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Abstract

The nonlinear autoregressive moving average with exogenous inputs (NARMAX) model provides

a powerful representation for time series analysis, modeling and prediction due to its strength

to accommodate the dynamic, complex and nonlinear nature of real time series applications.

This paper focuses on the modeling and prediction of NARMAX-model-based time series us-

ing the fuzzy neural network (FNN) methodology with an extention of the model represention

include feedforward and recurrent FNNs. This paper introduces and develops a efficient algo-

rithm, namely generalized fuzzy neural network (G-FNN) learning algorithm, for model structure

determination and parameter identification with the aim of producing improved predictive per-

formance for NARMAX time series models. Experiments and comparisons demonstrate that the

proposed G-FNN approaches can effectively learn complex temporal sequences in an adaptive

way and outperform some well-known existing methods.
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1 Introduction

Time series prediction is an important practical problem with variety of applications in business

and economic planning, inventory and production control, weather forecasting, signal processing,

and many other fields. In the last decade, neural networks (NNs) have been extensively applied

for complex time series processing tasks [3, 4, 8, 9, 10]. This is due to their strength in handling

nonlinear functional dependencies between past time series values and the estimate of the value

to be forecast. More recently, fuzzy logic has been incorporated with the neural models for time

series prediction [1, 2, 5, 6, 11], which are generally known as fuzzy neural networks (FNNs) or

NN-based fuzzy inference systems (FISs) approaches. The FNN possesses both the advantages

of FISs, such as human-like thinking and ease of incorporating expert knowledge, and NNs,

such as learning abilities, optimization abilities and connectionist structures. By virtue of this,

low-level learning and computational power of NNs can be incorporated into the FISs on one

hand and high-level human-like thinking and reasoning of FISs can be incorporated into NNs

on the other hand.

In this paper, NARMAX time series models are investigated using FNN approaches in both

feedforward and recurrent model representations. The proposed FNN predictors have ability

to model complex time series with on-line adjustment, fast learning speed, self-organizing FNN

topology, good generalization and computational efficiency. This is achieved by applying a

sequential and hybrid (supervised/unsupervised) learning algorithm, namely generalized fuzzy

neural network (G-FNN) learning algorithm, to form the FNN prediction model. Various com-

parative analysis are developed to show the advancing performance of the proposed approaches

over some existing methods.

The rest of the paper is organized as follows. Section 2 reviews the NARMAX models as a

point of departure for the use of feedforward and recurrent G-FNNs. The concept of optimal

predictors is also introduced in this section. Section 3 provides a description of the G-FNN

architecture and learning algorithm. In Section 4, one feedforward and two recurrent G-FNN

predictors are proposed for nonlinear time series modeling and prediction. Two experiments

are presented in Section 5 to demonstrate the predictive ability of the proposed methods. The

results are compared with those using a few existing methods. Finally, conclusions and directions

for future research are given in Section 6.
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2 NARMAX Model and Optimal Predictors

2.1 General NARMAX(ny,ne,nx) Model

The statistical approach for forecasting involves the construction of stochastic models to predict

the value of an observation y(t) using previous observations. A very general class of such models

used for forecasting purpose is the nonlinear autoregressive moving average with exogenous

inputs (NARMAX) models given by

y(t) = F[y(t − 1), . . . , y(t − ny), e(t − 1), . . . , e(t − ne), x(t − 1), . . . , x(t − nx)] + e(t) (1)

where y, e and x are output, noise and external input of the system model respectively, ny, ne

and nx are the maximum lags in the output, noise and input respectively, and F is an unknown

smooth function. It is assumed that e(t) is zero mean, independent and identically distributed,

independent of past y and x, and has a finite variance σ2.

Several special cases of the general NARMAX(ny,ne,nx) model are frequently seen, which

are represented as

NAR(ny) Model:

y(t) = F[y(t − 1), . . . , y(t − ny)] + e(t) (2)

NARMA(ny ,ne) Model:

y(t) = F[y(t − 1), . . . , y(t − ny), e(t − 1), . . . , e(t − ne)] + e(t) (3)

NARX(ny,nx) Model:

y(t) = F[y(t − 1), . . . , y(t − ny), x(t − 1), . . . , x(t − nx)] + e(t) (4)

2.2 Optimal Predictors

Optimum prediction theory focuses on the sense of minimizing mean squared error (MSE). It is

known from [14] that the minimum MSE predictor is the conditional mean as follows, given the
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infinite past and provided the conditional mean exists.

