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Abstract: - This paper presents MATLAB programs for generating the coefficients of the lowpass analysis 
filter corresponding to orthonormal wavelet analyses.  One of the programs generates the famous Daubechies 
maxflat wavelets, and a second generates the Daubechies complex symmetric orthonormal wavelets.  The 
remaining two programs generate the space of all orthonormal wavelets in terms of parameterizations whereby 
the space of wavelets of a given length 2N is generated by N parameters. This software should prove useful 
where it is desired to perform an optimization to obtain the best wavelet for a given application. 
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1   Introduction 
Wavelet analysis has been widely used in recent 
years in a variety of application areas.  The reason 
for this success is that wavelet analysis provides a 
mixed time-frequency representation that gives a 
useful compromise between analysis purely in terms 
of frequency (as exemplified by the Fourier 
transform) and purely time-domain analysis.  
     A further advantage is that, unlike the Discrete 
Fourier Transform, the Discrete Wavelet Transform 
(DWT) is not unique – the user may choose between 
an infinite number of different wavelets, each 
providing its own unique corresponding DWT.   
This opens up the possibility of performing an 
optimization procedure in order to obtain the “best” 
wavelet for any given application according to some 
given optimality criterion. In order to perform this 
optimization, it is necessary to have a 
parameterization of the space of wavelets under 
consideration.  The optimization cost function will 
then be passed the values of the parameters for each 
wavelet as the optimization proceeds.  One of the 
authors has successfully used this approach to obtain 
optimal wavelets for the compression of fingerprint 
images [7].  
   The main disadvantage of orthonormal wavelet 
analysis is that symmetry of real-valued filters 
cannot be achieved. Symmetry is of great 
importance because of the linear phase exhibited by 
such filters, and also because symmetry permits the 
use of a reflective data extension that substantially 
reduces edge effects. The usual way of obtaining 
linear phase filters within the context of a wavelet 
analysis is to relax the requirement of 
orthonormality, and this has led to the widespread 
use of biorthogonal wavelets [1].  Linear phase is 

obtained at a cost, however: the DWT using 
biorthogonal wavelets does not preserve energy, i.e. 
the Parseval relation is no longer valid. 
    It is possible to obtain linear phase without 
sacrificing orthonormality if we allow the 
coefficients of the filter to be complex.  In the paper 
we show how the parameterizations can be used to 
generate spaces of symmetric orthonormal wavelets. 
   Two further MATLAB programs are included. 
One of these generates the lowpass filter coefficients 
for the famous Daubechies  maxflat wavelets, and 
the other for the Daubechies maxflat symmetric 
complex wavelets. 
 
2   The Space of Orthonormal 
Wavelets 
In this section, software is presented to generate the 
coefficients for the scaling filters corresponding to 
all orthonormal wavelets, including wavelets with 
complex filter coefficients. To do this, a 
parameterization of the space of orthonormal 
wavelets is required.  We make use of two 
parameterizations; each of these generates scaling 
filter coefficents from a given set of parameter 
values.  To generate the space of all orthonormal 
wavelets with real-valued coefficients, the 
parameterization of Section 2.1 requires the 
parameters to be angles in the range 0 to 2π, 
whereas that of Section 2.2 allows the parameters to 
have any real values. Both parameterizations 
produce the space of orthonormal wavelets with 
complex coefficients if the parameters are given 
complex values. The major advantage of complex 
orthonormal wavelets over real orthonormal 
wavelets is that linear phase can be achieved. 



2.1 Generating Wavelets Using Angle 
Parameters 

Let the coefficients of the scaling filter be denoted 
by { }ih , with z-transform ∑ −=

i

i
i zhzH )( . 

Vaidyanathan [9] proposed the following 
parameterization of the space of all perfect-
reconstruction two-channel filter banks of length 2M 
in terms of M angle parameters { }110 ,...,, −Mθθθ : 
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     Sherlock and Monro [6] derived from this 
recursive formulae expressing the coefficients 
{ }hi

k( )+1 for a filter of length 2(k+1) in terms of the 

coefficients{ }hi
k( )  for a filter of length 2k.   They 

obtained, for the even numbered filter coefficients 
{ }h i2 : 
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( ) = . The corresponding 
formula for the odd numbered filter coefficients 
{ }12 +ih  is: 
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The recurrence of the above equations can be 
elegantly expressed in the form of the flow diagram 
of Figure 1. In this diagram a filter of any desired 

