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Abstrract:- For many application domains the best way to produce intelligent behavior is to encode knowledge about
this domain to knowledge base. Verification of KB is one of the crucial issues in developing reliable knowledge-
based systems. SAT techniques as resolution and DPLL can be used for verifying knowledge bases. We give a
transformation of a DPLL refutation to a resolution refutation of a number of steps which is essentially less than the
number of unit resolution steps applied in the DPLL refutation.
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1 Introduction

Last years there has been an explosion of research in ar-
tificial intelligence (AI) into propositional satisfiability
(SAT), because we can often solve real world problems
by encoding them into SAT. SAT problem is to deter-
mine for a given propositional formula whether there
exists a satisfying assignment, i.e., whether it is not
equivalent to false.

AI focuses on developing intelligent software and
hardware systems. In many application domains the
best way to produce intelligent behavior of such a sys-
tem is encoding knowledge about the domain into a
Knowledge Base (KB). The KB needs to have three ma-
jor properties: soundness, confidence that a conclusion
is true; completeness, the system has the knowledge to
be able to reach a conclusion; and tractability, it is real-
istic that a conclusion can be reached.

Verification of KB is one of the crucial issues in
developing reliable knowledge-based systems. KB is a
set of if-then rules. The problem of verifying of some
KBs can be naturally transformed to SAT.

Propositional resolution proof system is a very im-
portant one in AI, and it constitutes an essential part of
many automated theorem provers.

Resolution proof systems [4] is a refutation system.
It means that we are refuting initial set of clauses by de-
riving a contradiction represented as the empty clause.

In this proof system we deal with formulas in conjunc-
tive normal form (CNFs). Many natural statements ei-
ther can be represented as CNFs or transformed to CNFs.

To prove that we can conclude a formulaV from a
set of axiomsA we have to negateV and add it toA
and convert all formulas to CNF.

A related method is the DPLL procedure [1]. It con-
sists of a combination of unit resolution and doing case
analysis uponp and¬p and going on recursively.

The paper is organized as follows. In section 2 and
section 3 we give some definitions, preliminary lemmas
and the basic theorem. In section 4 we give the defini-
tion of a DPLL tree such that the nodes correspond to
recursive calls in the DPLL procedure. Section 5 con-
tains the main results about the length of the resolution
refutation which are presented in two theorems. In sec-
tion 6 we show that the upper bound is tight. Section 7
contains some conclusions.

2 Knowledge representation and inference

engine in KBs

There are three main parts of knowledge-based system:
a KB, a database of facts, an inference engine. A popu-
lar approach for knowledge representation in a KB is to
use IF-THEN rules.

At the logical level rule IFA THEN B can be rep-
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resented likeA → B.
An inference engine is a system that allows to de-

rive new rules and facts from currently-known rules and
facts.

One of the inference engines is resolution. To prove
with resolution thatP can be derived from a KB we
have to convert¬P and rules in KB to CNF and to apply
a resolution rule.

3 Basic definitions and preliminaries

This section contains notations and definitions used in
the paper.

Let A be a set of atoms. The symbolsp, q andr are
reserved to denote atoms.

A literal is an atom or a negated atom, as¬p. The
typical elements of the literal setL are denoted asl and
k.

A clause is a finite, possibly empty, set of liter-
als. The lettersC andD are reserved to denote clauses.
The number of literals in the clause is thelengthof this
clause. Clauses of length one are calledunit clauses.The
empty clause is denoted by⊥.

A CNF is a finite, possibly empty, set of clauses.
The lettersV andW are used to denote CNFs.

SupposeV, W are CNFs;C ∪ {p}, D ∪ {¬p} ∈
V , wherep ∈ A. Then the transition fromV to W ,
whereW = V ∪ {C ∪ D} is called a resolution step

and denoted asV
CDp7−→W . C, D, p can be omitted in the

context where they are not relevant.
If V0 7−→ ... 7−→ Vn thenV0, ..., Vn is called a res-

olution sequence oflength n. If V0
l17−→u ...

ln7−→u Vn

thenV0, ..., Vn is called a unit resolution sequence.

SupposeV0 is a CNF andC is a clause. We say
thatC is derivedfrom V0 in n > 0 resolution steps if
there is a resolution sequenceV0, ..., Vn such thatVn =
Vn−1 ∪ C. And we say thatC is derived fromV0 in 0
resolution steps ifC ∈ V0.