ŷ(t) = E[y(t)|y(t − 1), y(t − 2), . . .] (5)

In practice, one has only the finite past commencing with the first observation. In this case,

the minimum MSE predictor is [4]

ŷ(t) = E[y(t)|y(t − 1), y(t − 2), . . . , y(1)] (6)

2.2.1 Approximately Optimal NAR(X) Predictors

As it is assumed that e(t) is zero mean and has finite variance σ2 in (1), the optimal predictor

(6) for the NAR(ny) or NARX(ny,nx) model in (2) or (4) is approximately given by

ŷ(t) = E[y(t)|y(t − 1), . . . , y(t − ny)]

= F[y(t − 1), . . . , y(t − ny)] (NAR model) (7)

or

= F[y(t − 1), . . . , y(t − ny), x(t − 1), . . . , x(t − nx)] (NARX model) (8)

where optimal predictors (7) and (8) have MSE σ2.

2.2.2 Approximately Optimal NARMA(X) Predictors

For the NARMA(ny,ne) or NARMAX(ny ,nx,ne) model in (3) or (1), the optimal predictor (6)

is approximately given by

ŷ(t) = E[y(t)|y(t − 1), . . . , y(t − ny)]

= F[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne)] NARMA model (9)

or

= F[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne), x(t − 1), . . . , x(t − nx)]

NARMAX model (10)

where ê = y − ŷ.
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In this case, the following initial conditions are often used

ŷ(t) = ê(t) = 0 t ≤ 0 (11)

3 Basic G-FNN = Takagi-Sugeno-Kan-Type FIS

In this section, basic G-FNN architecture and learning algorithm are introduced as the prelimi-

nary knowledge for FNN predictor designs in the next section.

3.1 G-FNN Architecture

G-FNN is a newly developed neural-network-based TSK-type FIS whose architecture is given

by Figure 1.

Figure 1: G-FNN architecture.

Output of the G-FNN is given by

uG−FNN(t) = FG−FNN [z(t)] =
nr∑

j=1

φj(z)wj

=
nr∑
j=1

exp[−(z − cj)T Σj(z − cj)]wj (12)
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where input vector z = [z1 . . . zni ]
T , center vector cj = [c1j . . . cnij]

T and width matrix Σj =

diag( 1
σ2
1j

. . . 1
σ2

nij
) for Gaussian membership function of jth rule, TSK-type weight vector wj =

k0j + k1jz1 + . . . + knijzni of jth rule, and kijs are real-valued parameters.

Eq. (12) can be represented in matrix form as

uG−FNN (t) = ΦT (t)w (13)

where regression vector Φ = [φ1 φ1z1 . . . φ1zni . . . . . . φnr φnrz1 . . . φnrzni ]
T and weight vector

w = [k01 k11 . . . kni1 . . . . . . k0nr k1nr . . . kninr ]T

3.2 G-FNN Learning Algorithm

In this paper, structure and parameters of the time series model is formed automatically and

dynamically using G-FNN learning algorithm. The G-FNN learning algorithm is a sequential

and hybrid (supervised/unsupervised) learning algorithm, which provides an efficient way to

construct the G-FNN model online and combine structure and parameter learning simultane-

ously within the G-FNN. The structure learning includes determining the proper number of

membership function nr, i.e. the coarse of input fuzzy partitions and the finding of correct

fuzzy logic rules. The learning of network parameters corresponds to the learning of the premise

and consequent parameters of the G-FNN. Premise parameters include membership function

parameters cj and Σj, and consequent parameter refers to the weight wj of the G-FNN.

