
On Performance of Iterative Prefactorization Methods

for Solving Nonsymmetric Linear Systems

ZBIGNIEW I. WOŹNICKI and HENRYK A. JEDRZEJEC
Institute of Atomic Energy

05–400 Otwock–Świerk, POLAND
GRZEGORZ PUCEK

Warsaw University of Technology, POLAND

Abstract: The main subject of the paper is the study of performance of iterative prefactorization meth-
ods for solving linear systems of the type arising from the difference approximation of nonself-adjoint
two-dimensional elliptic partial differential equations. The implementation of particular algorithms
is demonstrated with solving the system of difference equations indexed by mesh points. Numerical
experiments are performed for problems taken from the literature.

Key-Words: Linear equation systems, iterative methods, prefactorization algorithms, convergence
analysis.

1 Introduction
Consider the iterative solution of the linear sys-
tem

Aφ = c, (1)

where it is assumed that φ, c ∈ IRn and A ∈
IRn×n is a nonsingular matrix.

A large class of iterative methods for solving
Eq.(1) can be formulated by means of the split-
ting

A = M − N with M − nonsingular, (2)

and the approximate solution φ(t) is generated
as follows:

Mφ(t+1) = Nφ(t) + c, t ≥ 0 (3)
or equivalently

φ(t+1) = Vφ(t) + M−1c, t ≥ 0, (4)

where the starting vector φ(0) is given and
V = M−1N is the iteration matrix. The
above iterative method is convergent to the
unique solution

φ = A−1c (5)

for each φ(0) if and only if %(V) < 1. The con-
vergence analysis of the above method is based
on the spectral radius of the iteration matrix
%(V). For large values of t, the solution error de-
creases in magnitude approximately by factor of
%(V) at each iteration step; the smaller is %(V),
the quicker is the convergence. The convergence
properties of different splittings of A are exten-
sively analized in [5,10].

The evaluation of efficiency of different algo-
rithms is usually performed by comparing the
computational work of solutions obtained with
the same stopping criterion and initial guess. In
the analysis of the reliability of iterative solu-
tions of Aφ = c, it is convenient to consider the
(true) error vector

e(t) = φ− φ(t), (6)
the inner (or pseudo-residual) error
vector

δ(t) = φ(t+1) − φ(t) (7)
and the residual vector

r(t) = Aφ(t) − c, (8)

where φ = A−1c is assumed as the ”exact” solu-
tion.

From the viewpoint of the solution reliabil-
ity in iterative methods based on the splitting
of A = M − N [4], it is desired to use the
relative inner error vector δ̄

(t) whose com-
ponents are defined, as follows

δ̄
(t)
i =

φ
(t)
i − φ

(t−1)
i

φ
(t)
i

(9)

and the relative (true) error vector ē(t) with
components

ē
(t)
i =

φi − φ
(t)
i

φ
(t)
i

. (10)

If for any i, φ
(t)
i = 0 (or very close to zero) ap-

pears in the iteration process, then such a compo-
nent of δ̄

(t) and ē(t) is ignored in computations.

1



In the numerical analysis of matrix splitting
iterative methods the termination test

‖ δ̄
(t) ‖∞ ≤ ε (11)

can be practically considered as the most use-
ful stopping criterion independent on the initial
guess φ(0).

Most recent iterative methods terminate when
the residual vector r(t) is sufficiently small and
the termination test

‖ r(t) ‖2

‖ r(0) ‖2
≤ ε (12)

is most commonly used criterion in Krylov sub-
space algorithms among which the generalized
minimal residual algorithm GMRES [1] is consid-
ered as one of the most effective iterative meth-
ods for solving nonsymmetric linear systems. As
is well known, this stopping criterion has the dis-
advantage of depending too strongly on the ini-
tial guess φ(0). If φ(0) is very large and very inac-
curate, ‖ r(0) ‖2 will be very large and the crite-
rion (12) may stop the iteration too soon. More-
over, as can be seen in numerical experiments
for solving systems with nonsymmetric matrices,
the stopping criterion (12) used in GMRES al-
gorithms is accompanied by large values of both
‖ r(t) ‖2 and ‖ e(t) ‖2 in comparison to matrix
splitting iterative solutions obtained by means of
classical and prefactorization algorithms.

