A Method of Order $1+\sqrt{3}$ for Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix

ALEKSANDRA KOSTIĆ and HEINRICH VOSS
Section of Mathematics
Technical University of Hamburg-Harburg
D - 21071 Hamburg
Germany

Abstract

In this note we discuss a method of order $1+\sqrt{3}$ for computing the smallest eigenvalue λ_{1} of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in [7] which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of λ_{1} we obtain an improved stopping criterion.

Keywords: eigenvalue problem, Toeplitz matrix, secular equation

1 Introduction

The problem of finding the smallest eigenvalue λ_{1} of a real symmetric, positive definite Toeplitz matrix T is of considerable interest in signal processing. Given the covariance sequence of the observed data, Pisarenko [11] suggested a method which determines the sinusoidal frequencies from the eigenvector of the covariance matrix associated with its minimum eigenvalue. The computation of the minimum eigenvalue of T was studied in, e.g. [1], [4], [5], [6], [7], [8], [9], [10], [12], [13], [14].

In their seminal paper [1] Cybenko and Van Loan presented the following method: By bisection they first determine an initial approximation $\mu_{0} \in\left(\lambda_{1}, \omega_{1}\right)$ where ω_{1} denotes the smallest pole of the secular equation f, and they improve μ_{0} by Newton's method for f which converges monotonely and quadratically to λ_{1}. By replacing Newton's method by a root finding method based on Rational Hermitean interpolation of f Mackens and the second author in [7] improved this approach substantially.

In this note we revisit this method. In [7] the k-th iterate μ_{k} was chosen to be the unique root of

$$
g(\lambda)=a_{0}+a_{1}(\lambda-\alpha)+(\lambda-\alpha)^{2} \frac{b}{c-\lambda}
$$

in $\left(\alpha, \mu_{k-1}\right)$ where α is a lower bound of λ_{1} obtained in the bisection phase, and a_{0}, a_{1}, b and c are chosen such that g interpolates f at α and μ_{k-1} in the Hermitean sense. It was proved that this method converges monotonely and quadratically to λ_{1} and that it converges faster than Newton's method, i.e. if $\mu \in\left(\lambda_{1}, \omega_{1}\right)$ then the smallest root of g is closer to λ_{1} than the Newton iterate with initial guess μ.

The method suffers the same disadvantage as the method of false position for convex or concave functions: one interpolation knot (in our case α) is stationary, and only the other one converges momotonely to the wanted solution. In the root finding case one gains a substantial improvement if one drops the requirement that f has opposite signs at the two interpolation knots and replaces the method of false position by the secant method. In this note we prove that the method in [7] can be improved in a similar way if one chooses the new iterate μ_{k} as the unique root of g were the parameters a_{0}, a_{1}, b and c are determined such that g and g^{\prime} interpolate f and f^{\prime}, respectively, at μ_{k} and μ_{k-1}. It is shown that the order of convergence of this modified method is $1+\sqrt{3}$.

In [7] we based a stopping criterion on a lower bounds of λ_{1} which are determined from a quadratic interpolation. This one is improved using a further rational interpolation of f with a fixed pole which is obtained for free in the course of the algorithm.

2 Rational Hermitean interpolation

Let $T \in \mathbb{R}^{(n, n)}$ be a symmetric positive definite Toeplitz matrix. We assume that its diagonal is normalized and consider the following partition:

$$
T=\left(\begin{array}{cc}
1 & t^{T} \\
t & G
\end{array}\right)
$$

It is well known that the eigenvalues of T and of G are real and positive and satisfy the interlacing property $\lambda_{1} \leq \omega_{1} \leq \lambda_{2} \leq \ldots \leq \omega_{n-1} \leq \lambda_{n}$ where λ_{j} and ω_{j} is the j th smallest eigenvalue of T and its principal submatrix G, respectively.

We assume that $\lambda_{1}<\omega_{1}$. Then λ_{1} is the smallest root of the secular equation

$$
\begin{equation*}
f(\lambda):=-1+\lambda+t^{T}(G-\lambda I)^{-1} t=0 \tag{1}
\end{equation*}
$$

It is easily seen that f is strictly monotonely increasing and strictly convex in the interval $\left(0, \omega_{1}\right)$, and therefore for every initial value $\mu_{0} \in\left(\lambda_{1}, \omega_{1}\right)$ Newton's method converges monotonely decreasing and quadratically to λ_{1}.