Figure 1. Flow diagram illustrating generation of 
orthonormal wavelets from angle parameters. 

even length 2M can be produced by choosing M 

parameters iθ  (with 
4
π

θ =∑
i

i  if regularity is 

desired) and passing through the flow diagram, 
terminating after M-1 stages of processing. 
    An efficient implementation in MATLAB is given 
in Figure 2. 
function h = orthogen(alpha); 
% Constructs an array, h(1...N) of lowpass 
% orthonormal FIR filter coefficients for any 
% even N>=2. The input array, alpha(1...N/2) 
% gives N/2 free parameters that are angles 
% in radians. If the angles sum to pi/4 the 
% filter corresponds to a regular wavelet. 
   N  = 2*length(alpha); 
   h  = zeros(1, N); 
   lo = N/2; 
   hi = lo + 1; 
   h(lo) = cos(alpha(1)); 
   h(hi) = sin(alpha(1)); 
   nstages = N/2; 
 
   for stage = 1 : nstages-1 
      c = cos(alpha(stage+1)); 
      s = sin(alpha(stage+1)); 
      h(lo-1) = c*h(lo); 
      h(lo)   = s*h(lo); 
      h(hi+1) = c*h(hi); 
      h(hi)   = -s*h(hi); 
      nbutterflies = stage-1; 
      butterflybase = lo+1; 
      for butterfly = 1 : nbutterflies 
         hlo = h(butterflybase);  
         hhi = h(butterflybase+1); 
         h(butterflybase)  = c*hhi - s*hlo; 
         h(butterflybase+1)= s*hhi + c*hlo; 
         butterflybase = butterflybase + 2; 
      end; 
      lo = lo - 1; 
      hi = hi + 1; 
   end; 

Figure 2. MATLAB function for generating orthonormal 
wavelets from angle parameters. 

     This parameterization is, however, a redundant 
representation because of inherent symmetries in our 
parameter space. It is shown in [6] that the filter 
coefficients will be unchanged if any even number 
of the iθ are changed by π.  The space can therefore 
be fully covered by choosing 0θ  from the interval 
[0,2π) and 1θ  through 1−Mθ  from [0,π). 
     When generating wavelets, however, regularity, 

equivalent to 
4
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i
i , is also required.  With this 

additional constraint, it is shown in [6] that the space 
of all orthonormal wavelets of length 2M is covered 
by choosing M-1 parameters iθ  from the interval 
[0,π), and calculating the final one from the 
regularity constraint. 
For a filter of length 2M corresponding to an 
orthonormal wavelet, the transformation 
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transforms the filter into its time-reverse. Therefore, 
half of the parameter space corresponds to wavelets 
which are time-reversals of the other half. A 
subspace of the parameter space which covers all 
orthonormal wavelets but excludes their time 
reversals is given (for length-2M wavelets) by 
choosing one parameter from the interval [0,π/2), M-
2  parameters [0,π), and calculating the remaining 
parameter from the regularity constraint. 
     The parameterization can be extended to produce 
filters with complex-valued coefficients, simply by 
allowing the iθ  to be complex.  However, the 
parameterization of Section 2.2 turns out to be better 
suited to this purpose.  
2.2 Generating Wavelets Using Real-Valued 

Parameters 
The parameterization used in this section is based 
upon the work of Pollen [5] and the subsequent 
results of Lina [3,4]. As in Section 2.1, let the 
coefficients of the scaling filter be denoted by { }ih , 

with z-transform ∑ −=
i

i
i zhzH )( .  Then the 

parameterization of the space of all regular perfect-
reconstruction two-channel filter banks of length 
2M+2 in terms of M parameters { }110 ,...,, −Mννν  is 
produced as described below. 
     Define 2-by-2 matrices )(zGi  by 
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where the notation TG represents the conjugate 
transpose. Note that conjugate transposition is 
applied to every second matrix in the above product. 
     Finally, the filter coefficients in this 
parametrization are obtained as 
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     Because, just as in Section 2.1, the filter is 
produced by a successive product of matrices, it is 

also possible to express the present parameterization 
in the form of a recurrence. Lina and Mayrand [3] 
presented recursive formulae expressing the 
coefficients { }hi

k( )+1 for a filter of length 2(k+1) in 

terms of the coefficients{ }hi
k( )  for a filter of length 

2k.   They obtained, for the even numbered filter 
coefficients { }h i2 : 
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and for the odd numbered filter coefficients { }12 +ih : 
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The recurrence is started with the Haar length-2 
wavelet, 2

