

TCOM : a Temporal Component Oriented Methodology
for the industrial Automation Engineer

G.Vidal-Naquet1 and H.G.Mendelbaum2,3

1Ecole Supérieure d'Electricité

rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
2Jerusalem College of Technology - POB 16031 - Jerusalem 91160, Israel

3Univ. Paris V, Institut Universitaire de Technologie, 143-av. de Versailles, Paris 75016, France

Abstract
 We present in this paper a methodology for the
industrial Automation Engineer to help him design, build
and run computer-based systems containing, physical
and software parts. This methodology enables him to
define a system through its requirements and its
specifications, and it allows him to validate and then to
run it (for instance on a PLC, a Programmable Logical
Controller). This methodology is based on the description
of the computer based systems in terms of hierarchical
temporal-components, which are described as
synchronous subsystems validated through the use of
temporal logic. The concept of temporal-component is an
extension of the concept of objects, it is made of four
parts : (i) a declarative part giving the links with other
components, the signals and the variables, (ii) a set of
local operations (hard/soft), (iii) a requirements part
(named ‘Goals') and (iv) a working specification part
(named 'Behavior’ or ‘Controller’), these two last parts
are written using an "engineering dialect" of the
Temporal logic. The validation process consists in
proving that the Behavior specification of the whole
embedded-system satisfies its main goal using all the
subcomponents' Goals (for this, one can use an
automatic prover such as the Stanford's STEP prover).
These Temporal logic requirements and specifications
can easily be translated in Ladder Diagrams and run on
a PLC (Programmable Logical Controller) using for
instance the international standard IEC 1131-3. Our
"engineering dialect" of the Temporal logic is built so
that the translation rules from the TCOM notation to
provable Temporal Logic and also to executable Ladder
Diagrams (PLC) are simple. A bottle filler system
example is presented.
Keywords : Components methodology, Temporal Logic,
CBS, Automation, PLC.

Introduction
In the process of building a computer-based

systems, the ultimate goal of the engineer should be the
satisfaction of the client’s demands and expectations.

All engineering methods include at some level
the expression of what the client expects from the system.
At some point in the process, there must be a formal
description of what is expected from the product (i.e. the
specification), and also a validation step, meaning an
argumentation that what the system does is conform to
the specifications.

One of the main difficulties is how to go from an
informal specification (usually described in a natural
language) to a formal specification. Only from this
formal specification a validation diagnosis can be
deduced.

For embedded systems this problem is
particularly important, but also particularly hard, since
real time constraints, distribution and safety are crucial
issues. In these cases, temporal logic has shown to be a
powerful tool for specification and for validation [1].
However, temporal logic specifications are hard to make,
they have been used for large systems (such as avionics,
train design etc.) and could be used even more by the
industrial automation engineers.
 The aim of this paper is three-folds :

� First, we want to introduce a notation that is
relatively "clear and natural" for the automation
engineer to express the expected properties
(requirements and specification) of the system he
wants to design.

� Second, this notation must be close enough to
classical notations of temporal logic [1][6] (such as
PTL[1][2], TLA [3], Metatem [4]) so that it can be
used relatively easily by temporal logic provers such
as Stanford's STEP [5].

� Third, we want that this use of Temporal Logic can
be integrated in today's development methods based
on the notions of objects, components, and reuse[7].

I The TCOM approach

A computer-based system can be viewed as a
large active component composed of various other
components described in a hierarchical form.
Each component is made of

� other active sub-components,
� a logical controller
� physical or software passive parts.
The active part of a component is its logical controller

which reacts to conditions coming from internal or
external components or physical/software parts, and
orders the elementary actions of its sub-components or
physical/software parts.

Each component must satisfy a functionality which
has to be specified, and validated with respect to its
specification.

