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Abstract: - In this paper the authors present a Lyapunov theory-based FNN with MOGA for application to nonlinear time 
series prediction. The architecture employs FNN structure and the learning algorithms are the combination of MOGA and 
LAF. The application considered is the nonlinear time series prediction. Simulation results are obtained using the MATLAB 
for the nonlinear sunspot data prediction. The work not only demonstrates the advantage of the neurofuzzy approach but it 
also highlights the advantages of the fusion of MOGA and LAF. 
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1   Introduction 
Time series prediction is a very important practical 
application with a diverse range of applications including 
economic and business planning, inventory and production 
control, weather forecasting, signal processing and control 
[1]. As a result, there has been considerable interest in the 
application of intelligent technologies such as neural 
networks (NNs) and fuzzy logic [2]-[3]. More recently, 
these two computationally intelligent techniques have been 
viewed as complementary leading to developments in 
fusing the two technologies [4], with a number of several 
successful neurofuzzy systems reported in the literature [5]. 
Such work has demonstrated the superior prediction 
capabilities of a fuzzy neural network as compared to the 
conventional neural network approach [5]-[6]. 

In this paper the authors employ the fuzzy neural 
network (FNN) for nonlinear time series prediction. The 
merit of this paper is that a combination of the new 
Lyapunov theory-base filtering algorithm (LAF) [7] and 
multi-objective genetic algorithm (MOGA) [10] are used to 
train the FNN. The proposed scheme provides not only the 
advantages of fuzzy logic and NN but it also offer 
additional advantages those are offered by the LAF and 
MOGA. In the consequence part, the weights of FNN are 
adaptively adjusted by the LAF so that the error 
convergences to the convergence to zero asymptotically. 
The input signals' stochastic properties are not required. The 
stability of the dynamic prediction error is guaranteed by 
Lyapunov theory [8]. It has fast convergence properties and 
less computation complexity [10]. The MOGA is used to 
tune the parameters of the membership functions (MBFs) in 
the premise part. Most real world problems require the 
simultaneous optimisation of multiple criteria/objectives. In 
this case, MOGA can provide the solution to these 
problems. In our case, 2 types of error defined in later 
section are the multiple criteria to be solved by MOGA.The 
theoretical prediction mechanism of the proposed predictor 
is further confirmed by simulation examples for real world 
data. 

The paper is organized as follow: section 2 briefly 
describes the main features of the proposed FNN. Section 3 
presents the LAF algorithm. Section 4 describes the 
MOGA. The prediction results are presented in section 5. 
The finally section 6 concludes the paper with a discussion 
of the significance of the results. 

2   Fuzzy Neural Network 
The fuzzy logic inference system can be implemented as a 
five-layer NN (Fig. 1). This type of architecture is the most 
common among neural fuzzy inference systems. Given the 
training input data xn, n=1,2,…N, and the desired output dm, 
m=1,2,…M, the inference rules of simplified fuzzy 
reasoning [ ]-[] can be established by experts. The rule base 
contains the following form: 

Ri:  IF x1 is Ai
1 and  … xN is Ai

N  
THEN y1 is wi

1 and  … yM is wi
M, (2.1) 

Where i is a rule number, the Ai
N ‘s are MBF’s of the 

antecedent part and wi
M’s are real numbers of the 

consequent part. 

 
Fig. 1 The configuration of the FNN 

The operation of the this system can be described layer by 
layer as follows: 

Layer 1: Fuzzification 
This layer consists of linguistic variables. The crisp inputs 
xn, n=1,2,…N are fuzzified by using MBFs of the linguistic 



variables Ai
N. Usually, triangular, trapezoid, Gaussian or 

bell-shaped membership functions are used.  

Layer 2. Rule nodes 
The second layer contains one node per each fuzzy if-then 
rule. Each rule node performs connective operation 
between rule antecedents (if-part). Usually, the minimum or 
the dot product is used as intersection AND. The union OR 
is usually done using maximum operation. In our example 
case the firing strengths µi of the fuzzy rules are computed 
according to 
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Layers 3-5: Normalization, Consequence & Summation 
In the third layer, the firing strengths of the fuzzy rules are 
normalized. Layer 4 is related to consequent fuzzy labels 
wi

M, which are singletons in our case. The values of the 
singletons are multiplied by normalized firing strength. The 
final layer computes the overall output as the summation of 
the incoming signals. Therefore the output ym of the fuzzy 
reasoning can be represented by the following equation: 
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Y = [ y1, y2, …, yM]       (2.4) 
After the fuzzy logic rules and network structure have been 
established, the learning algorithm can then applied to 
adjust the parameters of the MBFs in the premise part and 
the weights in the consequence parts. In this paper, we 
proposed to use LAF algorithm to adaptively adjust the 
weights in the consequence parts and MOGA to tune the 
parameters of MBFs.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: The block diagram of FNN with MOGA+LAF 