Parameter learning is performed by combining the semi-closed fuzzy set concept for the

membership learning and the linear least square (LLS) method for weight learning. For structure

learning, two criteria are proposed for fuzzy rule generation and an error reduction ratio (ERR)

concept is proposed for rule pruning. Given the supervised training data, the proposed learning

algorithm first decides whether or not to perform the fuzzy rule generation based on two proposed

criteria. If structure learning is necessary, premise parameters of a new fuzzy rule will be obtained

using semi-closed fuzzy set concept. The G-FNN will further decide whether there are redundant

rules to be deleted based on the ERR, and it will also change the consequences of all the fuzzy

rules properly. If no structure learning is necessary, the parameter learning will be performed to

adjust the current premise and consequent parameters. This structure/parameter learning will

be repeated for each online incoming training input-output pair. The flow chart of this learning
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algorithm is shown in Figure 2.

Figure 2: Flow chart of the G-FNN learning algorithm.

3.2.1 Structure Learning

Two Criteria of Fuzzy Rule Generation

The output error of G-FNN with respect to the teaching signal is an important factor in

determining whether a new rule should be added. For each training data pair [z(t), u(t)] : t =

1 . . . nd, where u(t) is the desired output or the supervised teaching signal and nd is the total

number of training data, first compute the G-FNN output uG−FNN(t) for the existing structure

using (12). System error can then be defined as e(t) = ||u(t) − uG−FNN (t)||. If e(t) is bigger

than a designed threshold Ke, a new fuzzy rule should be considered.

A fuzzy rule is a local representation over the region of input space. If a new pattern does not

fall within the accommodation boundary of the existing rules, G-FNN will consider to generate a

new rule and vice versa. For each observation [z(t), u(t)] at sample time t, calculate regularized

Mahalanobis distance mdj(t) =
√

[z(t) − cj ]TΣj[z(t) − cj ], j = 1 . . . nr. Accommodation factor

can then be defined as d(t) = minmdj(t). If d(t) is bigger than Kd =
√

ln 1
ε , a new rule should
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be considered because the existing fuzzy system does not satisfy ε-completeness[12]. Otherwise,

the new input data can be represented by the nearest existing rule.

Remark 3.1 An idea of hierarchical learning is adopted, where the thresholds Ke and Kd decay

during the on-line learning as follows:

Ke =




emax 1 < t < nd
3

max[emax( emin
emax

)
3m
nd

−1
, emin] nd

3 ≤ t ≤ 2nd
3

emin
2nd
3 ≤ t ≤ nd

(14)

Kd =




dmax =
√

ln 1
εmin

1 < t < nd
3

max[dmax( dmin
dmax

)
3m
nd

−1
, dmin] nd

3 ≤ t ≤ 2nd
3

dmin =
√

ln 1
εmax

2nd
3 ≤ t ≤ nd

(15)

Pruning of Fuzzy Rules

In this learning algorithm, ERR concept proposed in [3] is utilized for rule and parameter

sensitivity measurement. It is further adopted for rule pruning. At sample time t, total training

data of the G-FNN are (Z,u) where Z = [z(1) z(2) . . . z(t)]T and u = [u(1) u(2) . . . u(t)]T .

From (13), we have

u = Θw + e (16)

and

Θ = [Φ(1) . . . Φ(t)]T

=




φ1(1) φ1z1(1) . . . φ1zni(1) . . . . . . φnr(1) φnrz1(1) . . . φnrzni(1)
...

...
...

φ1(t) φ1z1(t) . . . φ1zni(t) . . . . . . φnr(t) φnrz1(t) . . . φnrzni(t)




where u ∈ �t is the teaching signal, w ∈ �v is real-valued weight vector, Θ ∈ �t×v is known

as the regressor, e = [e(1) e(2) . . . e(t)]T ∈ �t is system error vector that is assumed to be

uncorrelated with the regressor Θ, and v = nr(ni + 1).