I.1 Development process

In order to build a new component, an engineer can
use a set of validated existing components and
physical/software parts. He will write a control software
to control these components. Associated to the controller,
there is a set of temporal formulas which express the
behavior of the controller. This new component has itself
a goal defined also with temporal formulas. It is possible
to use
� either a bottom up approach: from the sub-

components, the new component’s behavior-
controller is conceived to obtain the new goal,

� or a top down approach : from the goal of the new
component to build, existing components are chosen,
and the new controller is designed.

In either case, the validation will consist in showing
(B) and (SCG) implies (G)

where B is the formula expressing the behavior of the
controller, G is the formula expressing the desired
property (Goals) of the new component, SCG is the
conjunction of all the Goals of its sub-components.

If we want such a proof to be carried out, goals and
behaviors must be expressed in the same logical notation
(here it will be in Temporal Logic).

The conditions can be based on internal boolean flags
or external valued fugitive signals exchanged between
components, or exchanged between some components
and the outside world. Actions are started, and possibly
stopped by the logical controller through the use of

fugitive signals or permanent flags, they can also induce
the emission of other signals or the setting of other flags.

We consider systems (such as industrial PLCs) where
the fugitive signals and the persistent flags are taken into
account in a periodic way using clock cycles, and at each
cycle the elementary actions of the logical controller are
completed before a new clock cycle arrives. This allows
us to follow the synchronous model [8], and has the
consequence that a fugitive typed signal, emitted during a
cycle of the system’s clock, is present and detected only
during the same cycle. In addition we have also typed
variables and boolean flags whose values are persistent
during several clock cycles until they are changed or
reset.

I.2 Components specification :

When using this method, the engineer will first
specify each embedded component (software and/or
hardware) using four types of specification :
a) Signals, variables and sub-components declarations

(D). In these declarations, the interface of the
component with other components is also given.

b) Description of the actions to perform in the
component (hardware or software) they can be
described by function activated by the behavior
Controller when some conditions are fulfilled.

c) The goal of the component (G) meaning the temporal
properties that the component must satisfy,

d) The component behavior (B), which describes the
ordering of the operations, this describes the logical
controller properties.

The TCOM specification can also serve for simulation
and prototyping , in addition to the validation.
Therefore this method can be used :

� by the client to express his requirements,
� by the application engineer to specify the system,
� and also by the certification engineer to validate

the system.
Let us describe intuitively our paradigm and the syntax
we are led to use.

Each component is described in the following manner :
COMPONENT X
{ DECLARATIONS : ...
 OPERATIONS :
 GOALS : ...
 BEHAVIOR : ...
}

Let us describe each paragraph of the component
specification
Declarations (D)
Each Component contains a set of variables (they can be
simple boolean flags or typed values). The exchange
between components, or between components and the
outside world, may be done through a set of valued
fugitive signals or persistent variables.
The Declarations are described using sentences of the
form :
DECLARATIONS:

 IN list of typed fugitive signals or persistent
variables which can be received from other components

OUT list of typed fugitive signals or persistent
variables which can be sent to other components
 LOCAL list of internally used typed fugitive
signals and persistent variables
 INCLUDES list of sub-components

Operations (O) :
To each Operation is associated a flag (true or false)
indicating that the operation has to be performed or not.
The Behavior controller orders the Operations by setting
or resetting these flags, the operations can be done
through hardware, physical parts or software (function
calls).
The Operations are declared using sentences of the
form:
OPERATIONS : list of the operation-flags and their
corresponding software/hardware/physical functions.

Goals(G)
The goals express the logical properties that the
component has to fulfill.
The goals are described using sentences of the form :
GOAL : When (Condition) Then (Property) ;
this corresponds in PTL notation to
"Condition ==> Property "
(Condition true implies that Property is also true)

Behavior (B)
The Behavior expresses the logical work of the
component controller .
The behavioral propositions are described using
sentences of the form :
BEHAVIOR : When (Condition) Then (Reaction);
this corresponds in PTL notation to
"Condition ==> Action"
(Condition true implies that Action becomes true)

For the conditions, the properties and the actions, we
adopted a dialect of Temporal logic which is sufficiently
close to the automation engineer vernacular language:
For instance <> is replaced by “later”, [] is replaced by
“always”, () is replaced by “next”, (-) is replaced by
“before”, “A Until C” means that action A is performed
until the first clock-cycle when C becomes true (which is
the usual interpretation of the English word “Until”), etc.