Cybenko and Van Loan [1] suggested to determine an initial value μ_{0} by bisection based on Durbin's algorithm (cf. [2], p. 184 ff). If μ is not in the spectrum of any of the principal submatrices of $T-\mu I$ then Durbin's algorithm applied to $(T-\mu I) /(1-\mu)$ determines a lower triangular matrix

$$
L=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\ell_{21} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \\
\ell_{n 1} & \ell_{n 2} & \ldots & 1
\end{array}\right)
$$

such that

$$
\begin{equation*}
\frac{1}{1-\mu} L(T-\mu I) L^{T}=D:=\operatorname{diag}\left\{1, E_{1}, \ldots, E_{n-1}\right\} \tag{2}
\end{equation*}
$$

If \tilde{L} is obtained from L by dropping the last row and last column then obviously

$$
\frac{1}{1-\mu} \tilde{L}(G-\mu I) \tilde{L}^{T}=\tilde{D}:=\operatorname{diag}\left\{1, E_{1}, \ldots, E_{n-2}\right\}
$$

Hence, from Sylvester's law of inertia one gets
(i) $\mu<\lambda_{1}$, if $E_{j}>0$ for $j=1, \ldots, n-1$,
(ii) $\mu \in\left[\lambda_{1}, \omega_{1}\right)$, if $E_{j}>0$ for $j=1, \ldots, n-2$ and $E_{n-1} \leq 0$,
(iii) and $\mu>\omega_{1}$, if $E_{j}<0$ for some $j \in\{1, \ldots, n-$ $2\}$.

An upper bound of λ_{1} to start the bisection process can be obtained in the following way. Let $w:=-G^{-1} t$ be the solution of the Yule-Walker system. Then

$$
q:=\frac{1}{1+t^{T} w}\binom{1}{w}=T^{-1} e^{1}
$$

is the first iterate of the inverse iteration with shift parameter 0 starting with the unit vector e_{1} which can be expected to be not too bad an approximation of the eigenvector corresponding to the smallest eigenvalue λ_{1}. The Rayleigh quotient

$$
\begin{equation*}
R(q):=\frac{q^{T} T q}{q^{T} q}=\frac{1+t^{T} w}{1+\|w\|_{2}^{2}} \tag{3}
\end{equation*}
$$

is an upper bound of λ_{1} which should be not too bad either.

Since

$$
\begin{equation*}
f^{\prime}(\lambda)=1+\left\|(G-\lambda I)^{-1} t\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

a Newton step can be performed in the following way:

$$
\begin{aligned}
& \text { Solve }\left(G-\mu_{k} I\right) w=-t \quad \text { for } \quad w \\
& \text { and set } \mu_{k+1}:=\mu_{k}-\frac{-1+\mu_{k}-w^{T} t}{1+\|w\|_{2}^{2}}
\end{aligned}
$$

where the Yule-Walker system

$$
\begin{equation*}
(G-\mu I) w=-t \tag{5}
\end{equation*}
$$

can be solved by Durbin's algorithm requiring $2 n^{2}$ flops.

The global convergence behaviour of Newton's method usually is not satisfactory since the smallest root λ_{1} and the smallest pole ω_{1} of the rational function f can be very close to each other. In this situation the initial steps of Newton's method are extremely slow, at least if the initial guess is close to ω_{1}.

Approximating the secular equation by a suitable rational function the convergence of the method (i.e. the bisection phase and the root finding by

Newton's method) can be improved considerably. In terms of condensation methods (cf. [3]) the secular equation f can be interpreted as the exact condensation of the eigenvalue problem $T x=\lambda x$ where x_{2}, \ldots, x_{n} are chosen to be slaves and x_{1} is the only master. Using spectral information of the slave problem $(G-\mu I) v=0$ the function f obtains the form (cf. [3])

$$
f(\lambda)=f(0)+f^{\prime}(0) \lambda+\lambda^{2} \sum_{j=1}^{n-1} \frac{\alpha_{j}^{2}}{\omega_{j}-\lambda}
$$

where $\alpha_{j}, j=1, \ldots, n-1$, are real numbers depending on the eigenvectors of G. With a shift μ which is not in the spectrum of $G f$ can be rewritten as

$$
\begin{equation*}
f(\lambda)=f(\mu)+(\lambda-\mu) f^{\prime}(\mu)+(\lambda-\mu)^{2} \phi(\lambda ; \mu) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(\lambda ; \mu)=\sum_{j=1}^{n-1} \frac{\alpha_{j}^{2} \gamma_{j}^{2}}{\omega_{j}-\lambda}, \quad \gamma_{j}=\frac{\omega_{j}}{\omega_{j}-\mu} \tag{7}
\end{equation*}
$$

