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1   Introduction 

 
Proper and coherent conditions for ANA and 
AFDCE in [1, 2] are revised as realistic tool. In 
previous work, newly introduced conditions are 
fairly abstractive to actual treatment. Therefore 
actual treatments as for these conditions are shown 
in this article. First we shortly review coherent and 
proper conditions. Next realistic treatment is 
explained using 2-step AFDCE as a sample.     

 
 

2  Coherent sheaves by AFDCE in affine 
space 
 
Consider following simple 2-step algebraic finite 
difference equation as an example,   
(1) 0),,( 11 =+− nnn fffF ,  

here n is integer and F(fn-1, fn, fn+1)  ∈C[fn-1, fn, fn+1].   
C[fn-1, fn, fn+1] is polynomial function by {fn-1, fn, 
fn+1} with complex coefficient C. We write 
Cn=C[fn-1, fn, fn+1] and Fn = ),,( 11 +− nnn fffF . Here 
fj=f(zj), zj∈C, and j is order of the sequence of 
points {…., zj-1, zj, zj+1, zj+2, ….}. Then we can 
regard (1) as functional equation of f(z).  

      Discrete analogy for sheaves of modules in 
AFDCE to usual affine scheme can be obtained as, 
(i) Assume every Fj corresponds to prime ideals.  
(ii) We put Sn=Cn\Fn and An= nn CS 1− . Then An is 

Noetherian at least locally.  

(iii) Treat each 1: +→ nn
F
n AAφ  as homomorphism by 

natural morphism {fn-1, fn, fn+1} →{fn, fn+1, fn+2}. 
In the same manner we treat nn

B
n AA →+1:φ . Here 

F
jφ  and B

jφ  means forward and backward 
evolutional scheme at step j. 

(iv) We define Xn=SpecAn and Xn as all prime ideal of 
An. Define (X, A)={Collection of all  (Xj, Aj )}.We 
introduce Zariski topology by open covering Uj  
and Dj that are defined as Uj={p | fj∉p, p∈X} and 
Dj={p | Fj∉p, p∈X}. We find Xj is Noetherian 
locally because Aj  is Noetherian. 

Using above definitions, we can introduce sheaves of 
AFDCEs. It is known that sheaves by ideals become 
coherent sheaves. Proper scheme over C, which is 
coherent sheaf, corresponds to some analytical scheme 
by GAGA [1, 2]. Especially projective scheme over C 
is proper scheme.  

Since n Z∈ , collection of all An and Cn=C[fn-1, fn, 
fn+1], C[fn, fn+1, fn+2],…, C[fk-1, fk, fk+1] are 
polynomials and consist of infinite number of 
variables. That is, SpecA has infinite elements and 
is not Noetherian. Above implementation (i) to (iv) 
satisfies coherent sheaf condition only locally (at 
every n). Therefore we need more conditions to 
construct entire coherent sheaf of AFDCE by this 
formulation for the integrable numerical scheme. 

      For the condition of finite number of variables in 
entire space, we must add more conditions to AFDCE.  
For example, forcing following condition gives 
Noetherian property of entire space of AFDCE (1), 
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or equivalently  
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By implicit function theorem and (3), we can find 
following local relations at every n,  
(4) fn+1=gn(+)(fn, fn-1), fn-1=gn(-)(fn, fn+1), 
here gn(+), g-n(-) should be function that never spoil 
algebraic property of each Fn. Then we can delete fn-1 
and fn+2   from C[fn-1, fn, fn+1], C[fn, fn+1, fn+2] as C[gn(-)(fn, 
fn+1) , fn, fn+1], C[fn, fn+1, gn+1(+)(fn, fn+1)]. Appling this 
condition to all Fn, we find all C[fn-1, fn, fn+1], C[fn, fn+1, 
fn+2],…, C[fk-1, fk, fk+1],… are included in the two 
variable polynomial C[fk, fk+1] or holomorphic 
function. Since k is arbitrary, we can say  C[ fk, fk+1] is 
germ at (k, k+1) and also representation of solution 
function of AFDCE by germ at (k, k+1).  Expression 
of C[fj, fj+1] by C[fk, fk+1], kj ≠  is analogous to Taylor 
series representation C[fj, fj+1] by {fk, fk+1}. In this case 
it is functional series representation for near neighbor 
functions.  
Definition 1: For general ADFCE, we define coherent 
condition as,  
(i) Fn gives coordinate ring, and Fn generates 
coverings of AFDCE as a non-singular algebraic 
manifold. Moreover An becomes Noetherian at every n. 
(ii) Existence of proper morphism F

nφ  for forward 

evolution and B
nφ  for backward evolution, and if 

necessary both of them, at every n. In addition every 
An satisfies coherent condition by Zariski topology. 
(iii) Following dimensional condition is satisfied 
independently of n in each covering with regular 
coordinate system. dim(An)=dim(Initial conditions or 
Boundary conditions) = Const.  
Definition 2: We call singular point (set) of AFDCE 
where coherent condition is broken.  
It is clear from the definition that CAFDCE has no 
singular points (set), because singular set by normal 
algebraic definition is included in singular set of 
AFDCE. In other words, non-singular AFDCE is 
non-singular algebraic manifold with proper local 
coordinates. Therefore if AFDCE is defined as 
singular algebraic equation, we need to modify it to 
non-singular one. 
 