Usually the matrix A is defined by the follow-
ing decomposition:

A = K − L − U (13)

where K, L and U are nonsingular diagonal,
strictly lower triangular and strictly upper trian-
gular parts of A, respectively. For a large class of
matrix problems, arising at the discretization of
elliptic partial differential equations, coefficient
matrices A are diagonally dominant, and their
solutions are mainly obtained by solving a system
of difference equations with unknowns oriented in
the case of two-dimensional geometry by mesh
points (xn, ym), where the associated unknown
φm

n depends only on its neighbors coupled by a
given difference formula and corresponding ma-
trices A have a sparse and usually regular struc-
ture of nonzero entries. Thus, in actual prac-
tice solutions are obtained by solving not matrix
equations but their difference analogue.

In principle this paper is an abbreviated ver-
sion of [9] and since there is a limited space,
the implementation of particular algorithms is
demonstrated in rectangular geometry on the ex-
ample of the discretized form of two-dimensional
elliptic partial differential equations represented
by the following five-point difference formula:

kmn φ
m
n = cmn + emn φ

m−1
n + lmn φ

m
n−1 + wmn φ

m
n+1 + φm+1

n

(14)
where the unknowns at mesh points coupled by
Eq.(14) are visualized in Fig.1, with 1 ≤ m ≤ M
and 1 ≤ n ≤ N . The above equation is normalized
in such a way that the coefficient at φm+1

n is equal
to unity, which allows us to save one multiplica-
tion in the iteration process. At this notation the
coefficients k are entries of the diagonal matrix
K, l and e are entries of the strictly lower matrix
L, and w and 1 are the entries of the strictly up-
per triangular matrix U , forming a five diagonal
structure of the matrix A.

m−1

m

m+1

n−1 n n+1

ce
(t)

cl
(t)

sk
(t+1)

cw
(t)

c1
(t)

Fig.1

m−1

m

m+1

n−1 n n+1

ce
(t)

cl
(t)

sk
(t+1)

sw
(t+1)

s1
(t+1)

Fig.2

The point Jacobi algorithm is performed by the
following formula:

(φmn )(t+1) =
1
kmn

[cmn + emn (φm−1
n )(t) + lmn (φmn−1)

(t)

+wmn (φmn+1)
(t) + (φm+1

n )(t)], (15)
and the point Gauss-Seidel (GS-II) algorithm by:

(φmn )(t+1) =
1
kmn

[cmn + emn (φm−1
n )(t) + lmn (φmn−1)

(t)

+wmn (φmn+1)
(t+1) + (φm+1

n )(t+1)], (16)
Both these algoritms are visualized in Figs.1 and
2, respectively, where empty circles correspond to
unknows with the iteration index (t) and black
circles correspond to unknowns with the itera-
tion index (t + 1). The point SOR-II algorithm,

2



derived from the point Gauss-Seidel algorithm is
represented by the formula

(φmn )(t+1) = ω
1
kmn

[cmn + emn (φm−1
n )(t) + lmn (φmn−1)

(t)

+wmn (φmn+1)
(t+1)+(φm+1

n )(t+1)]−(ω−1)(φmn )(t) (17)

The notation GS-II or SOR-II means that
these algorithms are derived for two-dimensional
problems and in the case of three-dimensional
problems these algorithms will be denoted by
GS-III and SOR-III.

2 Explicit Prefactorization Methods
These methods represent a broad class of algo-
rithms, called briefly as AGA algorithms, are well
documented and their computational efficiency
found some theoretical support with a convenient
matrix notation in comparison theorems [2,3,5].
The implementation of AGA algorithms is espe-
cially convenient in the mesh structure of discrete
problems as is demonstrated in the below subsec-
tions.

2.1 The EWA-II algorithm
In this simplest algorithm of explicit prefactor-
ization methods, we postulate the solution in the
form [2,3]

φmn =
βmn +Wm

n φ
m
n+1 + φm+1

n

Dm
n

(18)

visualized in Fig.3. Writing the above equation
at mesh points (m− 1, n) and (m,n− 1), i.e.,

φm−1
n =

βm−1
n +Wm−1

n φm−1
n+1 + φmn

Dm−1
n

and
φmn−1 =

βmn−1 +Wm
n−1φ

m
n + φm+1

n−1

Dm
n−1

and substituting it into Eq.(14), one obtains

(kmn − Emn − LmnW
m
n−1)φ

m
n = cmn

+Emn (βm−1
n +Wm−1

n φm−1
n+1 ) + Lmn (βmn−1 + φm+1

n−1 )
+wmn φ

m
n+1 + φm+1

n (19)

m−1

m

m+1

n−1 n n+1

ce

cl sD -

?

sW

s1

Fig.3

m−1

m

m+1

n−1 n n+1

ce

cl sD -

?