The representation (6) and (7) of f suggests to replace the linearization of f in Newton's method by a root finding method based on a rational model

$$
\begin{equation*}
g(\lambda ; \mu, \nu)=f(\mu)+(\lambda-\mu) f^{\prime}(\mu)+(\lambda-\mu)^{2} \frac{b}{c-\lambda} \tag{8}
\end{equation*}
$$

where μ and ν are given approximations to λ_{1} and b and c are determined such that

$$
\begin{equation*}
g(\nu ; \mu, \nu)=f(\nu), g^{\prime}(\nu ; \mu, \nu)=f^{\prime}(\nu) \tag{9}
\end{equation*}
$$

Theorem 1: Let g be given by (8) and (9) where μ and ν are not in the spectrum of G. Then

$$
\begin{equation*}
b=\frac{\phi(\nu ; \mu)^{2}}{\phi^{\prime}(\nu ; \mu)} \geq 0, c=\nu+\frac{\phi(\nu ; \mu)}{\phi^{\prime}(\nu ; \mu)} \geq \omega_{1} \tag{10}
\end{equation*}
$$

Proof: From equations (6) and (8) we obtain

$$
\begin{equation*}
g(\lambda ; \mu, \nu)-f(\lambda)=(\lambda-\mu)^{2}\left(\frac{b}{c-\lambda}-\phi(\lambda ; \mu)\right) . \tag{11}
\end{equation*}
$$

Hence the interpolation conditions (9) yield

$$
\frac{b}{c-\nu}-\phi(\nu ; \mu)=0, \frac{b}{(c-\nu)^{2}}-\phi^{\prime}(\nu ; \mu)=0
$$

from which we get the representations of b and c in (10).
$b \geq 0$ is obvious, and $c \geq \omega_{1}$ follows from

$$
c=\sum_{j=1}^{n-1} \frac{\alpha_{j}^{2} \gamma_{j}^{2}}{\left(\omega_{j}-\nu\right)^{2}} \omega_{j} / \sum_{j=1}^{n-1} \frac{\alpha_{j}^{2} \gamma_{j}^{2}}{\left(\omega_{j}-\nu\right)^{2}}
$$

which is obtained from (7) and (10).
Theorem 2: If μ and ν are not in the spectrum of G it holds

$$
\begin{equation*}
f(\lambda)-g(\lambda)=(\lambda-\mu)^{2}(\lambda-\nu)^{2} \psi(\lambda ; \mu, \nu) \tag{12}
\end{equation*}
$$

where $\psi=\psi_{1} / \psi_{2}$,

$$
\begin{gathered}
\psi_{1}=\sum_{1 \leq j<k \leq n-1} \frac{\alpha_{j}^{2} \alpha_{k}^{2} \omega_{j}^{2} \omega_{k}^{2}\left(\omega_{k}-\omega_{j}\right)^{2}}{\tau_{j k}(\mu)^{2} \tau_{j k}(\nu)^{2}\left(\omega_{j}-\lambda\right)\left(\omega_{k}-\lambda\right)} \\
\tau_{j k}(\lambda)=\left(\omega_{j}-\lambda\right)\left(\omega_{k}-\lambda\right)
\end{gathered}
$$

and

$$
\psi_{2}=\sum_{j=1}^{n-1} \frac{\alpha_{j}^{2} \omega_{j}^{2}}{\left(\omega_{j}-\mu\right)^{2}\left(\omega_{j}-\nu\right)^{2}}\left(\omega_{j}-\lambda\right)
$$

Proof: From equations (10) and (11) it follows

$$
\begin{aligned}
& f(\lambda)-g(\lambda)= \\
& \quad(\lambda-\mu)^{2}\left(\phi(\lambda ; \mu)-\frac{\phi(\nu ; \mu)^{2}}{\phi(\nu ; \mu)+(\nu-\lambda) \phi^{\prime}(\nu ; \mu)}\right),
\end{aligned}
$$

and taking advantage of (7) an easy but lengthy calculation yields (12).