I.3 Composition of components
The declaration part of a component specifies internal
names of signals that are exchanged between the
component and other components (the "outside world"
being also considered as a component). One simplified
architecture could be that all the signals and variables of
the system, are global and known by all the components.
In an encapsulated architecture, each component would
have private local signals and variables that it can
exchange with other components. Input signals of a
component should be identified with output signals of
other components. For the purpose of reusability and
maintainability, we should need to describe the
correspondence of the different signals emitted and
received by the different components. This could be done
using an approach similar to the ROOM (Real-Time OO
model [11] is is based on capsules communicating with
other capsules through ports. The ports communicate
with each other using signal-based connectors. These
capsules and ports are modeled as UML classes
augmented by stereotypes to denote input and outputs
methods. It can also be done using ideas of configuration
languages [9][10][11]which describes the links between
components, so that in case of an architectural change, it
is only necessary to change this link description. So, with
this option the links between the components are
described in a loose manner allowing to change them
easily without changing the internal components
specifications.

II Semantic of the TCOM notation
TCOM is based on the Temporal Logic as defined in [1-
3], so TCOM describes the evolution of the system using
the reactive model to describe the controller behavior.
In this paper, for brevity's sake, we present the version of
TCOM based on classical Propositional Temporal Logic
[1] [2]. Formulas are constructed from

a) A set of propositional variables,
b) boolean connectors,

c) Temporal operators.
The temporal operators are designated with clear names
so that an engineer can express easily different behaviors.
They can be translated directly into PTL.

II.1 Propositional variables are typed according to their
semantics:
a) Presence of a fugitive signal

If I is a fugitive signal, Pres_I is the
propositional variable which has the value True
when I is present at the logical instant in the
synchronous model, meaning it is detected only
during the present cycle of the synchronous
clock

b) Emission of a fugitive signal
If O is a fugitive signal, Em_O is the proposition
which has the value True when O is emitted by
the component's controller, during a cycle of the
synchronous clock. This emission implies that
this signal is present, and can be detected in a
condition only during the same cycle of the
synchronous clock . This is compatible with the
synchronous model [8] according to the axiom :
 []Em_S → Pres_S

c) Permanent variables : are typed variables which
 have values which remain during several cycles.
 Boolean permanent variables are called Flags.
d) Setting of Flags

If F is a flag , the propositional variable Set_F
has the value True when the flag is set to the
value True.
If F is a flag, the propositional variable Reset_F
has the value True when the flag is set to the
value False

e) Value of Flags
For each flag F, the propositional variable Val_F
has the value True (or False) when the flag has
the value True (or False)
There is an implicit axioms :
When Set_F then Val_F Until Reset_F
When Reset_F then not Val_F Until Set_F

 This expresses the fact that the Flag retains its
value until it is changed by Set or Reset.

f) Properties
 A property P is associated with the propositional

variable p, p has the value True when the
 property is satisfied. Formulas will define when
a property P is true, i.e;. when p has value True

II.2 Conditions
An elementary condition is a formula of the type
Pres_S or Val_F
An elementary condition is a condition,
a boolean combination of conditions is a condition.
A condition can be a boolean combination of presence of
signals, or conditions on the values of variables and
signals, or a temporal logic formula, which does not
involve future temporal operators.