�
�

�
�

�	

sW

s1sQ

Fig.4

where

Emn =
emn

Dm−1
n

and Lmn =
lmn

Dm
n−1

. (20)

After equating coefficients in Eqs.(18) and (19),
we have
βmn = cmn +Emn (βm−1

n +Wm−1
n φm−1

n+1 )+Lmn (βmn−1+φ
m+1
n−1 )
(21)

and
Wm
n = wmn and Dm

n = kmn −Emn −LmnWm
n−1. (22)

Introducing iteration indices, we obtain
(βmn )(t+1) = cmn +Emn [(βm−1

n )(t+1) +Wm−1
n (φm−1

n+1 )(t)]

+Lmn [(βmn−1)
(t+1) + (φm+1

n−1 )(t)], (23a)

(φmn )(t+1) =
(βmn )(t+1)+Wm

n (φmn+1)
(t+1)+(φm+1

n )(t+1)

Dm
n

(23b)
which are the executive equations in the EWA-
II algorithm being a particular case of the
AGA method. The values of (βmn )(t+1) are
computed recursively for increasing indices (line
by line from top to bottom) in the forward
sweep represented by Eq.(23a), and the values
of (φmn )(t+1) are computed recursively for decreas-
ing indices (line by line from bottom to top) in
the backward sweep represented by Eq.(23b).

The overrelaxation procedure can be used as
follows
(βmn )(t+1) = ωβ{cmn + Emn [(βm−1

n )(t+1)

+Wm−1
n (φm−1

n+1 )(t)]+Lmn [(βmn−1)
(t+1)+(φm+1

n−1 )(t)]}
−(ωβ − 1)(βmn )(t), (24a)

(φmn )(t+1) = ωφ
(βm

n )(t+1)+Wm
n (φm

n+1)
(t+1)+(φm+1

n )(t+1)

Dm
n

− (ωφ − 1)(φm
n )(t). (24b)

Dependently on the values of the parameters ωβ

and ωφ, we have the following cases [2,3]:
– the EWA-II forward SOR where ωβ 6= 1
and ωφ = 1,
– the EWA-II backward SOR where ωβ = 1
and ωφ 6= 1,
– the EWA-II double SOR where ωβ 6= 1 and
ωφ 6= 1.

3



2.2 The AGA-II-A algorithm
In this algorithm opening a large class of algo-
rithms the AGA algorithms, the equation of the
backward sweep is the same as that for EWA-II
given in Eq.(18) and it differs from EWA-II by
the elimination of φm−1

n+1 in Eq.(21). Rewriting
Eq.(18) at the mesh point (m-1,n+1) and substi-
tuting it into Eq.(21), we obtain the equation
which, after reordering and equating to Eq.(18),
and introducing iteration indices, provides us

(βmn )(t+1) = cmn + Emn [(βm−1
n )(t+1) +Gmn [(βm−1

n )(t+1)

+Wm−1
n+1 (φm−1

n+2 )(t)]] + Lmn [(βmn−1)
(t+1) + (φm+1

n−1 )(t)],
(25)

where
Emn =

emn
Dm−1
n

, Lmn =
lmn

Dm
n−1

, Gmn =
Wm−1
n

Dm−1
n+1

,

Wm
n = wmn +Emn G

m
n and Dm

n = kmn −Emn −LmnWm
n−1.
(26)

The equations (25) and (24a) are the executive
equations in the AGA-II-A algorithm. Thus,
this algorithm differs from EWA-II by the equa-
tion of the forward sweep and the increased value
of the coefficients Wm

n . The overrelaxation proce-
dure can be used in a similar way as in the case of
EWA-II, providing the AGA-II-A forward SOR,
AGA-II-A backward SOR and AGA-II-A double
SOR algorithms.

2.3 The AGA-II-B algorithm
We can postulate the backward sweep in the

form

φmn =
βmn +Wm

n φ
m
n+1 +Qmn φ

m+1
n−1 + φm+1

n

Dm
n

(27)

involving an additional coupling with mesh point
(m+ 1, n− 1) as is visualized in Fig.4. Rewriting
the above equation at mesh points (m− 1, n) and
(m,n − 1) and substituting it into (14), elimi-
nating firstly φm−1

n and next φmn−1; after reorder-
ing and equating the coefficients of the obtained
equation to those of (27), the following equations
can be derived.

