
 1

Least-Connection Algorithm based on variable weight for multimedia

transmission

YU SHENGSHENG, YANG LIHUI, LU SONG, ZHOU JINGLI

College of Computer Science
Huazhong University of Science & Technology,

1037 LuoYu Road, Wuhan, 430074
P.R.CHINA

Abstract: A least-connection algorithm based on variable weight is presented in this paper in order to satisfy the
requirement of multimedia transmission, which is based on the analysis of the existing cluster architecture, algorithms
of the load distribution and balancing of network nodes. A validating trial has been performed and the results show that
our algorithm has effective load balancing in one central control node scenario.

Key words: multimedia transmission, cluster, load balancing

1 Introduction
Network-based video transmission and its

applications have emerged as promising technologies
with the development of computer network technology.
With the continuous increase of network bandwidth,
applications of multimedia server supported storage and
playing of video and audio in Video-on-Demand network
video transmission and digital monitoring system have
been widely accepted.

Cluster is an approach that can meet the
ever-increasing capacity and reality requirement of data
transmissions.

Multimedia servers can be classified in two
categories: monolithic server which commonly appears
as a high performance server for the purpose of storage,
transmission and management of video data stream, and
cluster server which is a cluster of workstations and PCs.
Traditional high performance server is actually a
monolithic server employing symmetrical
Multi-processor (SMP). It has been limited by its fixed
system architecture that cannot be tuned with
performance requirement and the high price. Cluster
server has its advantages in terms of ratio of performance

to price, flexibility, and capability of supporting different
architectures, hence it has received increasing attention
recently.

A typical cluster server consists of a group of
processing nodes, where each node has one or more disks,
or even disk array. All the nodes are connected via
high-bandwidth switch or network, which provides
flexible solution to meet the requirement of real-time
multi-media streams.

The most significant parameters are I/O bandwidth
and storage capacity. I/O bandwidth determines the
number of clients that a sever can support, and the
storage capacity determines the number of media streams
that a server can store. In monolithic server, client’s
request will not be blocked as long as there is surplus I/O
bandwidth [1]. But this will not be true in cluster server,
where the I/O bandwidth of a server is completely
distributed. For example, a request can still be blocked at
one particular node although other nodes are free at the
request arrival time. Therefore the realization and
management of cluster server are more complicated than
that of the monolithic server. There are four basic
questions that need to be addressed [2]:

1) Load balancing: Because cluster server is
composed of a number of nodes, its computing

 2

task depends on the corporation of each node.
The system can get optimized performance only
when every node in the system maintains
balancing.

2) Single System Image: Cluster server must
make all nodes transparent to users by providing
abstract user interface as a single system.

3) Scalability: Because of high requirement of
multimedia applications to server and big
expenditure, users might divide the investment
into several parts. The server is also required to
have high scalability, e.g., to add new node, in
order to satisfy the future increased demands.

4) Availability: Clusters are susceptible to partial
failures. And probability of partial failure
increases with the increasing of the size of
system resources. The implementation of
clusters must take partial failures into account to
maintain high availability and reliability.

 The goal of this paper is to introduce
least-connection algorithm based on variable weight for
multimedia transmission. The remainder of the paper is
organized as following, section 2 gives a literature survey
of the existing load balancing algorithms. In section 3 we
proposed our improved algorithm. The experiment result
was shown in section 4, and in section 5 we conclude.

2 Existing load balancing algorithm
The main purpose of load balancing is to distribute

load among a number of nodes to optimize the utilization
of the computation capability of every node and reduce
the average task response time as well, this is equivalent
to maximize the system throughput. The modus operandi
is a special computer(also called request distributor) that
receives and distributes all task requests to every server
in the cluster according to some rules.

There are scheduling algorithms in the literature
[3,4,5,6]: Round-Robin Scheduling, Weighted
Round-Robin Scheduling, Least-Connection Scheduling,
and Weighted Least-Connection Scheduling.

Round-Robin: Round-robin Scheduling, in its
word meaning, directs the request received from network
to the different node in a round-robin manner. It treats all

nodes as equals regardless of number of connections. The
scheduling granularity is node-based, this will lead to
significant dynamic load imbalance among the nodes[3].

Weighted Round-Robin: The weighted
round-robin scheduling can treat the nodes of different
processing capacities. Each node can be assigned a
weight, an integer value that indicates the processing
capacity. The default weight is 1. For example, three
nodes, A, B and C, have the weights, 4, 3, 2 respectively,
a good scheduling sequence will be ABCABCABA in a
scheduling period (mod sum(Wi)). In the implementation
of the weighted round-robin scheduling, a scheduling
sequence will be generated according to the node weights
after the rules of node are modified. Therefore,
scheduling the request is no longer in a round-robin
manner[4].