1)1(
1

)1(
0 == hh ; then regularity of the 

wavelet is preserved throughout the iterative process 
irrespective of the choice of iν .  An advantage over 
the parameterization in Section 2.1 is that this 
parameterization does not exhibit the redundancies 
that occurred in Section 2.1 due to the angular nature 
of the iθ  parameters.  Here, the space of all 
orthonormal regular wavelets with real coefficients 
is simply produced by allowing the iν  to range over 
all real values. 
    Furthermore, restricting all iν  to be pure 
imaginary generates the space of all symmetric 
complex orthonormal wavelets.  These wavelets are 
important because they are the only orthonormal 
 function h=nuorthgen(nus) 
% Generates all orthonormal regular wavelets. 
% nus is an array of parameters satisfying: 
%  nus all real => space of all real 
%        orthonormal regular wavelets 
%  nus all imaginary => space of all 
%        symmetric complex orthonormal 
%        regular wavelets 
%  nus complex => space of all orthonormal 
%        regular wavelets 
h0 = 1/sqrt(2);   
h1 = 1/sqrt(2);   
h=[h0 h1] ; 
stages=length(nus); 
for stage=1:stages 
   nu=nus(stage); 
   nuc=conj(nu); 
   N=length(h)+2; 
   h=[0 0 conj(h) 0 0]; 
   for i=2:2:N+1  
      newh(i)= h(i)-nu*h(i-1)+nu*h(i+1)+ ... 
                 nu*nuc*h(i+2); 
      i1=i+1; 
      newh(i1)=h(i1)-nuc*h(i1-1)+ ... 
                nuc*h(i1+1)+ nu*nuc*h(i1-2); 
   end 
   h=newh(2:N+1)/(1+nu*nuc); 
end 

Figure 3. MATLAB function for generating orthonormal 
wavelets using parameterization of Section 2.2. 



wavelets that exhibit linear phase.  Linear phase is 
highly valuable in many applications because the 
position of details is preserved in the filtered signal. 
    An efficient implementation in MATLAB is given 
in Figure 3. 

 
3   Daubechies Wavelets 
 
3.1 Generating Daubechies Maxflat 

Wavelets  
The Daubechies maxflat wavelet of length 2N is the 
unique length 2N wavelet whose frequency response 
has both minimum phase and also exhibits N zero 
derivatives at 0=ω  [2].  These wavelets are widely 
used because of their regularity.  The wavelet is 
obtained by a spectral factorization of the following 
halfband frequency response [8]: 
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truncated after N terms. 
     The spectral factorization of )(ωP  and the 
subsequent determination of the scaling filter 
coefficients are performed as follows: 
1. Find the N-1 zeros { }iy  of the polynomial 

)( yBN . 
2. Transform these to the z domain using 

1)21(21 2 −−±−= iii yyz . Because of the 
square root, this yields a total of 2N-2 values. 

3. Of the 2N-2 values of iz , retain only those N-1 

that have 1<iz . This choice results in a 
minimum phase filter. 

4. Include a further N zeros at 1−=z . The 
coefficients of the resultant polynomial are the 
taps of the scaling filter for the Daubechies 
maxflat filter of length 2N. 

     This procedure is implemented in the MATLAB 
program of Figure 4, which generates these 
wavelets.  
 
 

function dau=makedau(N) 
% Function to generate coefficients of 
% Daubechies maxflat orthonormal wavelet 
% filter of length N. 
% 
if mod(N,2) ~=0  
  error('N must be even');  
end 
p=N/2; 
b(p)=1; 
for i=p-1:-1:1 
   b(i)= b(i+1)*(2*p-i-1)/(4*(p-i));  
end 
r=roots(b)/4;   
z1= (1-2*r) + sqrt((1-2*r).^2 -1); 
z2= (1-2*r) - sqrt((1-2*r).^2 -1);   
z=[z1;z2]; 
zchoose = z( abs(z)<1 );  % for minimum phase 
q=poly(zchoose); 
q=real(q); 
%add p zeros at -1 
flat=1; 
for i=1:p 
   flat=conv(flat,[1 1]); 
end 
dau= conv(q,flat); 
dau= sqrt(2)*dau/sum(dau); 

Figure 4. MATLAB function for generating Daubechies 
maxflat wavelets. 