βmn = cmn + Emn (βm−1
n +Wm−1

n φm−1
n+1 )

+Qmn (βmn−1 +Qmn−1φ
m+1
n−1 ) (28)

and
Emn =

emn
Dm−1
n

, Qmn =
lmn + Emn Q

m−1
n

Dm
n−1

,

Wm
n = wmn and Dm

n = kmn − Emn −QmnW
m
n−1. (29)

Introducing iteration indices, the equations
(βmn )(t+1) = cmn +Emn [(βm−1

n )(t+1) +Wm−1
n (φm−1

n+1 )(t)]

+Qmn [(βmn−1)
(t+1) +Qmn−1(φ

m+1
n−2 )(t)], (30a)

(φmn )(t+1) = 1
Dm

n
[(βmn )(t+1) +Wm

n (φmn+1)
(t+1)

+Qmn (φm+1
n−1 )(t+1) + (φm+1

n )(t+1)] (30b)

are the executive equations in the AGA-II-B
algorithm.

The eliminating φm−1
n+1 in Eq.(28), provides us

the version of this algorithm called the AGA-II-
B1, differing from AGA-II-B only by the formula
of the forward sweep.

2.4. Other AGA-II algorithms
As is demonstrated in [9] the subsequent algo-
rithms of the AGA method are created by in-
volving the successive mesh points on lines m and
m− 1 to the recurrence formula of the backward
sweep. The application of the double SOR proce-
dure turned out to be a most efficient technique
for the convergence acceleration in AGA algo-
rithms, where the value of optimum relaxation
parameters can be obtained by means of the
OMEST procedure described in detail in [7,8,9].

3 Semi-explicit Prefactorization Meth-
ods with an Implicit Forward Sweep

This type of prefactorization methods, intro-
duced recently [9], is a new class of very effi-
cient algorithms called OLA algorithms. Their
creation in mesh structures is a simple task, al-
lowing us to clearly present the mechanism of
construction of these algorithms, as is demon-
strated below in the example of the OLA-II-(1,1)
algorithm implemented in rectangular geometry
represented by the unnormalized five-point dif-
ference formula:
kmn φ

m
n = cmn +emn φ

m−1
n +lmn φ

m
n−1+wmn φ

m
n+1+umn φ

m+1
n

(31)

In these algorithms, the formula of the back-
ward sweep is coupling with some mesh points
located only on the mesh line m+ 1.

3.1 The OLA-II-(1,1) algorithm
In this algorithm, we postulate the following for-
mula for the backward sweep:

φmn =
βmn + ψmn + Tmn φ

m+1
n−1 + Umn φ

m+1
n + V mn φm+1

n+1

Dm
n

(32)
which mesh point coupling is visualized in Fig.5.

Rewriting the above equation at the mesh
point (m− 1, n) and substituting it into (31), we
obtain

Dm
n φ

m
n = cmn + Emn (βm−1

n + ψm−1
n )

+ (lmn + Emn T
m−1
n )φmn−1 + (wmn + Emn V

m−1
n )φmn+1

+umn φ
m+1
n (33)

where

Emn =
emn

Dm−1
n

, and Dm
n = kmn − Emn U

m−1
n .

4



m−1

m

m+1

n−1 n n+1

ce

cl sD

@
@

@
@

@R?

�
�

�
�

�	

cw

sT sU sV
Fig.5

m−1

m

n−2

m+1

n−1 n n+1 n+2

ce

cl sD

@
@

@
@

@R

HH
HHH

HHH
HHj?

�
�

�
�

�	

��
���

���
���

cw

sS sT sU sV sY
Fig.6

Rewriting Eq.(32) at the mesh points (m,n − 1)
and (m,n + 1) and substituting it into (33) we
obtain the equation which after reordering and
equating to (32) provides us the coefficients

Lmn = lmn +Em
n T

m−1
n

Dm
n−1

, Wm
n = wm

n +Em
n V

m−1
n

Dm
n+1

,
Umn = umn + Lmn V

m
n−1 +Wm

n T
m
n+1,

Tmn = Lmn U
m
n−1, V mn = Wm

n U
m
n+1

and the recursive formulas for
ψmn = Lmn (Tmn−1φ

m+1
n−2 + ψmn−1)

+Wm
n (V mn+1φ

m+1
n+2 + ψmn+1) (34)

and
βmn = cmn +Emn (βm−1

n +ψm−1
n )+Lmn β

m
n−1 +Wm

n β
m
n+1.
(35)

As can be seen, when the coefficients are com-
puted for increasing indices m and n, in formu-
las for Wm

n , Umn and V mn appear Dm
n+1, Tmn+1 and

Umn+1, respectively, whose values are not deter-
mined yet. This difficulty can be omitted by
computing these coefficients for the mesh point
(m,n-1). For the coefficient U , we have

Umn−1 = umn−1 + Lmn−1V
m
n−2 +Wm

n−1T
m
n

and after substituting V mn−2 and Tmn , we obtain

Umn−1 =
umn−1

1− Lmn−1W
m
n−2 −Wm

n−1L
m
n

.