The weighted round-robin scheduling doesn't need
to count the request connections for each node, and the
overhead of scheduling is smaller than other dynamic
scheduling algorithms, it can have more nodes. However,
it may lead to dynamic load imbalance among the nodes
if the load of requests vary highly. In short, there is
possible that most of long requests may be directed to one
node.

The round-robin scheduling is a special instance of
the weighted round-robin scheduling, in which all the
weights are equal. The overhead of generating the
scheduling sequence after modifying the node rules is
trivial, and it doesn't add any overhead in real scheduling.
So, there is unnecessary to implement the round-robin
scheduling alone.

Least-Connection: The least-connection
scheduling algorithm directs requests received from
network to the node with the least number of established
connections. This is one of dynamic scheduling
algorithms; because it needs to count live connections for
each node dynamically. At a node where there is a
collection of nodes with similar performance, the
least-connection scheduling is good to smooth
distribution when the load of requests vary a lot, because
all long requests won't have chance to be directed to a
node[5].

At a first look, the least-connection scheduling can
also perform well even when there are nodes of various

 3

processing capacities, because the faster node will get
more connections. In fact, it cannot perform very well
because of the TCP's TIME_WAIT state. The TCP's
TIME_WAIT is usually 2 minutes, between this 2
minutes a busy web site often get thousands of
connections, for example, the node A is twice as
powerful as the node B, the node A has processing
thousands of requests and kept them in the TCP's
TIME_WAIT state, but the node B is crawling to get its
thousands of connections finished. So, the
least-connection scheduling cannot get load well
balanced among nodes with various processing
capacities.

Weighted Least-Connection: The weighted
least-connection scheduling is a superset of the
least-connection scheduling, in which you can assign a
performance weight to each node. The nodes with a
higher weight value will receive a larger percentage of
live connections at any one time. The node administrator
can assign a weight to each node, and network
connections are scheduled to each node in which the
percentage of the current number of live connections for
each node is a ratio to its weight[6]. The weighted
least-connections scheduling works as follows:

Supposing there are n nodes, each node i has weight
Wi (i=1,..,n), and alive connections Ci (i=1,..,n),
ALL_CONNECTIONS is the sum of Ci (i=1,..,n)
•∑ jC •, the next network connection will be directed to
the node j, in which



















=
W

C

W

C

j

j

j

j

SCONNECTIONALLSCONNECTIONALL _min_

•i•1,…,n• •1•
Since the ALL_CONNECTIONS is a constant in

this lookup, there is no need to divide Ci by
ALL_CONNECTIONS, it can be optimized as











=

W
C

W
C

j

j

j

j min •i•1,…,n• •2•

3 Least-Connection Algorithm based on

variable weight
In this section, we proposed an improved algorithm

– “Least-Connection algorithm based on variable
weight”. As its name implies, the contribution of this
algorithms is that it takes variable weight into account.

Necessity of variable weight: Looking back above
Weighted Least-Connection, we noticed that: in equation
(2),the way of finding the node j with least load in a
cluster is to calculate the ratio of connection number(Cj)
and the fixed weight(Wj) in turn, and choose the node
with minimum value. However, this did not take into
account that servers with different content TCP
connection have different overhead, hence this algorithm
will lose efficiency when the overhead difference
between servers cannot be ignored. In the existing
networks with multimedia servers, the overhead of TCP
connections can be significant enough that the affect it
makes to the Weighted Least-Connection algorithm must
be taken into account, in other words, equation 2 is not
enough to reflect the real load of every node. And this is
the motivation of bringing variable weight into account
in our algorithm.

Components of weight: generally speaking, the
parameters that reflect the processing ability of a node
server are the processing speed of CPU’s, idle rate, size
of memory and capacity of I/O. We define node weight
of a node as following:

() 




 ×××× += RVRQW cpucpu cpumemmem memj ρρ

22

 •3•

where• Rmem denotes the idle rate of node memory•

Rcpu denotes the idle rate of node CPU •

Qmem denotes the size of memory•unit is K••V cpu

denotes the speed of CPU(unit is Mhz), ρmem and

ρ cpu denote the proportion factor•and ρmem • ρ cpu

•1•
introduction of algorithm: after getting the

equation of weight, we can get the algorithms of
Least-Connection basing on variable weight.

Supposing there are n nodes, each node i has weight

 4

Wi (i=1,..,n), and alive connections Ci (i=1,..,n), the next
network connection will be directed to the node j, and
node j has the below character:











=

W
C

W
C

j

j

j

j min •i•1,…,n• •4•

In which Wj is gotten by equation(3).
It must be pointed that in equation (3) the CPU’s

speed and size of memory are basically constant, things
need consideration are the memory and CPU’s idle rate
which varies all the time.

