, and then the 
whole system as a super-component. This approach can 
be helpfull not only for specific Real-Time systems, but 
also for general distributed applications, since nowadays 
almost every modern application contains 
synchronization and temporal constraints, and there will 
be no need for two  distinct methodologies  to develop 
real time and non real time parts. 

Our present proposal of an "engineering dialect" of the 
temporal logic has the advantage, on one hand, to be easy 
to understand by the industrial automation engineer, and 
on the other hand, to be easy to translate in a PTL format 
used by automatic provers such as the Stanford SteP, for 
validation. 

Our proposal allows also to execute these specification 
(after validation), for instance using a simple translation 
in PLC Ladder Diagrams. 

This proposal of Temporal Components can be viewed 
as an extension of the UML active object model or the 
Java Thread objects. Like these models it is hierarchical, 
it contains local variables (attributes) and Operations 
(methods). But, in addition, it contains a Description of 
on-line signals interface with other components, a Goal 
description giving the Temporal properties that the 
component has to fulfill,  and a Behaviour Controller 
which reacts to the signals and the local conditions and 
performs the corresponding Operations. 
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