 
3.2 Generating Daubechies Symmetric 

Complex Wavelets  
A Daubechies symmetric complex wavelet of length 
2N is a length-2N wavelet whose frequency response 
exhibits N zero derivatives at 0=ω  and also has 
linear phase [3]. Linear phase is a highly desirable 
property that cannot be achieved in orthonormal 
wavelets unless the coefficients are allowed to be 
complex.  These wavelets are obtained by the 
spectral factorization of the same halfband filter as 
in Section 3.1, i.e. : 
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     The coefficients are calculated according to the 
same four steps shown in Section 3.1, except that 
now the roots of the factorization to be retained in 
step 3 are chosen in order to achieve symmetry 
rather than minimum phase. Symmetry is achieved 
by ensuring that roots are retained in pairs ( iz , 1−

iz ). 
(Since more than one solution achieving symmetry 
can be obtained, we choose also to ensure that 
retained zeros within the unit circle are evenly 
distributed above and below the real axis.) 
Therefore, step 3 of the process becomes: 
3a. Of the 2N-2 values of iz , retain only those 

4
22 −N

 that have 1>iz  and positive real 

part. What this does is to reduce each quadruplet 



( iz , 1−
iz , iz , 1−

iz ) of roots to a single root 
outside the unit circle and having positive 
imaginary part. 

3b. Sort these 
2

1−N
roots into increasing order of 

real part. 

3c. Distribute these 
2

1−N
roots evenly above and 

below the real axis, by taking the conjugate of 
every second root. 

3d. Include the inverse of each root.  This results in 
a total of N-1 roots. 

Note that for step 3a to succeed, it is necessary that 

4
22 −N

 be an integer, i.e. that N be odd. 

Consequently, symmetric complex Daubechies 
wavelets exist only for odd N, i.e. filters of length 
2N = 2, 6, 10, 14, etc. 
A MATLAB function to generate these wavelets is 
presented in Figure 5. 
function dau=makecxdau(N) 
% Function to generate coefficients of 
% Daubechies maxflat symmetric complex 
% orthonormal wavelet filters.   
% 
if mod(N,2) ~=0  
  error('N must be even');  
end 
p=N/2; 
b(p)=1; 
for i=p-1:-1:1 
   b(i)= b(i+1)*(2*p-i-1)/(4*(p-i));   
end 
r=roots(b)/4;   
z1= (1-2*r) + sqrt((1-2*r).^2 -1); 
z2= (1-2*r) - sqrt((1-2*r).^2 -1);   
z=[z1;z2]; 
% Keep one of every quadruplet z, 1/z, zbar, 
% 1/zbar: 
zchoose = z( abs(z)>1 & imag(z) >0); 
% sort in order of increasing real part: 
[junk,index]= sort(real(zchoose));   
zchoose = zchoose(index);  
% Distribute evenly above / below real axis: 
zchoose(1:2:length(zchoose))=...              

conj(zchoose(1:2:length(zchoose))); 
zchoose = [zchoose; 1./zchoose]; 
if(length(zchoose) ~= length(z)/2) 
   disp('No symmetric solutions for this N:') 
   error('N must be of form 2*(odd number)')  
end 
q=poly(zchoose); 
% add p zeros at -1 
flat=1; 
for i=1:p 
   flat=conv(flat,[1 1]); 
end 
dau= conv(q,flat); 
dau= sqrt(2)*dau/sum(dau); 

Figure 5. MATLAB function for generating complex 
symmetric Daubechies maxflat wavelets. 

 

 
4   Conclusion 
We have presented MATLAB implementations of 
two parameterizations of the space of orthonormal 
wavelets. In addition to their obvious use in 
generating wavelets with real coefficients, we have 
indicated how these may be used to generate 
symmetric wavelets with complex coefficients.  This 
software would be useful in an optimization task in 
which the “best” wavelet for a given application is 
sought.   
    We also presented MATLAB functions that 
produce the commonly encountered Daubechies 
max-flat wavelets, as well as the symmetric complex 
Daubechies wavelets. 
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