In particular we obtain from Theorem $2 g\left(\lambda_{1}\right)<$ 0 , and since g is strictly monotonely increasing and strictly convex in $[0, c) \supset\left[0, \omega_{1}\right)$ and $\lim _{\lambda \uparrow c} g(\lambda ; \mu, \nu)=\infty$ the unique root of g in $[0, c)$ is an upper bound of the smallest eigenvalue λ_{1} of T.

Assume that we are given a lower bound μ_{0} of λ_{1} and an upper bound $\mu_{1} \in\left(\lambda_{1}, \omega_{1}\right)$ which is obtained by bisection, e.g. Then the unique root μ_{2} of $g\left(\cdot ; \mu_{1}, \mu_{0}\right)$ in $(0, c)$ satisfies $\lambda_{1} \leq \mu_{2}<\mu_{1}$. Mackens and the second author in [7] considered a method of false position like iteration where μ_{k+1} is defined as the unique root of $g\left(\cdot ; \mu_{k}, \mu_{0}\right)$, and they proved this method to be quadratically convergent.

Here we study the method which corresponds to the secant method where μ_{k+1} is determined as the unique root of $g\left(\cdot ; \mu_{k}, \mu_{k-1}\right)$. Again this algorithm yields a monotonely decreasing sequence $\left\{\mu_{k}\right\}$ which is bounded below by λ_{1}. The following Theorem 3 proves the convergence of this sequence to λ_{1} and its order of convergence $1+\sqrt{3}$.
Theorem 3: Let $\mu_{1} \in\left(\lambda_{1}, \omega_{1}\right)$ and for $k \geq 2$ let μ_{k+1} be the unique root of $g\left(\cdot ; \mu_{k}, \mu_{k-1}\right)$ in $\left[0, \omega_{1}\right)$.

Then the sequence $\left\{\mu_{k}\right\}$ converges monotonely decreasing to λ_{1}, and its R-order of convergence is $1+\sqrt{3}$.
Proof: Let $\epsilon_{k}:=\mu_{k}-\lambda_{1}$. From $g\left(\mu_{k+1} ; \mu_{k}, \mu_{k-1}\right)=$ 0 and Theorem 2 we obtain for some $\xi_{k} \in\left(\lambda_{1}, \mu_{k+1}\right)$

$$
\begin{aligned}
& f\left(\mu_{k+1}\right)-f\left(\lambda_{1}\right)=f^{\prime}\left(\xi_{k}\right) \epsilon_{k+1}= \\
& \quad\left(\mu_{k}-\mu_{k+1}\right)^{2}\left(\mu_{k-1}-\mu_{k+1}\right)^{2} \psi\left(\mu_{k+1}, \mu_{k}, \mu_{k-1}\right)
\end{aligned}
$$

The sequence $\left\{\mu_{k}\right\}$ is monotonely decreasing and bounded away from ω_{1}. Hence there exists $C>0$ such that

$$
\epsilon_{k+1} \leq C \epsilon_{k}^{2} \epsilon_{k-1}^{2}
$$

and for $e_{k}:=C^{1 / 3} \epsilon_{k}$ it holds

$$
e_{k+1} \leq e_{k}^{2} e_{k-1}^{2}
$$

Let $p=1+\sqrt{3}$ and $\eta:=\min \left(e_{0}, e_{1}^{1 / p}\right)$. We prove by induction

$$
\begin{equation*}
e_{k} \leq \eta^{\left(p^{k}\right)} \tag{13}
\end{equation*}
$$

which demonstrates that the R -order of convergence of μ_{k} equals $1+\sqrt{3}$.