3 Blowing-up and parameterization 
for single-step AFDCE 

 
Singularity of the AFDCE is removable by 
blowing-up or some resolution procedure. As the 
simple example we consider the curve 
(5) F(x, y)=y2 – x3-Cx2=0, 
here C is parameter or constant. The curves when 
C=-1, 0, 1 are shown in Fig. 1 (a), (b), (c). 
  

 
 
 
 
 
 
Fig. 1 (a) 
 y2 – x3-Cx2=0,C=-1 
 
 
 
 
 
 
 
 
 
Fig. 1 (b)  
y2 – x3-Cx2=0,C=0 
 
 
 
 
 
 
 
 
 
Fig. 1 (c)  
y2 – x3-Cx2=0,C=1 
 

Singular point of the curve is given by  
(6) 0)23(,00 =−=→=
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Easily we know (x, y)=(2C/3, 0) is not on the curve, 
except for C=0. Therefore (x, y)=(0, 0) is a singular 
point. We discretize (5) by elimination of C. Then we 
get, 
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By deformation for yn+1 we get AFDCE, 
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We know (8) is multi-value function and initial 
condition defines singular property of the solution 
curve. We also find x<-C is meaningless for 
evaluation of y. This condition is usually difficult to 
find out from (8) at the first glance. It is clear that 
parameterization for each x and y is necessary in this 
case. Fortunately it is easy to find parameterization for 
the curve, because curve is one dimension. 
Blowing-up gives well posed local parameter. In 
general higher dimensional case, blowing-up gives 
negative behavior. It will be shown in later example. 
    Before introducing blowing-up, we discuss the 
singularity of (8) from AFDCE point. Simple question 
is how we can find the same singularity to (5) from (8) 
directly. It should be made clear first. We define 
(9)
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By implicit function theorem, (8) should satisfy  
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for the mapping from n to n+1(forward evolutional 
case). Contrary, we can define singularity by 
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Then 0/ 11 =∂ ++ nn yF  gives 01 =+ny  , and 

0)3/)(2(/ 1
232

111 =−−−=∂ ++++ nnnnnnn xxxyxxF  
gives xn+1=0 or  
(12)  Cxxyx nnnn ⋅=−⋅=+ 3/2/)(3/2 232

1 . 
When yn+1=0, (8) gives xn+1=0 or xn+1=-C, therefore 
singular point is only (xn+1, yn+1)=(0, 0). Singular point 
is isolate. It found that initial conditions (xn, yn) which 
satisfy  

(13) 02
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give singularity to the curve at the origin. This is 
simple example which illustrates dependency of the 
singularity on the initial conditions of AFDCE. 
    Now we use blowing-up [3, 4]. In this case (xn+1, 
yn+1) is the center of blowing-up and becomes 
exceptional set. We treat origin with projective space 

)0,0(),(,};{ 1 ≠∈ ηξηξ P  as 

} ;{ )y ,(x 111n1n ++++ × nn ηξ  , and 1111 ++++ = nnnn yx ξη . 

Then we may use nnnn yx ξη =  also implicitly. Note 
that it is no difference if we use (xn, yn) as the center of 
blowing-up instead of (xn+1, yn+1), because (7) is 
symmetric as for (xn, yn) and (xn+1, yn+1). The condition 
(10) is for the forward difference scheme. For the 
backward difference scheme we must use  
(14) 0,0 11 =
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This backward evolutional condition gives that (xn, yn) 
is a singular point. Moreover if scheme is reversible, 
we must treat both cases.  