Fig. 2 illustrates the overall process of the proposed scheme 
for the prediction problem. The layer 5 consists of 1 
summation node or 1 output, y1(t) which is defined as  
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y2(t) is not another output node of FNN as shown in Fig. 2 
and it is only computed using (2.6) 
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3   Learning Algorithm 1- LAF 
In the consequence part, the training algorithm used is LAF 
that adaptively adjusts the weights of FNN. The weights in 
the consequence part are updated as follow: 

wi
m(t) = wi

m (t - 1) + gi
m(t)α  m(t)    (3.1) 

where  gi
m(t) is the adaptation gain and αm(k) is defined as 
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The adaptation gain is given by (3.3)  
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where 0< k ≤ 1. U(t) = [ µ1, µ2, … µQ] 
It is noticeable that the values of U(t) and αm in (3.3) may 
be zero and rise singularities problem. Therefore the 
adaptation gain may be modified as (3.4)    
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where 0< k ≤ 1, and λ1, λ2 are small positive numbers. 

4   Learning Algorithm 2 - MOGA 
The MOGA is used to tune the parameters of the 
membership functions (MBFs) in the premise part. Without 
the need of linearly combining multiple attributes into a 
composite scalar objective function, evolutionary 
algorithms incorporate the concept of Pareto’s optimality or 
modified selection schemes to evolve a family of solutions 
along the tradeoff surface. In this paper we employ the 
weighted sum-based optimization method.  
 
4.1 Weighted Sum Based Optimization  
In a weighted sum-based optimization, multiobjective 
function F=(f1,….,f2) is transformed into 
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methods can be used. Preferences are used for specifying 
weights. With reference to Fig. 2, two fitness F1 and F2 can 
be evaluated from e1(t) and e2(t), t∀ . Thus, these two 
objective functions is transformed in an  overall fitness  
function 2211 .. FFF ωω += , where 121 =+ωω . In our 

experiment, we choose 3.01 =ω  and .7.02 =ω  

4.2 Computational Algorithms 
1. Initialisation: Training data is clustered to generated 9 

centroids based on which the Gaussian MBFs (mean 
and variance)  are evaluated. 80 potential candidates 
P(t) are created by varying ± 20% of the MBFs. 

2. Evaluate the overall fitness F. Select candidates 
proportional to their fitness relative to the others in P(t) 
using the Stochastic Universal Sampling technieque. 

3. Applying genetic operators, whole arithmetic 
crossover,  mutation, and adaptation with the best 
candidate by adding a perturbation to the relative best-
fit candidate, to reproduce new candidates. 

x(t-1)  

y1(t)  

y2(t)  

e1(t)  

e2(t)  

FNN 

 
MBFs 

(Fuzzy) 
Weights 

(NN) 

Learning 
Algorithm 2 

Learning 
Algorithm 1 

x(t) or d(t)



4. Combine all new candidates with the P(t) to form the 
new population for the next generation. 

5. Repeat step 2, 3, 4 until termination condition is 
satisfied.  

 
5   Simulation 
Simulations have been done for a one-step ahead prediction 
of the Sunspot data. Sunspot data is used as a benchmark 
for many years by researchers. Data file of the Sunspot 
times series is download from [9]. It consists the sunspot 
data from the year 1700 to 1999 (300 Samples).  Fig. 3 
shows the plot of the sunspot time series. Fig. 4 shows the 
Mean Squared Error of e2(t) giving MSE=0.0159 at the 30th 
generation. The overall simulation is successful and fig. 3 
show no distinct difference between the y2(t) and d(t). All 
work is done in Matlab. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Sunspot Time Series 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 MSE of e2(t) 

 
 
 

6   Conclusion 
This paper has presented a new approach in designing a 
FNN with MOGA and LAF techniques.The previous 
section clearly demonstrate the performance  of the 
proposed FNN for the prediction of nonlinear time series. 
The FNN approach has also the added advantage of  NN 
and Fuzzy logic. LAF has provided the fast error 
convergence to the training of FNN. On the other hand, 
MOGA has added advantage of global optimization to the 
FNN training based on two criteria/objectives. The results 
have emphasized the benefits of the fusion of fuzzy and NN 
technologies as well as the advantages of the fusion of the 
new LAF and MOGA or GA. This increase in transparency 
of the neurofuzzy approach overcomes the drawback of 
FNN with gradient techniques and/or GA in the 
conventional NNs or FNNs. In general the prediction 
capability (accuracy) of this system is proportional to its 
granularity (the number of fuzzy sets) in the premise part 
and the numbers of weights in the consequence part. Future 
works need to be conducted in this area. Many issues need 
to be addressed regarding simulations, practical 
implementations, and the further analysis on the theoretical 
parts of the proposed scheme. 
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