Thus, for whole iteration process coefficients are
simultaneously computed, for each pair of indices
(m,n) from top line to bottom line for increasing
values 1 ≤ n ≤ N , according to the following or-
der:

Emn = em
n

Dm−1
n

, Dm
n = kmn − Emn U

m−1
n ,

Lmn = lmn +Em
n T

m−1
n

Dm
n−1

,

Wm
n−1 =

wm
n−1+E

m
n−1V

m−1
n−1

Dm
n

,

Tmn−1 = Lmn−1U
m
n−2,

Umn−1 = um
n−1

1−Lm
n−1W

m
n−2−W

m
n−1L

m
n
,

V mn−2 = Wm
n−2U

m
n−1.


(36)

As can be noticed Eqs.(34) and (35) are three
point formulas for line m, whose can be easily

solved by postulating their backward solutions.
In the case of Eq.(34), we can postulate the back-
ward solution

ψmn =
ηmn +Wm

n ψ
m
n+1

Pmn
(37)

and rewriting the above equation at the mesh
point (m,n− 1) and substituting it into (34), we
have
ηmn = Lmn (Tmn−1φ

m+1
n−2 +

ηmn−1

Pmn
) +Wm

n V
m
n+1φ

m+1
n+2 (38)

and
Pmn = 1−

LmnW
m
n−1

Pmn−1

(39)

where ηm1 = Wm
1 V m2 φm+1

3 , ψmN = ηm
N

Pm
N

and the val-
ues of Pmn are computed with Pm1 = 1 for whole
iteration process. In a similar way, Eq.(35) can
be solved by postulating the backward solution

βmn =
γmn +Wm

n β
m
n+1

Pmn
(40)

providing us
γmn = cmn + Emn (βm−1

n + ψm−1
n ) +

Lmn γ
m
n−1

Pmn
. (41)

Iteration process
In this algorithm, the overrelaxation process

can be used in different ways but its use only to
Eqs.(40) and (41), as the single or double SOR,
provides best results.

At the beginning of iteration process,
(βmn )(0) = 0 and (γmn )(0) = 0 are assumed for
all mesh points, and starting values of (ψmn )(0)

are computed for a given initial guess (φmn )(0) by
means of Eqs.(38) and (37).

The iterative algorithm is executed according
to the following formulas.

– For all m = 1, 2, . . . ,M ,

(γmn )(t+1) = ωγ [cmn + Emn ((βm−1
n )(t+1) + (ψm−1

n ))(t))

+ Lm
n (γm

n−1))
(t+1)

Pm
n

]− (ωγ − 1)(γmn )(t) (42)

and

(βmn )(t+1) = ωβ
(γm

n )(t+1)+Wm
n (βm

n+1)
(t+1)

Pm
n

− (ωβ − 1)(βmn )(t). (43)

5



– For m = M − 1,M − 2, . . . , 1,

(ηmn )(t+1) = Lmn [Tmn−1(φ
m+1
n−2 )(t+1) + (ηm

n−1)
(t+1)

Pm
n

]

+Wm
n V

m
n+1(φ

m+1
n+2 )(t+1), (44)

(ψmn )(t+1) = (ηm
n )(t+1)+Wm

n (ψm
n+1)

(t+1)

Pm
n

(45)

and
(φmn )(t+1) = 1

Dm
n

[(βmn )(t+1) + (ψmn )(t+1)

+Tmn (φm+1
n−1 )(t+1) + Umn (φm+1

n )(t+1)

+V mn (φm+1
n+1 )(t+1)]. (46)

– If the convergence criterion

(δ̄mn )(t+1) =
∣∣∣ (φm

n )(t+1)−(φm
n )(t)

(φm
n )(t+1)

∣∣∣ ≤ ε (47)

is not satisfied for all mesh points, the iteration
process is continued.