II.3 Actions
When some action-signals or flags are turned on, it will
perform corresponding Operations (on hardware or on
physical parts or software function calls)
An elementary action is a formula of the type
Em_S or Set_F or Reset_F
An elementary action is an action,
A boolean combination of actions is an action,

NOTE : To simplify the engineer’s notation, in our
Temporal dialect, instead of writing explicitly Val_F or
Set_F etc., when the context has no unimbiguity, we shall
simply write 'F' in the Conditions to indicate Val_F, or
'F' for Actions to indicate Set_F, and '!F' for Reset_F. We
shall use analogous conventions for signals (to avoid
writing each time Em_S , Pres_S etc.).

II.4 Behavior Controller
The reactions of the controller is described by a set of
sentences of the form :

When (Condition) Then (Reaction)
At each cycle of the synchronous clock, the controller is
activated, all conditions are evaluated, and for each true
condition the corresponding reaction is done, right away.

This correspond to the notion of guard.
A reaction can be simple of combined. For example, a
simple reaction can consist in the emission of a signal,
A combined reaction can be of the form

� A reaction and another reaction
� A reaction and a reaction starting at next instant
� a reaction is performed done until a condition is

fulfilled

We do not introduce conditional reaction or looped
reaction. We want to stick to what can be described
simply by a PLC (programmable Logical controller).

II. 5 Goals
Goals will be expressed as temporal formulas, of the
form When (Condition and Properties) then (Properties)

The Properties can contain both past and future temporal
operators.

III Example : the bottle filler system
The following example is a simplification of the
Production Cell (see Fig. 1).

Figure 1 : the Bottle filling system

III.1 Informal Specification
It is composed of a conveyor belt, with a start-location,
an end-location, and two special locations (under a
Filling station and under a Sealing station) where the
bottle must arrive, in order to be filled and sealed.
The bottles enter through the start-location on the belt,
the goal is that when the bottles reach the end-location ,
they are filled and sealed.
The belt moves the bottles to each station. When a bottle
reaches the “Fill_station” it is filled, and when it reaches
“Seal_station” it is sealed.

Each time the belt is given an order "doMove" it
moves to the next station and stops automatically. When
a bottle arrives to a station, a sensor detects it and emits a
signal corresponding to the Station: “S_BatF” when the
bottle arrives at the Filling station and “S_BatS” at the
Sealing station. When a bottle is put on the first slot of
the belt, a signal "S_EnterB " is emitted. When a bottle
passes to the last step of the belt, a signal " S_ ExitB " is
emitted.

III.2 Methodological issues :
1) Our approach relies heavily on the classical notion of
reuse. For example, to build a main component named
“Bottle_filling_system”, we shall reuse existing
components such as a machine that fills a bottle (the
“Fill_station”). One of the properties of the “Fill_station”
will be that when it receives a 'S_Fill' signal from the
“Bottle_filling_system” controller, it will fill the bottle
and will send back a 'S_Full” Signal to it, with the
semantic that the bottle have been filled (the property :
'P_BottleFilled' is satisfied, and when a bottle is filled, it
stays filled) , and this does not have to be proven again

(the action has not to be redefined, it is internal to the
existing “Fill_station” component).
2) In our approach, the engineer does not describe the
execution program, but the specification of the program,
a compiler will translate directly this specification in an
executable code.

III.3 Writing the components
Here are the text of the components specifications :
COMPONENT Fill_station
{ DECLARATIONS : ...
 IN S_Fill :boolean signal;
 OUT P_Full: flag ;
 S_Full: boolean signal;
 OPERATIONS : doFilling : FillingFunction();
 GOALS : when (S_Fill) then ((later(S_Full));

 when (S_Full) then (always(P_Full));
 BEHAVIOR :
when (S_Fill) then (doFilling Until S_Full);
when (S_Full) then (always(P_Full)); }

COMPONENT Seal_station
{ DECLARATIONS:
 IN S_Seal :boolean signal; OUT
 P_Sealed: flag ;

 S_ Sealed: boolean signal;
OPERATIONS : doSealing : SealingFunction();
 GOALS: when (S_Seal) then(later(S_Sealed));
 when (S_Sealed) then (always P_Sealed);
BEHAVIOR: .
when (S_ Seal) then (doSealing Until S_ Sealed);
when (S_ Sealed) then(always(P_ Sealed)); }
The goals of the filling and sealing stations stipulate that
a signal is emitted at the end of the operation(S_Full ,
S_Sealed), so that other components' controllers can start
other operations. The goals stipulate also the conditions
on the working property flags (P_Full , P_Sealed), so that
they can be tested in other components' goals.