For any matrix Θ, if its row number is larger than the column number, i.e. t ≥ v, it can be
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transformed into a set of orthogonal basis vectors by QR decomposition [13]. Thus

Θ = QR (17)

where Q = [q1 q2 . . . qv] ∈ �t×v has orthogonal columns, and R ∈ �v×v is upper triangular

matrix. Therefore, (16) can then be written as

u = QRw + e = Qg + e (18)

where g = [g1 g2 . . . gv]T ∈ �v and the LLS method gives

g = (QTQ)−1QTu

gγ = (qT
γ qγ)−1qT

γ u : γ = 1 . . . v (19)

As Q has orthogonal columns, the energy function of u can be represented as [3]

uTu =
v∑

γ=1

g2
γq

T
γ qγ + eTe (20)

If u is the desired output after its mean has been removed, the variance of u would be

t−1uTu = t−1
v∑

γ=1

g2
γq

T
γ qγ + t−1eTe (21)

where t−1
∑

g2
γq

T
γ qγ is the variance that can be explained by the regressor qγ , while t−1eTe is

the unexplained variance of u. Thus, t−1
∑

g2
γq

T
γ qγ is the increment to the explained desired

output variance introduced by qγ . Thus, an ERR due to qγ can be defined as [3]

errγ =
g2
γq

T
γ qγ

uTu
(22)

Substituting gγ by (19), we have

errγ =
(qT

γ u)2

qT
γ qγuTu

(23)

The ERR offers a simple and effective means of seeking a subset of significant regressors. The
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term errγ in (23) reflects the similarity of qγ and u or the inner product of qγ and u. Larger

errγ implies that qγ is more significant to the output u.

The ERR matrix of the G-FNN is defined as

ERR =




err1 err2 . . . errnr

errnr+1 errnr+2 . . . errnr+nr

...
... . . .

...

errni×nr+1 errni×nr+2 . . . errni×nr+nr




(24)

=
[

err1 err2 . . . errnr

]
(25)

We can further define the total ERR Terrj, j = 1 . . . nr corresponding to the jth rule as

Terrj =

√
(errj)Terrj

ni + 1
(26)

If Terrj is smaller than a designed threshold 0 < Kerr¡1, the jth fuzzy rule should be deleted,

and vice versa.

Remark 3.2 Kerr plays a very important role on system performance, which directly affect rule

generation and modeling error. Generally speaking, the bigger the value of Kerr, the higher the

chance of pruning a rule, and vice versa. If Kerr is set too big, rule generation will be insufficient.

Since the lease square method is used to determine the weight vectors of the G-FNN, insufficient

rule generation will lead to big modeling error.

3.2.2 Parameter Learning

Determination of Premise Parameters

Premise parameters or fuzzy Gaussian membership functions of the G-FNN are allocated to

be semi-closed fuzzy sets and therefore satisfies the ε-completeness of fuzzy rules. The following

three cases are considered while determining the premise parameters:

1. e(t) > Ke and d(t) > Kd

First compute the Euclidean distance edijn(t) = ||zi(t) − bijn || between zi(t) and the
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boundary point bijn ∈ {ci1, ci2, . . . , ciNr , zi,min, zi,max}. Find

j̃n = arg min edijn(t) (27)

If edij̃n
(t) is less than a threshold or a dissimilarity ratio of neighboring membership

function Kmf , we choose

ci(nr+1) = bij̃n
, σi(nr+1) = σij̃n

(28)

Otherwise, we choose

ci(nr+1) = zi(t) (29)

σi(nr+1) =
max (|ci(nr+1) − ci(nr+1)a

|, |ci(nr+1) − ci(nr+1)b
|)√

ln 1
ε

(30)

2. e(t) > Ke but d(t) ≤ Kd

z(t) can be clustered by the adjacent fuzzy rule, however, the rule is not significant enough

to accommodate all the patterns covered by its ellipsoidal field. Therefore, the ellipsoidal

field needs to be decreased to obtain a better local approximation. A simple method to

reduce the Gaussian width is as follows

σij̃new
= Ks × σij̃old

(31)

where Ks is a reduction factor which depends on the sensitivity of the input variables.

The sensitivity measure of the ith input variable in the jth fuzzy rule is denoted as sij ,

which is calculated using the ERR matrix in (24), i.e.

sij =
erri×nr+j∑ni
i=1 erri×nr+j

(32)

The threshold Ks could be designed with a minimum value of Ks,min when sij = 0, and

a maximum value of 1 when sij is greater than or equal to the average sensitivity level of
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the input variables in the jth rule, i.e.