An assignment is a mapping that assignsfalse or
true to atoms. If the atomp is assigned to true then
¬p is assigned to false and vice versa. An assignment
satisfiesa clause if it maps at least one of its literals to

true. An assignment satisfies a CNFV if and only if it
satisfieseach of its clauses, andV is calledsatisfiable.
If there is no assignment that maps a CNFV to true
thenV is calledunsatisfiable.

A resolution sequenceV0, ..., Vn such that⊥ ∈ Vn

is called aresolution refutationandn is called alength
of the resolution refutation.

In the following we use the well-known fact that the
CNFV is unsatisfiable if there is a resolution refutation
starting fromV .

In our paper some proofs are omitted, they can be
found in [6].

Lemma 1 If ⊥ can be derived inm resolution steps
fromV ∪ {{l}} then either⊥ can be derived fromV in
at mostm resolution steps or¬l can be derived fromV
in at mostm− 1 resolution steps.

The following theorem follows from Lemma 1.

Theorem 2 If ⊥ can be derived fromV ∪ {{l}} in
m > 0 resolution steps, and⊥ can be derived from
V ∪ {{¬l}} in n > 0 resolution steps then⊥ can be
derived fromV in at mostm + n− 1 resolution steps.

Proof. If ⊥ can be derived fromV ∪{{l}} in m > 0
resolution steps then by Lemma 1 one of the following
holds

1. ⊥ can be derived fromV in at mostm resolution
steps.

2. ¬l can be derived fromV in at mostm− 1 reso-
lution steps.

If ⊥ can be derived fromV ∪ {{¬l}} in n >
0 resolution steps then by Lemma 1 one of the
following holds

3. ⊥ can be derived fromV in at mostn resolution
steps.

4. l can be derived fromV in at mostm− 1 resolu-
tion steps.
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In cases 1 or 3⊥ can be derived fromV in min(m,n)
resolution steps. In case of combination of cases 2 and
4 we need extra resolution step to get⊥. And it can be
derived inm− 1 + n− 1 + 1 = m + n− 1 resolution
steps. ¤

This theorem is basic for result described in the fol-
lowing.

4 A DPLL procedure

Given aCNF V and a literall. Let V |l denotes the
formula obtained fromV by removing all the clauses
that containl and deleting all¬l from all clauses that
contain¬l.

A literal l in theCNF V is called monotone if¬l
does not appear inV .

The procedure of deleting monotone literals fromV
is denoted asmon lit(V ).

A DPLL tree T onV is a binary tree , where every
node is labelled with a unit resolution sequence. The
root is labelled with a unit resolution sequence starting
from V . If a node is labelled with the unit resolution
sequenceV1, ..., Vn then the left child is labelled with
a unit resolution sequence starting frommon lit(Vn|p)
and the right child is labelled with a unit resolution se-
quence starting frommon lit(Vn|¬p). A node is a leaf
if eitherVn = ∅ or⊥ ∈ Vn.

A DPLL tree is nothing else as a static representa-
tion of the recursive calls in the executing of the usual
DPLL procedure.

If T is a DPLL tree onV thenV is satisfiable if
and only if there exists a leaf inT labelled with a unit
resolution sequenceV1, ..., Vn such thatVn = ∅.

Hence building a DPLL tree implies decision pro-
cedure for satisfiability, therefore we will speak about
DPLL proof rather than DPLL tree.

A DPLL tree on unsatisfiable formula is called a
DPLL refutation.

Suppose a node is labelled withmon lit(V |l) 7−→
V1 7−→ ...7−→ Vn. Then the number of unit resolution
steps corresponding to the node is defined to include the
length of the unit resolution sequencen and the number
of ¬l in V .

The total number of unit resolution steps for the
DPLL tree is called the length of the DPLL proof.

5 Upper bounds on resolution refutation

length

In this section we give two upper bounds on resolution
refutation length measured in the length of the DPLL
refutation and the number of its nodes. The first one is
a direct analysis of a DPLL refutation. The second one
has an extra restriction on a resolution sequence used in
the first result. The second bound is stronger, we even
show that it will be tight.

Theorem 3 SupposeV is an unsatisfiable CNF; a DPLL
refutation onV has lengths and the number of its nodes
is r. Then there exists a resolution refutation onV of
length less or equals− (r − 1)/2.