For $k=0$ and $k=1$ (13) is trivial. If it hold for integers up to k then it follows from $2(1+p)=p^{2}$

$$
\begin{aligned}
e_{k+1} & \leq e_{k}^{2} e_{k-1}^{2} \leq \eta^{\left(2 p^{k}\right)} \eta^{\left(2 p^{k-1}\right)} \\
& =\eta^{\left(2(1+p) p^{k-1}\right)}=\eta^{\left(p^{k+1}\right)}
\end{aligned}
$$

With a further rational interpolation of the secular equation we are able to construct a lower bound of λ_{1}. This will be the basis of our stopping criterion.
Theorem 4: Let $\kappa \in\left(0, \lambda_{1}\right), \mu \in\left(\kappa, \omega_{1}\right)$ and $p \in\left(\kappa, \omega_{1}\right)$. Let

$$
h(\lambda):=f(\mu)+f^{\prime}(\mu)(\lambda-\mu)+(\lambda-\mu)^{2} \frac{b}{p-\lambda}
$$

where b is determined such that the interpolation condition $h(\kappa)=f(\kappa)$ holds.

Then $b>0$, i.e. h is strictly monotonely increasing and strictly convex in $(0, p)$, and the unique root of h in $(0, p)$ is a lower bound of λ_{1}.
Proof: From equation (6) and from the interpolation condition $h(\kappa)=f(\kappa)$ we obtain

$$
b=(p-\kappa) \phi(\kappa ; \mu)>0
$$

That the unique root $\tilde{\lambda}$ of h in $(0, p)$ is a lower bound of λ_{1} is obvious for $p \leq \lambda_{1}$. For $p>\lambda_{1}$ we have to
show $h\left(\lambda_{1}\right)>0$. This follows from equations (6) and (7):

$$
\begin{aligned}
& h\left(\lambda_{1}\right)=f(\mu)+f^{\prime}(\mu)\left(\lambda_{1}-\mu\right)+\left(\lambda_{1}-\mu\right)^{2} \frac{b}{p-\lambda_{1}} \\
& \quad=f\left(\lambda_{1}\right)-\left(\lambda_{1}-\mu\right)^{2}\left(\phi\left(\lambda_{1}\right)-\frac{(p-\kappa) \phi(\kappa)}{p-\lambda_{1}}\right) \\
& \quad=\frac{\left(\lambda_{1}-\mu\right)^{2}}{p-\lambda_{1}}\left((p-\kappa) \phi(\kappa)-\left(p-\lambda_{1}\right) \phi\left(\lambda_{1}\right)\right) \\
& \quad=\frac{\left(\lambda_{1}-\mu\right)^{2}}{p-\lambda_{1}} \sum_{j=1}^{n-1} \gamma_{j}^{2}\left(\frac{p-\kappa}{\omega_{j}-\kappa}-\frac{p-\lambda_{1}}{\omega_{j}-\lambda_{1}}\right) \\
& \quad=\frac{\left(\lambda_{1}-\mu\right)^{2}}{p-\lambda_{1}} \sum_{j=1}^{n-1} \gamma_{j}^{2} \frac{\left(\omega_{j}-p\right)\left(\lambda_{1}-\kappa\right)}{\left(\omega_{j}-\kappa\right)\left(\omega_{j}-\lambda_{1}\right)}>0
\end{aligned}
$$

Theorem 4 can be used to construct lower bounds of λ_{1} in the course of the algorithm which are essentially for free. We already pointed out that Durbin's algorithm determines the factorization of $T-\mu I$ given in (2). Hence, solving the Yule-Walker system for some μ we can evaluate the characteristic polynomial

$$
\chi(\mu)=(1-\mu) E_{1} \cdot \ldots \cdot E_{n-2}
$$

of G at negligible cost. Moreover, $\chi(\lambda)($ or $-\chi(\lambda))$ is monotonely decreasing and convex for $\lambda \leq \omega_{1}$. Therefore, if $\chi\left(\mu_{1}\right)$ and $\chi\left(\mu_{2}\right)$ are known for $\mu_{1}, \mu_{2} \in\left[0, \omega_{1}\right)$ then a secant step for χ yields an improved lower bound of ω_{1}.