Ks =




1

1+
(1−Ks,min)nr2

Ks,min
(sij− 1

ni
)2

sij < 1
ni

1 1
ni

≤ sij

(33)

3. e(t) ≤ Ke but d(t) > Kd or e(t) ≤ Ke and d(t) ≤ Kd

The system has good generalization and nothing need to be done except adjusting weight.

Remark 3.3 Kmf implies the minimum required similarity level of neighboring membership

function. It is therefore recommended to set Kmf as 20% to 40% of the range value of the

corresponding input variable. Ks,min ≤ Ks ≤ 1 is used for the width adjustment, i.e. to increase

the significance of the corresponding Gaussian membership function. Not to wipe out the major

information carried by the Gaussian function, it is recommended to choose 0.8 ≤ Ks,min < 1.

Determination of Consequent Parameters

As aforementioned, TSK-type consequent parameters are determined using LLS method.

The LLS method is employed to find the weight vector w such that the error energy (eTe) is

minimized in (16) [13]. Furthermore, the LLS method provides a computationally simple but

efficient procedure for determining the weight so that it can be computed very quickly and used

for real-time control. The weight vector is calculated as

w = Θ†u (34)

where Θ† is the pseudoinverse of Θ

Θ† = (ΘT Θ)−1ΘT (35)

4 Feedforward and Recurrent G-FNN Predictors

4.1 Feedforward G-FNN NAR(X) Predictors

With proper choice of their inputs, feedforward G-FNNs can be used to resemble NAR(ny)

or NARX(ny,nx) models for time series prediction (see Figure 3). A feedforward G-FNN is a

nonlinear approximation to function F that is equivalent to optimal predictors in (7) and (8) as
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follows

ŷ(t) = F̂[y(t − 1), . . . , y(t − ny)]

= FG−FNN{[y(t − 1), . . . , y(t − ny)]T } (NAR model) (36)

or

= F̂[y(t − 1), . . . , y(t − ny), x(t − 1), . . . , x(t − nx)]

= FG−FNN{[y(t − 1), . . . , y(t − ny), x(t − 1), . . . , x(t − nx)]T } (NARX model)(37)

Figure 3: Feedforward G-FNN NARX.

As mentioned in Section 3.2, the structure and parameters, i.e. nr, cj , Σj and wj , of the

feedforward G-FNN are estimated from nd input-output training pairs using G-FNN learning

algorithm, thereby obtaining an estimate F̂ of F. Estimate are obtained by minimizing the sum

of the squared residuals
∑nd

t=1[y(t) − ŷ(t)]2. This is done by LLS method.

4.2 Recurrent G-FNN I NAR(X) Predictors

Unlike feedforward G-FNN, recurrent G-FNN I uses feedback signals while approximating NAR(X)

models (see Figure 4). By imposing G-FNN learning algorithm on the feedback connections,

the convergence can be guaranteed. To resemble NAR(X) models, output of recurrent G-FNN

I is represented as

ŷ(t) = F̂[ŷ(t − 1), . . . , ŷ(t − ny)]

= FG−FNN{[ŷ(t − 1), . . . , ŷ(t − ny)]T } (NAR model) (38)

or

= F̂[ŷ(t − 1), . . . , ŷ(t − ny), x(t − 1), . . . , x(t − nx)]
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= FG−FNN{[ŷ(t − 1), . . . , ŷ(t − ny), x(t − 1), . . . , x(t − nx)]T } (NARX model)(39)

Figure 4: Recurrent G-FNN I NARX.

A recurrent G-FNN I NAR model is very close to a relaxation network, e.g. recurrent G-

FNN I NAR(1) model is functionally equivalent to a SISO Hopfield network (a typical relaxation

network). Relaxation networks start from a given state and settle to a fixed point, typically

denoting a class [4]. Such behavior is generally considered more desirable for classification

rather than modeling. In order to use the recurrent G-FNN I to model and predict a trajectory

rather than reach a fixed point, it is advisable to use NARX model while applying recurrent

G-FNN I predictors.