Proof. Induction onr.
Base case. Letr = 1. Thens− (1− 1)/2 = s. The

lemma holds.
Inductive step. Assume that the Lemma holds for

r− 2. By induction hypothesis the lemma holds for the
subtrees rooted at children nodes of the root.

Let one subtree have a DPLL refutation of lengths1

and the number of its nodes ber1. Let another subtree
have a DPLL refutation of lengths2 and the number of
its nodes ber2. And s0 be a number of unit resolution
steps corresponding to the root.

Then by Theorem 2 the length of a resolution refu-
tation onV is s0 + ((s1 − (r1 − 1)/2) + (s2 − (r2 −
1)/2) − 1) = s − (r − 1)/2, wheres = s0 + s1 + s2,
r = r1 + r2 + 1. ¤

We can improve the upper bound by making a re-
striction on the unit resolution sequences associated with
nodes of the DPLL refutation.

We say that a unit resolution sequence iscomplete
if no unit resolution steps can be applied at the last CNF
of the sequence.

For the proof of the theorem we use the following
lemmas.
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Lemma 4 Let V be a CNF such that it contains no
monotone literals, and no unit resolution can be ap-
plied. ThenV contains no unit clauses.

Proof. By contradiction.
Let V = {{l}} ∪ V ′, whereV ′ is aCNF . By the

lemma assumptionV contains no monotone literals so
∃C ∈ V ′ : ¬l ∈ C. And at least one unit resolution
step can be applied. We have a contradiction. AndV
contains no unit clauses. ¤

Now we arrive at the crucial observation mentioned
in the introduction.

Lemma 5 If ⊥ can be derived fromV ∪{{l}} in n ≥ 2
unit resolution steps, andV contains no unit clauses
then either¬l or ⊥ can be derived fromV in at most
n− 2 resolution steps.

Proof. Induction onn.
Base case.n = 2.
As V does not contain monotone literals so⊥ can-

not be derived fromV in two unit resolution steps . And
the lemma holds forn = 2.

Inductive step. Let the lemma hold forn− 1.
Suppose⊥ can be derived fromV ∪{{l}} in n ≥ 2

unit resolution steps.
If the unit resolution sequence contains more than

onel-step then the lemma holds.
As V contains no unit clauses the first unit resolu-

tion step is anl-step. So the remaining case if this first
step is the onlyl-step.

ThenV ∪ {{l}} l7−→u V ∪ {{l}} ∪ {{l′}}. And⊥
can be derived fromV ∪ {{l}} 7−→u V∪{{l}} ∪ {{l′}}
in n− 1 unit resolution step.

As the resolution sequence contains only onel-step
then⊥ can be derived fromV ∪ {{l′}} in n − 1 unit
resolution step.

By induction hypothesis either¬l′ or⊥ can be de-
rived fromV ∪ {{l′}} in no more thann− 3 resolution
steps. As{¬l, l′} ∈ V then we need one extra resolu-
tion step in case if we derived¬l′. And either¬l or⊥
can be derived fromV in n− 2 resolution steps. ¤

Just like Theorem 2 was needed to prove Theorem 3
we now state Theorem 6 to use it for proving Theorem
7.

Theorem 6 SupposeV contains no unit clauses. If⊥
can be derived fromV ∪{{l}} in m > 2 unit resolution
steps, and⊥ can be derived fromV ∪ {{¬l}} in n > 2
unit resolution steps then⊥ can be derived fromV in
m + n− 3 resolution steps.

Proof. If ⊥ can be derived fromV ∪{{l}} in m > 2
resolution steps then by Lemma 5 one of the following
holds

1. ⊥ can be derived fromV in at mostm − 2 reso-
lution steps.

2. ¬l can be derived fromV in at mostm− 2 reso-
lution steps.

If ⊥ can be derived fromV ∪ {{¬l}} in n >
2 resolution steps then by Lemma 5 one of the
following holds

3. ⊥ can be derived fromV in at mostn− 2 resolu-
tion steps.

4. l can be derived fromV in at mostm− 2 resolu-
tion steps.

In cases 1 or 3⊥ can be derived fromV in min(m−
2, n − 2) resolution steps. Form > 2 and n > 2
min(m−2, n−2) ≤ m+n−3. In case of combination
of cases 2 and 4 we need extra resolution step to get⊥.
And it can be derived inm−2+n−2+1 = m+n−3
resolution steps. ¤

Theorem 7 SupposeV is an unsatisfiable CNF; a DPLL
refutation onV has lengths, the number of its nodes is
r ≥ 3 and every unit resolution sequence associated
with a node is complete. Then there exists a resolution
refutation onV of length less or equals− r.