COMPONENT Belt
{ DECLARATIONS: ...
 IN S_EnterB, S_BleaveF, S_LeaveS,

 S_Full, S_Sealed :boolean signal;
 OUT S_BatF, S_BatS, S_ExitB :boolean signal;
 LOCAL :oneStep: integer=10;
OPERATIONS : doMove : MoveFunction(oneStep);
GOALS: when (S_EnterB) then (later (S_BatF));

 when (S_BleaveF) then (later (S_BatS))
 when (S_BLeaveS) then (later (S_ExitB))

belt

fill_station

 BEHAVIOR:
 when (S_EnterB) then (doMove Until S_BatF);
when (S_ BleaveF) then (doMove Until S_ BatS);
when (S_ BleaveS) then (doMove Until S_ ExitB); }
The goal of the belt expresses the fact that when a bottle
enters, later it reaches the filler, when a bottle leaves the
filler, later it reaches the sealer.

COMPONENT MainSystem
{ DECLARATIONS :

IN S_BatF, S_BatS,
 S_EnterB, S_ExitB ,
 S_Full, S_Sealed :boolean signal;
OUT S_BleaveF, S_LeaveS,
 S_Fill, S_Seal :boolean signal;

 GOALS: when (S_EnterB) then
 (later (S_ExitB and P_Full and P_Sealed));

 BEHAVIOR:
when(S_BatF) then(S_Fill);
when(S_Full) then (S_BleaveF);
 when(S_BatS) then (S_Seal);
 when(S_Sealed) then (S_BLeaveS);
}

The Main System behavior expresses the fact that when a
bottle reaches the filler, the signal S_fill is emitted to the
filler, when the signal S_full that tells the bottle is full
arrives, the bottles leaves the filler...etc.

IV Translation into PTL and Validation
The translation is straightforward :
the key words When, then, later, next, always etc... are

replaced by the classical PTL notation : ==> , <> , (), []

etc... The name of the signals and flags are unchanged.

The formula given to the Stanford's STEP linear PTL

validity checker [5], is :

the conjunction of the goals of the components and of the
behavior implies the goal of the main-system. Here is the
formula given to the prover :

SPEC
variable S_Fill, S_Full, P_Full, S_Seal,
S_Sealed, P_Sealed, S_EnterB, S_BatF,
S_BleaveF, S_BatS, S_BleaveS, S_ExitB :
bool Flexible
macro Filler_Goal: bool where Filler_Goal
=
((S_Fill ==> <>S_Full)/\(S_Full
==>[]P_Full))

macro Sealer_Goal: bool where Sealer_Goal
=
((S_Seal ==> <> S_Sealed)
 /\ (S_Sealed ==> [] P_Sealed))
macro Belt_Goal: bool where Belt_Goal =
((S_EnterB ==> <>S_BatF)
 /\ (S_BleaveF ==> <>S_BatS)
 /\ (S_BleaveS ==> <>S_ExitB))
macro System_Behavior: bool
where System_Behavior =
 ((S_BatF ==> S_Fill)
 /\ (S_Full ==> S_BleaveF)
 /\ (S_BatS ==> S_Seal)
 /\ (S_Sealed ==> S_BleaveS))
macro System_Goal: bool
where System_Goal =
(S_EnterB ==> <>(S_ExitB /\ P_Full /\
P_Sealed))
PROPERTY:
(Filler_Goal /\ Sealer_Goal /\
Belt_Goal
 /\ System_Behavior) ==> System_Goal

the Stanford's STEP linear PTL validity checker [5]
answer was :

Checking
Filler_Goal /\ Sealer_Goal /\ Belt_Goal /\
System_Behavior ==> System_Goal
Building transition relation...done
PTL Valid

Note: This validation process is made possible only by
the fact that the components form a synchronous system,
i.e. that all the properties of the various components are
tested simultaneously at each cycle of the clock.