4.3 Recurrent G-FNN II NARMA(X) Predictors

The recurrent G-FNN II presented in this section is G-FNN with feedback signals (see Figure

5) that can be used to estimate optimal NARMA(X) predictors in (9) and (10) as follows

ŷ(t) = F̂[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne)]

= FG−FNN{[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne)]T } (NARMA model) (40)

or

= F̂[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne), x(t − 1), . . . , x(t − nx)]

= FG−FNN{[y(t − 1), . . . , y(t − ny), ê(t − 1), . . . , ê(t − ne), x(t − 1), . . . , x(t − nx)]T }

(NARMAX model) (41)
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Figure 5: Recurrent G-FNN II NARMAX.

Similarly, topology of the recurrent G-FNN II is formed based on the G-FNN learning algo-

rithm to minimize
∑

[y(t) − ŷ(t)]2.

5 Experiments and Comparisons

To demonstrate the validity of our proposed predictors, the feedforward G-FNN, recurrent G-

FNN I and II are trained and tested on a NARX(2,1) dynamic process and chaotic Mackey-

Glass time series. In addition, performance of the proposed strategies are compared with some

recently developed fuzzy neural methods, including methods with only parameter learning such

as adaptive network-based fuzzy inference system (ANFIS) [5] and hybrid neural fuzzy inference

system (HyFIS) [6], and methods with both structure and parameter learnings such as RBF-

based adaptive fuzzy system (RBF-AFS) [1], fuzzy neural network systems using similarity

analysis (FNNS) [2], orthogonal least squares based RBF network (OLS-RBFN) [3], resource-

allocating network (RAN) [8], resource-allocating network using orthogonal techniques (RANO)

[10], growing neural gas network (GNGN) [9] and dynamic evolving neural-fuzzy inference system

(DENFIS) [11] etc.

5.1 NARX(2,1) Dynamic Process

The following dynamic NARX(2,1) process is generated

y(t) = F[y(t − 1), y(t − 2), x(t − 1)] + e(t)
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=
y(t − 1)y(t − 2)[y(t − 1) + 2.5]

1 + y2(t − 1) + y2(t − 2)
+ x(t − 1) + e(t) (42)

where the input has the form x(t) = sin(2πt/25). In this example, thresholds of the G-FNN

learning algorithm are predefined in a systematic manner based on the desired accuracy level of

the system (refer to Appendix), i.e. emax = 0.1, emin = 0.02, dmax =
√

ln( 1
0.5), dmin =

√
ln( 1

0.8),

Ks,min = 0.9, Kmf = 0.5 and Kerr = 0.002. The topology of all feedforward and recurrent G-

FNNs are estimated using the first 200 observations of a time series generated from NARX(2,1)

model in (42). The feedforward and recurrent G-FNN predictors are then tested on the following

200 observations from the model.

Two experiments are performed to verify the capabilities of the proposed G-FNN predictors

for both noise-free and noisy situations. The disturbance signal is set to be N(0, 4e − 2) white

noise in noisy condition. The results are shown in Tables 1 and 2 respectively. The testing set

error is the basis of model comparison. Training set error is indicative of whether the model has

overfitted the data.

Table 1: G-FNN Performance on NARX(2,1) Time Series (noise-free)
Model ny ne nx nr np

1 Training MSE Testing MSE
1 0 0 2 8 2.1e-1 2.1e-1

Feedforward 2 0 0 7 45 4.0e-4 3.9e-4
G-FNN 1 0 1 6 40 2.8e-3 2.8e-3

2 0 1 5 48 1.2e-4 1.1e-4
1 0 0 2 8 2.38 2.53

Recurrent 2 0 0 10 56 1.35 1.95
G-FNN I 1 0 1 7 45 7.9e-3 8.0e-3

2 0 1 5 46 1.5e-4 3.2e-4
1 1 0 3 17 10.2e-2 6.6e-2

Recurrent 2 1 0 3 26 2.7e-2 2.8e-2
G-FNN II 1 1 1 7 60 2.3e-3 6.4e-3

2 1 1 4 52 2.3e-4 4.5e-4

1np denotes number of parameters of the G-FNN and is calculated as
∑ni

i=1 nMFi ×2+nr(ni+1),
where ni = ny + ne + nx is total number of input variables of the G-FNN both feedforward and
recurrent, nMFi is the number of Gaussian membership functions of the ith input variable.