3 A MATLAB progam

The following MATLAB program determines a lower bound μ of the smallest eigenvalue of a symmetric and positive definite Toeplitz matrix which is given by the vector t of dimension n. It uses the function [$\mathrm{f}, \mathrm{Df}, \mathrm{chi}, \mathrm{loc}]=$ durbin $(\mathrm{mu}, \mathrm{t}, \mathrm{n})$ which returns the value f of the secular equation at μ, its derivative Df , the value chi of the characteristic polynomial of G, and the location

$$
\text { loc }=\left\{\begin{array}{lll}
0 & \text { if } & \mu<\lambda_{1} \\
1 & \text { if } & \lambda_{1} \leq \mu<\omega_{1} \\
2 & \text { if } & \mu>\omega_{1}
\end{array}\right.
$$

of mu within the spectrum of T.
The functions rat_app and rat_app_fp return the smallest positive root of the rational function g and h, respectively.

```
function mu=toeplitz_ev(t,n,tol)
[f0,Df0,chi0,loc]=durbin(0,t,n);
mu0=0; p=0;
lb=0; ub=-f0/Df0;
ka=0; fka=f0;
mu=rand*ub;
rel_err=1;
while abs(rel_err) > tol
    [f,Df,chi,loc]=durbin(mu,t,n);
    if loc == 2
        lambda=rat_app(mu0,f0,Df0,mu,f,Df);
        ub=min([mu,ub,lambda]);
        mu=0.5*(lb+ub);
    else
        p=max(p,mu-(mu-mu0)*chi/(chi-chi0));
        lb=rat_app_fp(ka,fka,mu,f,Df,p);
        root=rat_app(mu0,f0,Df0,mu,f,Df));
        ub=min(ub,root);
        mu0=mu;f0=f;Df0=Df;chi0=chi;
        if loc == 0
            ka=mu0;fka=f0;end
        rel_err=ub/lb-1;
        if loc == 1
            mu=root;
        else
            newt=mu-f0/Df0;
            if abs((root-newt)/root)<0.01
                mu=root;
            else
                mu=0.1*lb+0.9*ub;
                    end
            end
        end
    end
```

Some remarks are in order.
$2-3: \mathrm{mu} 0<\lambda_{1}$ with known $\mathrm{f} 0=f(\mathrm{mu} 0)$, $\operatorname{Df} 0=f^{\prime}(\mathrm{mu} 0)$ and chi0 $=\chi(\mathrm{muO})$ is one knot in the rational interpolation of f and the secant method for χ. p is a lower bound of ω_{1} used to determine a lower bound of λ_{1}.

4 : lb is a lower bound of λ_{1} and ub an upper bound. $u b=-s 0 / D s 0$ is obtained from (6).

5 : ka is a lower bound of λ_{1} with known $\mathrm{fka}=f(\mathrm{ka})$ which corresponds to κ in Theorem 4.

6 : The algorithm starts with a test parameter mu randomly chosen in the interval [lb, ub].
$10-13$: By Theorem 2 the smallest root lambda of $g(\cdot ; \mathrm{mu}, \mathrm{muO})$ is an upper bound of λ_{1}. It is for free, and in some cases it is smaller than mu. This modification of the bisection method actually improves the performance of the method.

15 : The lower bound p of the pole might be improved by a secant step for the characteristic polynomial of G.
$16: \mathrm{lb}$ is the lower bound of λ_{1} from Theorem 4.

17-18: The root of $g(\cdot ; \mathrm{mu}, \mathrm{mu} 0)$ is an upper bound of λ_{1}, and it further enhances the bisection method.
$20-21$: If mu< λ_{1}, mu can be used as κ of Theorem 4 in subsequent iteration steps.
$23-24$: For $m u \in\left(\lambda_{1}, \omega_{1}\right)$ the method continues with test parameter mu=root.
$25-32:$ For $\mathrm{mu}<\lambda_{1}$ we introduce a tie break rule which was motivated in [7]. newt is the result of a Newton step for f. Hence root and newt are second order approximations of λ_{1}. If they are not close to each other the test parameter mu can not be close to λ_{1}. In this case we reduce the next test parameter. This modification improves the performance of the method, in particular if the gap between λ_{1} and ω_{1} is very narrow.

4 Numerical results

To test the method we considered the following class of Toeplitz matrices:

$$
\begin{equation*}
T=m \sum_{k=1}^{n} \eta_{k} T_{2 \pi \theta_{k}} \tag{14}
\end{equation*}
$$

where m is chosen such that the diagonal of T is normalized to $t_{0}=1$,

$$
T_{\theta}=\left(T_{i j}\right)=(\cos (\theta(i-j)))
$$

and η_{k} and θ_{k} are uniformly distributed random numbers in the interval $[0,1]$ (cf. Cybenko and Van Loan [1]).