A priori estimate of optimum values of ωγ and
ωβ can be obtained by means of the OMEST pro-
cedure [7,8,9].

3.2 Other OLA-II-(l, r) algorithms
Subsequent OLA-II-(l, r) algorithms can be de-
rived in a similar way by involving other mesh
points located on line m + 1, where l de-
notes the number of mesh points at indices
n− 1, n− 2, . . . , n− l and r denotes the number
of mesh points at indices n + 1, n + 2, . . . , n + r

coupled by the backward sweep formula.
In the simplest algorithm called OLA-II-(0,0),

the backward sweep formula has the form

φmn =
βmn + ψmn + Umn φ

m+1
n

Dm
n

. (48)

For OLA-II-(0,1) the term Tmn φ
m+1
n−1 does not ex-

ist in Eq.(32) and for OLA-II-(1,0) the term
V mn φm+1

n+1 does not exist in Eq.(32). The backward
sweep formula in the OLA-II-(2,2) algorithm is
visualized in Fig.6.

Finally, it should be mentioned that similar
AGA and OLA algorithms can be derived in the
rectangular geometry for nine-point difference
formula of higher order of approximation or for
reduced system represented also by (diamond)
nine-point difference formula as well as in trian-
gular or hexagonal two- and three-dimensional
geometries.

4 Numerical Experiments
In this section we demonstrate the performance
of discussed prefactorization algorithms for solv-
ing several noself-adjoint elliptic problems, used
in the literature mainly for testing the efficiency
of the GMRES algorithm, and descibed in detail
in [7,8,9].

Example 4.1
This problem taken from [1] is the variable coef-
ficient convection-diffusion equation

−∆φ+ (dφ)x + (eφ)y = f in Ω
φ = 0 on ∂Ω

}
(49)

in the unit square Ω = (0, 1)× (0, 1) with bound-
ary ∂Ω and f is a function defined on Ω, where
d(x, y) = γ(x+ y) and e(x, y) = γ(x− y). (50)

It is assumed that γ = 10, the first derivative
terms are approximated by means of centered
differences [9] and the number of interior mesh
points in each direction equal to N = 32, so that
the order of five-diagonal nonsymmetric matrix
is equal to 32 × 32 = 1024. The right-hand side
of the matrix equation is generated as

c = Ae, (51)
where eT = [1, 1, . . . , 1] which implies that the
solution vector φ is known in advance and all
its components are equal to unity in the inte-
rior of Ω. The results of computations and com-
putational work expressed by total numbers of
flops, obtained in [8,9] for SLOR (line SOR) and
several prefactorization algorithms, and shown
in Table 1, are compared with the results of
GMRES(s) with different preconditionings [1].
All results presented in the first row for each
GMRES algorithm were obtained for the crite-
rion ‖ r(t) ‖2 / ‖ r(0) ‖2< 10−07. GMRES(10) with
ILUT(5,10−4) provides the minimum number of
iterations and flops but with greatest values of
both errors and minimum values of both errors
are obtained for GMRES(20) however, with six
times greater number of flops. The SLOR-II,
OLA-II-(1,1) and OLA-II-(2,2) algorithms pro-
vide similar results as those of GMRES(20) but
with three times lesser number of flops.

As can be seen in Table 1, the continua-
tion of iteration processes to about two times
greater number of iterations in SLOR and pref-
actorization algorithms provides solutions with
‖ r(t) ‖2≈ 10−13 and ‖ e(t) ‖2≈ 10−12 but the total
number of flops increases about 40% for SLOR
and 20% for prefactorization algorithms.

Example 4.2
This problem, taken from [8], is represented by
the following partial differential equation
−(bφx)x − (cφy)y + dφx + (dφ)x + eφy

+(eφ)y + fφ = g (52)
on the unit square Ω = (0, 1)×(0, 1), with Dirich-
let boundary conditions φ = 0 on ∂Ω, where
b(x, y) = e−xy, c(x, y) = exy, d(x, y) = β(x+ y),

e(x, y) = γ(x + y) and f(x, y) = 1
1+x+y .

6



Table 1. The results for Example 4.1.

Preconditioning
Algorithm or Iters Kflops ‖ r(t) ‖2 ‖ e(t) ‖2 Quotation

relax. paramets.