A few observations and comments can be made based on the above two tables as follow:

• As closer to the real time series model, G-FNN prediction models with ny = 2 provides

better fitting results than those with ny = 1. Similarly, NARX prediction models perform

better than NAR prediction models.
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Table 2: G-FNN Performance on NARX(2,1) Time Series (noisy)
Model ny ne nx nr np Training MSE Testing MSE

Feedforward 1 0 1 7 47 7.0e-2 8.9e-2
G-FNN 2 0 1 5 48 4.7e-2 5.7e-2

Recurrent 1 0 1 6 40 7.1e-2 10.0e-2
G-FNN I 2 0 1 6 58 5.9e-2 9.4e-2
Recurrent 1 1 1 6 52 8.0e-2 11.0e-2
G-FNN II 2 1 1 5 63 5.2e-2 9.2e-2

• Using G-FNN learning algorithm, structure and parameters of NARMAX time series model

are formed automatically and systematically. In particular, fuzzy rules of the G-FNN pre-

dictors are recruited or pruned dynamically according to their significance to the system

performance and the complexity of the mapped system. Computational complexity of the

G-FNN predictors does not increase exponentially with the increase in system dimension-

ality. In other words, the G-FNN predictors are able to generate a very parsimonious rule

base.

• The recurrent G-FNN I NAR models perform poorly that verifies our analysis in Section

4.2. The recurrent NAR models aim to reach a fixed point rather than predict a continuous

range of values.

• As aforementioned in Section 2.2.1, training MSE of the G-FNN NARX predictors in noisy

condition should be at best equal to 4e−2, i.e. variance of the white noise. This is verified

because the G-FNNs are not able to model the noise, which is good from a prediction

perspective. So in practice, it is highly recommended to use preprocessing techniques to

filter out the noise from the signal before using G-FNN predictors, such as the LPF.

• Modeling and predicting NARX(ny,nx) time series, performance sequence of the proposed

prediction models can be concluded as follows: feedforward NARX > recurrent II NARX

≈ recurrent I NARX > feedforward NAR ≈ recurrent II NAR > recurrent I NAR, where

> denotes “performs better than” and ≈ denotes “is comparable with”. Therefore, the

recurrent G-FNN I and II have no much advantage over the feedforward G-FNN in both

noise-free and noisy conditions.

To further demonstrate superior performance of the G-FNN predictors, comparisons with

three other dynamic-topology fuzzy neural methods, i.e. RBF-AFS, FNNS and OLS-RBFN, are
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shown in Table 3. In this comparison, noise-free signal and fitting model with ny = 2 and nx = 1

are used for all the methods. It can be seen that the G-FNN provides better generalization as

well as greater parsimony. The proposed G-FNN predictors are fast in learning speed because

no iterative learning loops are needed. Generating less number of rules and parameters leads to

better computational efficiency using G-FNN learning algorithm.

Table 3: Performance Comparisons with FNNS, RBF-AFS and OLS-RBFN
Model nr np Testing MSE Training Method

RBF-AFS 35 280 1.9e-2 iterative loops
FNNS 22 84 5.0e-3 300 iterative loops

OLS-RBFN 65 326 8.3e-4 one pass
Feedforward G-FNN 5 48 1.1e-4 one pass
Recurrent G-FNN I 5 46 3.2e-4 one pass
Recurrent G-FNN II 4 52 4.5e-4 one pass

5.2 Chaotic Mackey-Glass Time Series

Chaotic Mackey-Glass time series is a benchmark problem that has been considered by a number

of researchers [1, 3, 5, 8, 10]. This time series is generated from the following equation

y(t) = (1 − a)y(t − 1) +
by(t − τ)

1 + y10(t − τ)
(43)

where τ > 17 gives chaotic behavior. Higher value of τ yields higher dimensional chaos. For the

ease of comparison, parameters are selected as: a = 0.1, b = 0.2 and τ = 17.