Table 1 contains the average number of flops and the average number of Durbin steps needed to determine the smallest eigenvalue in 100 test problems with each of the dimensions $n=32,64,128,256$, 512,1024 and 2048. The iteration was terminated if the error was guaranteed to be less than 10^{-6} by the error bound from Theorem 4. For comparison we added the results for the quadratically convergent method in [7].

dim.	order $1+\sqrt{3}$		method in [7]	
	flops	steps	flops	steps
32	1.086 E04	4.34	1.153 E04	4.67
64	4.639 E04	5.14	4.669 E04	5.39
128	1.804 E05	5.25	1.900 E05	5.79
256	7.837 E05	5.84	8.790 E05	6.85
512	3.512 E06	6.62	3.892 E06	7.69
1024	1.531 E 07	7.26	1.730 E07	8.75
2048	6.268 E07	7.45	7.590 E07	9.59

Tab. 1.

5 Concluding Remarks

We have presented an algorithm for computing the smallest eigenvalue of a symmetric and positive definite Toeplitz matrix of order $1+\sqrt{3}$. Realistic error bounds were obtained at negligible cost. We used Durbin's algorithm to solve the occuring YuleWalker systems and to determine the Schur parameters E_{j} requiring $2 n^{2}$ flops. This information can be gained from superfast Toeplitz solvers the complexity of which is only $O\left(n \log ^{2} n\right)$ operations. In a similar way as in [12] or [13] the method can be enhanced taking advantage of symmetry properties of the eigenvectors of T.

References

[1] G. Cybenko and C.F. Van Loan. Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix. SIAM J. Sci. Stat. Comput., 7:123-131, 1986.
[2] G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore and London, 3rd edition, 1996.
[3] T. Hitziger, W. Mackens, and H. Voss. A condensation-projection method for the generalized eigenvalue problem. In H. Power and C. A. Brebbia, editors, High Performance

Computing 1, Computational Mechanics Applications, pages $239-282$, London, 1995. Elsevier.
[4] Y.H. Hu and S.-Y. Kung. Toeplitz eigensystem solver. IEEE Trans. Acoustics, Speech, Signal Processing, 33:1264-1271, 1985.
[5] T. Huckle. Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix with spectral transformation Lanczos method. In J. Albrecht, L. Collatz, P. Hagedorn, and W. Velte, editors, Numerical Treatment of Eigenvalue Problems, volume 5, pages 109 - 115, Basel, 1991. Birkhäuser Verlag.
[6] T. Huckle. Circulant and skewcirculant matrices for solving Toeplitz matrices. SIAM J. Matr. Anal. Appl., 13:767-777, 1992.
[7] W. Mackens and H. Voss. The minimum eigenvalue of a symmetric positive definite Toeplitz matrix and rational Hermitian interpolation. SIAM J. Matr. Anal. Appl., 18:521-534, 1997.
[8] W. Mackens and H. Voss. A projection method for computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix. Lin. Alg. Appl., 275-276:401-415, 1998.
[9] W. Mackens and H. Voss. Computing the minimal eigenvalue of a symmetric positive definite Toeplitz matrix by Newton type methods. SIAM J. Sci. Comput., 21:1650-1656, 2000.
[10] N. Mastronardi and D. Boley. Computing the smallest eigenpair of a symmetric positive definite Toeplitz matrix. SIAM J. Sci. Comput., 20:1921-1927, 1999.
[11] V.F. Pisarenko. The retrieval of harmonics from a covariance function. Geophys. J. R. astr. Soc., 33:347-366, 1973.
[12] H. Voss. Symmetric schemes for computing the minimum eigenvalue of a symmetric Toeplitz matrix. Lin. Alg. Appl., 287:359-371, 1999.
[13] H. Voss. A symmetry exploiting Lanczos method for symmetric Toeplitz matrices. Numerical Algorithms, 25:377-385, 2000.
[14] H. Voss. A variant of the inverted Lanczos method. BIT, 41:1111-1120, 2001.