We define two cover U1 ( 01 ≠+nη ) and 
U2( 01 ≠+nξ ). We also assume 0≠nη  in U1, and 

0≠nξ  in U2 by continuity of variables η  and ξ . 
In U1, substitution 

nnnnnnnn yxyx ηξηξ /,/ 1111 == ++++  into (8) gives, 
(15) 01 =+ nn yy  ,  or 
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Here we put 11 == +nn ηη . 
By nnnnnnnn yxyx ηξηξ /,/ 1111 == ++++  and 

11 == +nn ξξ  in U2, (8) becomes 
(17) 01 =+ nn xx , or  

(18) 111
22

11 , +++++ =−=− nnnnnnn xyxx ηηη . 
It is clear (15) and (17) equal (xn+1, yn+1)=(0, 0), 
because of 0≠ny  and 0≠nx . Then (15) and (17) 
correspond to original center of blowing-up. 
Equations (16) and (18) give other representations of 
(8) in each U1 and U2 at the near origin using 
parameter ξ  and η . Clearly (18) gives better 
representation of (8).  Of course exchanging order of 
above procedures, blowing-up (8) first and 
discretizing it next give the same equations.  
    Last sample in this section is AFDCE which is 
obtained by eliminating integral constants in general 
solution. Consider following general solution yg , 
(19) F(ys, yg)= 02

2
3

1
2 =−− ssg yCyCy  

Here C1 and C2 are integral constants, and ys consist 
form combination of homogeneous and particular 
solution functions. If we teat C1=1, C2=C, yg=y and 
ys=x then (19) is the same to (5). In this case the 
general solution is parameterized properly by ys with 
parameters introduced by previous blowing-up 



procedure. We get corresponding AFDCE by 
elimination of C1 and C2 from (19). Then we can use 
blowing-up to the AFDCE for desingularization and 
introduce proper parameters for integrable 
discretization. By further consideration we can respect 
that using blowing-up like this manner for 
desingularization gives proper parametric coordinate 
for the AFDCE of that form 
K[y, y1, y2,…, yn, C1, C2,…, Cn] =0. Here K[*] means 
K field coefficient * variable polynomials. It is known 
that blowing-up gives proper local parameter if it is 
one dimensional case (curve) generally. Blowing-up 
for higher dimensional singularity gives simpler 
singular manifold again in general. Then after finite 
number of blowing-up, we can eliminate singularities 
from it. 
 
 
4 Projective scheme in AFDCE 

 
We introduced coherent condition into AFDCE in the 
previous section. One more condition is necessary to 
use GAGA for the integrability of AFDCE. A 
condition is proper morphism property of AFDCE. It 
is known that morphism in projective space is proper 
morphism, therefore we don’t need to pay attention to 
this property when we treat AFDCE in projective 
space. In this section we review projective scheme 
shortly for this purpose.  

We assume all AFDCEs in this section are 
homogeneous equations. As an example, using the 
same notation in previous section, we treat Fn in Cn. 
In this case Cn = ];;;[ ,11 nonnn ffffC +−  
corresponds to polynomial function with complex 
coefficient in projective space.  Then Fn is defined 
as,, 
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when total order of F(fn-1, fn, fn+1) equals m. By this 
treatment we can regard Fn in projective space as,  
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=Gn(fn-1; fn ; fn+1; f0,n), 
here ];;;[ ,11 nonnnn ffffCB +−∈ is homogeneous 
equation, and Fn= Gn(fn-1; fn; fn+1; 1). For simplicity we 

assume Bn is a homogeneous prime ideal. We consider 
a space Proj(PAn) which consists of all homogeneous 
prime ideals except for irrelevant ideal in quotient ring 
PAn= nn CS 1− , here Sn= nnonnn BffffC \];;;[ ,11 +− . We 
call this space PXn=Proj(PAn). In the same manner in 
affine space, we can introduce Zariski topology 
locally using following definitions for open covering,   
(23) Dj={p | PAj∉p, p∈PX}, 
here PX={Collection of all Proj(PAj)}. We also use 
affine covering Uj to cover Di. In this case set of Uj is 
finer covering than set of Di. 
We can treat inclusion Fn to projective space by 
different way from previous example, as following.  
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here 01.0 ≠−nf , 0.0 ≠nf , 01.0 ≠+nf ,
};;;;;{}0;0;0;0;0;0{ 1,0,01,011 +−+−∉ nnnnnn ffffff  
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= Gn(fn-1; fn ; fn+1; f0,n-1; f0,n; f0,n+1), 
 3,2,10 mmm≤ , order of  fn-1, fn, fn+1 in F. 

Since Proj(PAn) is coherent sheaf at every n locally, 
we must add more condition to PX which becomes 
coherent sheaf globally in addition to (2). At the first 
we must define a rule how to choose proper f0,j  for all j. 
Clearly we have no rule yet for selecting f0,j  for all j. 
We must hold the total number of f0,j  in finite, because 
its number relates the number of initial conditions. It 
maybe better choice for f0,j  to make PAn non-singular 
algebraic manifold. Therefore f0,j  is defined by 
blowing-up at each j. We must never forget the total 
number of f0,j  is finite even if we define it by 
blowing-up. Note that proper condition and 
non-singular condition are different. 
 