4 Experiments and Result
We measured the performance of our load

scheduling algorithms by using a test platform which
consists the following: (1) one computer running
Windows2000 server version and load scheduling
program as load balancing server. (2) three computers
running Windows2000 server version and video service
program as multimedia servers. (3) a number of
computers running either Windows98, Windows NT or
Windows2000 and playing program as video client end.

The work flow is described as follows: (1) request
data input: the client requests the load balancing server
for playing connection. (2)request processing: the load
balancing server separately selects a multimedia server
according to different scheduling algorithms, and then
directs it the client’s connection request. (3)video data
output: the multimedia server transmits the video stream
to the client and the client plays the received video
stream.

We employ C++ as the programming language and
the programming kit used is Microsoft Visual C++ 6.0. In
order to achieve the reusability and encapsulization of
code, all the key algorithms are implemented by OOP:
load balancing server uses BalanceServer class,
multimedia server uses VideoServer class, both the
classes are inherited from Server class.
 Experiment is divided into two steps: (1) In the first
step, the “Weighted Least-Connection” is selected in the
load scheduling program, The number of client

connections is increased in steps, and the effect of clients
playing is recorded. When the number of client increased
to 15, the playing become snatchy with mosaic. Refer Fig
1. (2) In the second step, the “Least-Connection basing
on variable weight” is selected in load scheduling
program, and the number of client connection is
increased gradually in steps. The effect on client’s
playing is then recorded. From Fig. 2 we can see that the
client still plays fluently when the number of clients is
increased to 15. When the number is increased to 20, the
playing become snatchy and accompanied with mosaic.

Fig 1: Weighted Least-Connection•# of clients:15•

Fig 2: Least-Connection basing on variable weight•# of
clients:15•

 5

Table 1: result of experiment

The results of the experiment are presented in table
1.

It was shown in the above result that with certain
number of clients, 15 for example, half of the playing
using Weighted Least-Connection was snatchy, whereas
the play using Least-Connection based on variable
weight was still fluent till 20. It can be inferred that the
load balancing server using Least-Connection based on
variable weight can distribute the load to multimedia
servers more efficiently, depending on the real-time
alteration of performance of each servers, due enhanced
effect when playing MPEG stream simultaneously on
certain number of clients, 15 for example. In other words,
the algorithms of Least-Connection based on variable
weight performs better that the algorithms of
Least-Connection basing on fixed weight.

With increased number of clients, the bottleneck of
nodes in cluster and limitation of network bandwidth
have to be taken into account.

5 Conclusion
 In this paper, we studied the technology of
multimedia cluster server, and based on the study, we
propose an improved algorithm, namely the
Least-Connection based on variable weight. Through
experiments we showed that our algorithm has a better
performance than Least-Connection based on fixed
weight.

The load scheduling and balancing policy we

employed in the multimedia cluster server is based upon
one central control node. With the increasing dimension
of multimedia transmission, the number of multimedia
servers must increase too, then the bottleneck of central
control node cannot be ignored any more. Therefore, it is
a new research task and requires further study on how to
change the policy from central control to a policy that
involves negotiation among the multimedia servers.

References
[1] O.Rose, Simple and Efficient Models for Variable

Bit Rate MPEG Video Traffic, Performance
Evaluation, Vol.30, 1997, pp69-85

[2] Renu Tewari, Architectures and Algorithms for
Scalable Wide-area Information Systems,
Dissertation of Doctor of Philosophy in the
University of Texas at Austin, August 1998

[3] H.Schulzrinne, RTP Profile for Audio and Video
Conferences with Minimal Control, Internet Draft,
draft-ietf-avt-profile-new-01.ps, Internet Engineering
Task Force, Jan., 1998, Work in Progress.

[4] C.Reummler & D.Wilkes, An Introduction to Disk
Drive Modeling IEEE Computer Vol.27, No.3 March,
1994, pp17-29

[5] E.Shriver, Performance Modeling for Realistic
Storage Devices, PhD Thesis , May, 1997, Univ. New
York

[6] D.M.Jacobson & J.Wilkes, Disk Scheduling
Algorithms Based on Rotational Position technical
Report , HPL-CSP-91-7,Rev1,HP

of client
connection

Weighted
Least-Connection

Least-Connection basing on
variable weight

10 Playing fluently Playing fluently
15 7-8 clients playing slowly 3•5 clients playing slowly

20 More than half of clients playing
slowly, and the last client
requested for connection had to
wait for response for a moment

8-9 clients playing slowly,
1-2 clients become snatchy

25 Most of clients had to wait for
response, 1-2 even lost their
connection.

half of clients playing slowly, and
the last client requested for
connection had to wait for
response for a moment