V PLC Execution
Here we use the Simlev PLC editor and executer [13]
which allows to simulate Allen-Bradley, Texas-
Instruments and IEC1131-3 PLCs : (see Fig. 2)

Figure 2: Simlev PLC Editor and Executer

For TCOM, we could translate strictly each component-
behavior into a separate PLC, this would imply that all
the PLCs can communicate together (for instance through

an interconnecting common Bus which allows to transfer
all the signals to all the PLCs). To simplify let us
translate all the components behavior into one PLC.

V.1 Components' Ladder Diagrams [13]
Here is the translation into a PLC Ladder Diagram

(see Fig. 3) :

Figure 3: sub-components Ladder Diagram

This means that this PLC will scan at each cycle :
The Fill_station's behavior:
line 00, if the action-signal S_Fill is ON (produced by the
System's PLC), and if the current bottle is not yet full
(signal S_Full OFF), it will perform the local Operation
doFilling. When the signal S_Full becomes ON, this will
disable the line 00, and the doFilling will become false.
line 01, When the signal S_Full becomes ON, it will set
the persistent flag P_Full to True, so that the Bottle
System's PLC can test it and order the further Operations.

The Seal_station's behavior is described in the same
way in the lines 02-03.

The Belt's behavior :
In the lines 04-06 we can see that this PLC will scan each
line at each cycle and will perform the output-action
doMove. For instance, for the line 04, doMove will be

performed when the signal S_EnterB is ON (produced by
the Physical System) only if the signal S_BatF is OFF.
When the signal S_BatF becomes ON, this will disable
the line , and the doMove will become false. The other
lines work in the same way.

Here is the translation of the main-System's
behavior into a PLC Ladder Diagram (see Fig. 4) :

Figure 4: the Main-System Ladder Diafram

Here also the execution is simple : the outputs signals
S_Fill, S_BleaveF etc. are produced when the input
signals S_BatF, S_Full etc. appear.

V.2 TCOM to PLC translation Rules:
Roughly, the main translation rules are :
1- each when-line of the behavior-controller is translated
in a Ladder Line.
2- each behavior condition is translated by a set of
Ladder input flags or signals using the AND/OR syntax
of the Ladders (i.e. --|S_input1|-----|/F_input2|--).
3- each behavior reaction is translated by a set of Ladder
outputs flags or signals (i.e. ---(S_output3)---).
4- for each behavior-controller line, which contains an
"until signal/flag" constraint for the reaction, we need to
test that this "signal/flag" if OFF in the inputs of the
Ladder-line.
5- if there is time constraints in the behavior-controller
conditions, we have to introduce Timer-boxes in the
inputs of the corresponding Ladder lines.

Conclusion

The field of Computer Based Systems is growing and
needs to describe the integration of some parts in
hardware and others in software. The component-oriented
approach facilitates the description of these systems in
several parts; furthermore hardware parts as well as

software parts can be modeled by objects in the same
manner.

Building a system hierarchically using components
enables to build it by refinements. By defining gradually
each component it permits the requirements,
specification, and validation of each part, and then the
whole system as a super-component. This approach can
be helpfull not only for specific Real-Time systems, but
also for general distributed applications, since nowadays
almost every modern application contains
synchronization and temporal constraints, and there will
be no need for two distinct methodologies to develop
real time and non real time parts.

Our present proposal of an "engineering dialect" of the
temporal logic has the advantage, on one hand, to be easy
to understand by the industrial automation engineer, and
on the other hand, to be easy to translate in a PTL format
used by automatic provers such as the Stanford SteP, for
validation.