GMRES(10) ILUT(1,10−4) 18 964 0.47× 10−03 0.41× 10−04 p.293 in [1]
GMRES(10) ILUT(5,10−4) 7 478 0.13× 10−02 0.90× 10−04 p.294 in [1]

GMRES ILUTP(1) 18 964 0.47× 10−03 0.41× 10−04 p.295 in [1]
GMRES(20) ILU(0) 56 2774 0.22× 10−05 0.51× 10−06 p.364 in [1]

with polynomial
preconditioning

SLOR-II ω = 1.6709 57 931 0.93× 10−06 0.26× 10−05 [8]
(44iters, 360Kflops) 62 995 0.19× 10−07 0.44× 10−06

100 1327 0.92× 10−13 0.28× 10−12

AGA-II-B1 ωβ = ωφ = 1.092 22 1106 0.11× 10−05 0.13× 10−04 —
(68iters, 836Kflops) 27 1167 0.53× 10−07 0.27× 10−06

49 1438 0.94× 10−13 0.10× 10−12

OLA-II-(1,1) ωβ = 1, ωγ = 1.156 17 1382 0.10× 10−05 0.17× 10−04

(58iters, 1069Kflops) 20 1401 0.51× 10−07 0.64× 10−06

33 1677 0.99× 10−13 0.41× 10−12

ωβ = ωγ = 1 59 967 0.10× 10−05 0.26× 10−04

OLA-II-(2,2) ωβ = 1, ωγ = 1.090 14 1677 0.44× 10−06 0.13× 10−05

(45iters, 1278Kflops) 28 2050 0.34× 10−13 0.69× 10−13

ωβ = ωγ = 1 33 811 0.11× 10−05 0.26× 10−04

42 1032 0.19× 10−07 0.46× 10−06

70 1720 0.70× 10−13 0.16× 10−11

Table 2. The results for Example 4.2 with 324 mesh points.

Algorithm Iters Kflops ‖ δ̄
(t) ‖∞ ‖ r(t) ‖2 / ‖ r(0) ‖2 ‖ r(t) ‖2 ‖ e(t) ‖2

SLOR-II 57 577 0.31× 10−03 0.73× 10−06 0.22× 10−02 0.12× 10−05

ω = 0.65 74 627 0.81× 10−06 0.40× 10−08 0.12× 10−04 0.65× 10−08

(141it., 411Kfl.)
121 764 0.56× 10−12 0.34× 10−14 0.10× 10−10 0.59× 10−14

AGA-II-B1 7 38 0.48× 10−01 0.62× 10−06 0.18× 10−02 0.19× 10−05

ωβ = ωφ = 1 10 47 0.30× 10−06 0.29× 10−11 0.85× 10−08 0.73× 10−11

(6it., 17Kfl.)
13 55 0.55× 10−12 0.55× 10−15 0.16× 10−11 0.18× 10−14

OLA-II-(1,1) 6 61 0.26× 10−01 0.37× 10−06 0.11× 10−02 0.13× 10−05

ωβ = ωγ = 1 9 77 0.19× 10−06 0.27× 10−11 0.79× 10−08 0.59× 10−11

(5it., 28Kfl.)
12 94 0.53× 10−12 0.80× 10−15 0.24× 10−11 0.24× 10−14

OLA-II-(2,2) 4 57 0.38× 10−01 0.10× 10−06 0.31× 10−03 0.76× 10−06

ωβ = ωγ = 1 6 73 0.61× 10−07 0.19× 10−12 0.57× 10−09 0.58× 10−12

(3it., 24Kfl.)
8 89 0.60× 10−12 0.84× 10−15 0.25× 10−11 0.27× 10−14

The equation (52) is discretized by using the
five-point approximation, where the first deriva-
tive terms are approximated by the scheme of
centered differences [9], in the square mesh with
the mesh size h = 1/(N + 1). It is assumed that
β = −20, γ = 50 and N = 18 which provides
the matrix of order s = 324. The right-hand side
g is chosen so that the solution is known to be
xexy sin(πx) sin(πy).

The results of computations are summarized
in Table 2. This test problem was originally
used by Saad and Schultz (see Reference 11 in
[8] or Reference 186 in [1]) for comparing the
performance of GMRES with other conjugate-
like methods, with using the stopping criterion
‖ r(t) ‖2 / ‖ r(0) ‖2< 10−06, and it was recog-
nized by the authors as an example more dif-
ficult to treat. As is demonstrated by Saad

7



and Schultz, for finding the GMRES(20) solution
with 300Kflops, ten or more times greater arith-
metical effort was consumed whereas, a similar
solution can be obtained by means of AGA-II-
B1 with only 38Kflops.