The fitting model of (43) is chosen to be

y(t) = F[y(t − p), y(t − p −�t), y(t − p − 2�t), y(t − p − 3�t)] (44)

For simulation purpose, it is assumed that y(t) = 0, ∀t < 0 and y(0) = 1.2. Since shown in

first experiment that the feedforward G-FNN provides advantages over the recurrent G-FNNs,

only feedforward G-FNN is used in this experiment. In this example, thresholds of the G-FNN

learning algorithm are predefined in a systematic manner based on the desired accuracy level of

the system (refer to Appendix), i.e. emax = 0.1, emin = 0.01, dmax =
√

ln( 1
0.5), dmin =

√
ln( 1

0.8),

Ks,min = 0.9, Kmf = 0.25 and Kerr = 0.0005.

In this experiment, it is chosen that p = �t = 6 and 119 ≤ t ≤ 1140. The first 500 in-
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put/output data pairs of Mackey-Glass time series generated from (43) are used for training

the feedforward G-FNN while the following 500 data pairs are used for validating the identified

model. Using G-FNN learning algorithm, totally 8 fuzzy rules are generated for the feedfor-

ward G-FNN predictor during training as shown in Figure 6(a). The corresponding Gaussian

membership functions are illustrated with respect to the input variables as Figure 7. It can be

seen that the membership functions are evenly distributed over the training interval. This is

in line with the aspiration of “local representation” in fuzzy logic. The root mean square error

(RMSE) is able to converge very quickly during training as illustrated in Figure 6(b). As the

G-FNN algorithm uses one-pass learning method to avoid iterative learning loops, fast learning

speed can be achieved. Figure 8 shows that the actual and predicted values for both training

and testing data are essentially the same and their differences can only be seen on a finer scale.

Figure 6: Training performances: (a) Fuzzy rule generation; (b) RMSE during training process.

Performance comparisons of the feedforward G-FNN with RBF-AFS, OLS-RBFN, HyFIS

and ANFIS are shown in Table 4. All the methods in this comparison provide structure learning

except for HyFIS and ANFIS which only provide parameter learning. Similar to example 1,

feedforward G-FNN is shown to be better performed than RBF-AFS and OLS. G-FNN predictor

has bigger training and testing RMSEs compared with ANFIS while compacter rule base. ANFIS
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Figure 7: Gaussian membership functions w.r.t input variables.

Figure 8: Prediction results: (a) Mackey-Glass time series from t = 118 to 1140 and six-step
ahead prediction; (b) Prediction error.

20



is trained with hundreds of iterative learning loops that may lead to global optimal solution,

whereas feedforward G-FNN in this case only acquires sub-optimal solution. Another comparison

is performed for feedforward G-FNN with some existing one-pass also known as on-line learning

models, i.e. RAN, RANO, GNGN, and DENFIS, applied on the same task (see Table 5).

Feedforward G-FNN predictor outperforms the rest methods in terms of predictive accuracy as

well as computational efficency.

Table 4: Performance Comparisons with RBF-AFS, OLS-RBFN, HyFIS and ANFIS
Model nr np Training RMSE Testing RMSE1 Training Method

RBF-AFS 21 210 0.0107 0.0128 iterative loops
OLS-RBFN 35 211 0.0087 0.0089 one pass

HyFIS 16 78 0.0021 0.0100 500 iterative loops
ANFIS 16 104 0.0016 0.0030 500 iterative loops

Feedforward G-FNN 8 86 0.0062 0.0052 one pass

1Testing RMSEs are calculated based on the identified models obtained from the first 500 train-
ing pairs by each method. No further tuning of parameters is applied while testing the identified
models.

Table 5: Performance Comparisons with RAN, RANO, GNGN and DENFIS
Model nr Testing NDEI1

RAN 40 0.1642
RANO 18 0.1492
GNGN 1000 0.062

DENFIS 883 0.042
Feedforward G-FNN 8 0.0226

1Nondimensional error index (NDEI), also known as normalized RMSE, is defined as the RMSE
divided by the standard deviation of the target time series.

6 Conclusions

In this paper, one feedforward and two recurrent G-FNN predictors are proposed, tested and

compared. The proposed G-FNN predictors provide a sequential and hybrid learning method

for model structure determination and parameter identification which greatly improves predic-

tive performance. Experiments and comparisons demonstrate the superior performance of the

proposed approaches over some well-known existing methods. Further study is necessary to

investigate the robustness of the proposed methods.
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