Proof. Induction onr.
Base case. Letr = 3. Then the Lemma holds by

Lemma 4 and Theorem 6.
Inductive step. Assume that the Lemma holds for

r− 2. By induction hypothesis the lemma holds for the
subtrees rooted at children nodes of the root.

Let one subtree have a DPLL refutation of lengths1

and the number of its nodes ber1. Let another subtree
have a DPLL refutation of lengths2 and the number of
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its nodes ber2. And s0 be a number of unit resolution
steps corresponding to the root.

Then by Theorem 2 the length of a resolution refu-
tation onV is s0 +((s1− r1)+ (s2− r2)− 1) = s− r,
wheres = s0 + s1 + s2, r = r1 + r2 + 1. ¤

6 Tightness of the upper bound

A CNF is minimally unsatisfiableif it is unsatisfiable
and each of its subsets is satisfiable.

LetV0, ..., Vn be a resolution sequence, whereVn =
{C1, ..., Cm}. Then a directed graphG(V, E), whereV
is a set of vertices andE is a set of edges is called ares-
olution graphif V = {C1, ..., Cm} andE = {(Ci, Cj) :
∃r ∈ {0, ..., n− 1} , l ∈ L, Ck ∈ Vr such thatVr+1 =
Vr ∪ Cj , whereCj = (Ci ∪ Ck)\{l,¬l}}.

Lemma 8 Suppose minimally unsatisfiable CNFV con-
tainsn clauses. Then there is no resolution refutation
onV with length less thann− 1.

We introduce some class of CNFs to prove that the
upper bound presented by Theorem 7 is tight.

Letn ≥ 1. We defineVn = {{¬p1, q1}, {¬p2,¬q1},
q2}, ..., {¬pn,¬qn−1, qn}, {¬qn, qn+1}, {¬qn, qn+2},
{¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31},
{¬r31,¬r21}, ..., {pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n},
{¬r2n,¬r3n}}.

Lemma 9 For n ≥ 1 Vn is minimally unsatisfiable.

Lemma 10 For n ≥ 1 Vn has a DPLL refutation of
length7n + 3 and the number of its nodes is2n + 1.

Now we are ready to prove tightness of our main
result.

Theorem 11 For n ≥ 1 Vn has a DPLL refutation such
that it has lengths, the number of its nodes isr and
there is no resolution refutation onVn of length less
thans− r.

Proof. By Lemma 10∀n ≥ 1 Vn has a DPLL refu-
tation of length7n + 3 and the number of its nodes is
2n + 1. By Theorem 7 there exists a resolution refuta-
tion onV of length less or equal5n + 2.

For n ≥ 1 Vn has5n + 3 clauses. By Lemma 8
and Lemma 9 there is no resolution refutation onV of
length less than5n + 2. ¤

7 Conclusions

In some application domains real time knowledge-based
systems are used. New rules can be added to a KB dur-
ing the work of such a system. And fast verification of
the KB is a very crucial issue. Our approach can be im-
plemented for verifying of a propositional part of a KB.
From our experiments we found out that for many for-
mulas, including pigeon hole formulas, the constructed
resolution refutation had a length that was much less
thans− r.

References:
[1] M. Davis, G. Logemann, and D. Loveland. A

machine program for theorem proving. C. ACM 5 (1962).
394-397.

[2] M. Davis, and H. Putnam. A computing proce-
dure for quantification theory. J. ACM 7 (1960). 201-
215.

[3] D.W. Loveland. Automated theorem proving: a
logic basis. North-Holland, Amsterdam, 1978.

[4] J.A. Robinson. A machine oriented logic based
on the resolution principle. J. ACM 12 (1965). 23-41.

[5] J. P. Marques Silva. An overview of backtrack
search satisfiability algorithms. Fifth International Sym-
posium on Artificial Intelligence and Mathematics, Jan-
uary 1998.

[6] O.Tveretina, H. Zantema, Transforming DPLL
to Resolution. Technical report, Technical University of
Eindhoven, http://www.win.tue.nl/ hzantema/other.html.

[7] N. Yugami. Theoretical analysis of Davis-Putnam
procedure and propositional satisfiability. In Proceed-
ings of IJCAI-95. 282-288, 1995.

5