In both above examples, an arithmetical ef-
fort required for computing optimum relaxation
parameters is shown separately in Tables 1 and
2, and it is included to the total computational
work expessed by Kflops.

Example 4.3
This problem, represented by the following par-
tial differential equation

−∆φ+ σ(1− 2x)φx + τ(1− 2y)φy = 0 (53)

on the unit square Ω = (0, 1) × (0, 1), with
Dirichlet boundary conditions φ = 0 on ∂Ω, was
used among other problems for examining the
performance of the modified line Gauss-Seidel al-
gorithms in [7] and the SLOR algorithm in [8]
with using h = 1/32 and several choices of σ and
τ . For the approximation of the first derivative
terms, the upwind difference scheme was used [9].

Comparison of computed spectral radii, with
relaxation parameters equal to unity is shown
in Table 3. All algorithms are convergent for
σ = τ = 20 and σ = τ = 40. For σ = τ = 60,
the principal eigenvalue of the iteration matrix
L̄1, λ1 = −7.222 in the line Gauss-Seidel algo-
rithm but the remaining algorithms are conver-
gent. However, as is shown in [8] the SLOR al-
gorithm is convergent for some values of ω < 1
and its spectral radius achieves the minimal value
equal to 0.929 when ωbest = 0.537 but its solu-
tion (without including computational work re-
quested for determining ωbest) can be obtained
with the number of flops nine times greater in
comparison to the OLA-II-(2,2) solution with
ωγ = ωβ = 1.

For σ = τ = 80, all algorithms presented in
Table 3 are divergent and only the spectral ra-
dius of OLA-II-(2,2) achieves its minimum equal

Table 3. Spectral radii of iteration matrices in Example 4.3
with relaxation parameters equal to unity.

σ = τ SLOR-II AGA-II-B1 OLA-II-(1,1) OLA-II-(2,2)

20 0.925 0.718 0.619 0.438
40 0.864 0.550 0.427 0.247
60 7.222 0.433 0.309 0.154
80 314. 1.2 1.4 1.1

to about 0.52 for ωβ = ωγ ≈ 0.94. Since the solu-
tion of (53) is the null vector, then the stopping
test ‖ φ(t) ‖∞ ≤ ε can be considered as the most
reliable measure of the error vector. Assuming
that all components of starting vector φ(0) are
equal to unity, OLA-II-(2,2) with ωβ = ωγ = 0.94
provides the solution after 23 iterations (equiva-
lent to 659Kflops) for ε ≤ 10−6 and after 44 iter-
ations (equivalent to 1262Kflops) for ε ≤ 10−12.

References:
[1] Y. Saad, Iterative methods for sparse linear

systems, PWS Pub. Co., Boston, MA, 1996.
[2] Z.I.Woźnicki, AGA two–sweep iterative

method and their application in critical re-
actor calculations, Nukleonika, Vol.9, 1978,
pp.941–968.

[3] Z.I.Woźnicki, Estimation of the optimum re-
laxation factors in the partial factorization
iterative methods, SIAM J. Matrix Anal.
Appl., 14, 1993, pp.59–73.

[4] Z.I.Woźnicki, On numerical analysis of con-
jugate gradient method, Japan J. Industr.
Appl. Math., 10, 1993, pp.487–519.

[5] Z.I.Woźnicki, Nonnegative splitting theory,
Japan J. Industr. Appl. Math., 11, 1994,
pp. 289–342.

[6] Z.I.Woźnicki, The Sigma-SOR algorithm
and the optimal strategy for utilization of
the SOR iterative method, Mathematics of
Computation, 62(206), 1994, pp.619–644.

[7] Z.I.Woźnicki and H.A.Jedrzejec, A new
class of modified line-SOR algorithms, J.
Comput. Appl. Math., 131, 2001, 89–142.

[8] Z.I.Woźnicki, On performance of SOR
method for solving nonsymmetric linear sys-
tems, J. Comput. Appl. Math., 137, 2001,
pp.145–176.

[9] Z.I.Woźnicki, Matrix Splitting Iterative
Methods and their Implementation in Mesh
Structures, Proc. Summer School on Iter-
ative Methods and Matrix Computations.,
June 2–9, 2002, Rostov–on–Don, Russia.
(http://conf.rsu.ru/immc02)

[10] Z.I.Woźnicki, Matrix splitting principles,
Inter.J.Math.Math.Sci., 28, 251–284, 2002.

8