Our proposal allows also to execute these specification
(after validation), for instance using a simple translation
in PLC Ladder Diagrams.

This proposal of Temporal Components can be viewed
as an extension of the UML active object model or the
Java Thread objects. Like these models it is hierarchical,
it contains local variables (attributes) and Operations
(methods). But, in addition, it contains a Description of
on-line signals interface with other components, a Goal
description giving the Temporal properties that the
component has to fulfill, and a Behaviour Controller
which reacts to the signals and the local conditions and
performs the corresponding Operations.

Acnowledgements : We want to thank our colleagues

Dr R.B. Yehezkael and Dr R. Gallant for their helpfull
comments, and our Engineering students Menachem
Yosub, David Rosenberg who worked with us on this
subject to build up the translators for their final
Engineering Project at JCT.

References

[1] Z. Manna, A. Pnuelli "The temporal logic of reactive

and concurrent systems", Springer Verlag, New-York,
1992

[2] R. Alur and T.A. Henzinger. "Logics and models of real
time: a survey", J.W. de Bakker, K. Huizing, W.-P. de
Roever, and G. Rozenberg, editors, Real Time: Theory
in Practice, LNCS vol. 600, pages 74--106. Springer-
Verlag, 1992

[3] L.Lamport "Introduction to TLA : the Temporal Logic of

Actions", Digital Research report SRC 1994-01, Palo-
Alto, dec. 1994

[4] M.Fisher, S. Kono, and M. Orgun (eds) Journal of
Symbolic Computation, Special Issue on Executable
Temporal Logics, 22(5), Academic Press, Nov/Dec.
1996

 M.Fisher "A survey of Concurrent Metatem, the
language and its applications" , M.Fisher@mmu.ac.uk

[5] Z. Manna and the STeP group," STeP: Deductive-
Algorithmic Verification of Reactive and Real-time
Systems", 8th Intern. Conf. on Computer-Aided
Verification, LNCS, vol. 1102, Springer-Verlag, pp.
415-418,

 July 1996 - http://www-step.stanford.edu/
 [6] F. Moller,G.Birtwistle, editors, "Logics for concurrency

: structure versus automata" LNCS vol. 1043, Springer-
Verlag, 1996

 [7] F. Boulanger, G. Vidal-Naquet "An object Execution
model for reactive modules with C++ implementation",
ECOOP'96, Linz, July 1996 , Max Mühlhäuser editor,
dpunkt.verlag (1997)443-449

[8] G. Berry and G. Gonthier, "The Esterel Synchronous
Programming Language: Design, Semantics,
Implementation," Science of Computer Programming,
Vol. 19, No. 2, November 1992

 [9] J. Magee, J. Kramer, and M.S. Sloman "Constructing
Distributed Systems in Conic",

 IEEE Transactions on Software Engineering, Vol 15 No.
6, pp 663 - 675, 1989.

[10] J. Magee, N. Dulay, and J. Kramer, "Structuring Parallel
and Distributed Programs”

 Procs. of the International Workshop on Configurable
Distributed Systems, London, 1992.

[11] H.G. Mendelbaum, R.B. Yehezkel , Y. Wiseman, I.L.
Gordin, "Experiments in separating Computational
Algorithm from Program Distribution", PARA2000
Workshop, Univ. Bergen, Norway, june 2000, Procs. in
LNCS of Springer Verlag 1947, 278-269 (2001)

[12] "PLC software standard : IEC 1131-3", International
Electrical Comitee Publ., Geneva, 1988

 R.W.Lewis "Programming Industrial Control systems
using IEC 1131-3", Institution of Electrical Engineers
Publ., London, 1995

[13] H.G. Mendelbaum "SimLev User Manual ; A graphical
PLC simulator", Eshed Robotec Inc., Tel Aviv, 1996

[14] Selic B., Rumbaugh, J. : Using UML for Modeling
Complex Real-Time Systems.
 ObjectTime Ltd/Rational Software Corp. White Paper,
(March 1998)