 
5  Modification of AFDCE as proper 
system, a realized sample 
 
Following idea in previous section, we consider the 
actual treatment of artificially introduced variables  

};;;;;{ 1,0,01,011 +−+− nnnnnn ffffff  in (24) and (25). Using these 
variables, (1) become proper scheme. For the 
realization of the idea, we treat (1) in 3-dimensional 
real algebraic torus, defined as 



R[fn-1, fn, fn+1, gn-1, gn, gn+1], fn-1=1/gn-1, fn=1/gn, 
fn+1=1/gn+1. Roughly, {fj; f0,j} in (24) correspond to {fj; 
gj} in this treatment.  
In this space we can treat (1) as following equations 
which are all equivalent. 
In U1=(gn-1≠ 0, gn≠ 0,  gn+1≠ 0) 
= (fn-1 ∞≠ , fn ∞≠ ,  fn+1 ∞≠ ),   
(26) 0),,( 11 =+− nnn fffF . 
In U2=(fn-1≠ 0, gn≠ 0,  gn+1≠ 0) 
= (gn-1 ∞≠ , fn ∞≠ ,  fn+1 ∞≠ ),   
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here p is the order of fn-1 in (1). 
In U3=(gn-1≠ 0, fn≠ 0,  gn+1≠ 0) 
= (fn-1 ∞≠ ,gn ∞≠ ,  fn+1 ∞≠ ),   
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q is the order of fn in (1). 
In the same manner: 
U4=(gn-1≠ 0, gn≠ 0,  fn+1≠ 0) 
= (fn-1 ∞≠ ,fn ∞≠ ,  gn+1 ∞≠ ),   
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r is the order of fn+1 in (1). 
U5=(fn-1≠ 0,  fn≠ 0,  gn+1≠ 0) 
= (gn-1 ∞≠ ,gn ∞≠ ,  fn+1 ∞≠ ); 
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U6=(fn-1≠ 0,gn≠ 0,  fn+1≠ 0) 
= (gn-1 ∞≠ ,fn ∞≠ ,  gn+1 ∞≠ ),   
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U7=(gn-1≠ 0,fn≠ 0,  fn+1≠ 0) 
= (gn-1 ∞≠ ,fn ∞≠ ,  fn+1 ∞≠ ),   
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In U8=(fn-1≠ 0,fn≠ 0,  fn+1≠ 0) 
= (gn-1 ∞≠ ,gn ∞≠ ,  gn+1 ∞≠ ),   
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Using above coverings Uj, j=1,…,8, we can treat  
original AFDCE (1) as proper AFDCE.  

In this article we call pole singularity at j when 
∞=jf  in (1). We must treat triple (29), (28) and 

(27) when (1) crosses isolate single pole singularity.  
Sequence (29), (32), (30), (27) also occur when 

orbit crosses two isolate pole singularities. We can 
list up easily possible combinations of sequence of 
coverings that are proper for treating sequence of 
pole singularities.  Of course we can also imagine 
the case that these sequences occur periodically. If 
we investigate whole possible singularity with 
arbitrary initial conditions, we must investigate all 
coverings. There is sometimes no necessity to 
investigate all singularities in all coverings when 
we integrate AFDCE with specific initial 
conditions. Here we consider general case. 

   We treat (1) in each Uj as, 
(26)’  0),,(),,( 1111 == +−+− nnnnnn fffFfffG  , 
(27)’  0),,/1(),,( 11111 == +−−+− nnn

p
nnnn ffgFgffgG  , 

(28)’  0),/1,(),,( 1111 == +−+− nnn
q
nnnn fgfFgfgfG  , 

(29)’  0)/1,,(),,( 11111 == +−++− nnn
r
nnnn gffFggffG  , 

(30)’  0),/1,/1(),,( 11111 == +−−+− nnn
q
n
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Hereafter we use notation  
(34) ≡njG , G(yn-1, yn, yn+1)=0 , j=1,…,8. 
for abbreviation which is the same as some equations 
in Uj , j=1,…,8 at n. For example, { yn-1, yn, yn+1} in G2,n 
equal to {gn-1, fn, fn+1}. It is clear that all Gj,n should be 
non-singular. Because we assume initial conditions 
are arbitrary, we cannot specify which cover includes 
orbit. In this system we can treat pole singularities and 
algebraic singularities at the infinity in (1) as 
singularities at the near origin using appropriate 
coverings.   
 
 
6  Desingularization of the proper 
AFDCE, a sample 

 
We remove singularity of the ADFCE by blowing-up 
or resolution procedure. As an example we consider 
proper system (34) obtained from original AFDCE. As 
for singularities which must be removed, we can 
consider following situations: 
1. After finite number of advancing step using  the 

given initial conditions, its orbit falls on or crosses 
singular points or set; 

2. We can’t predict the exact location and structure of 
singularity from arbitrariness of the initial 



conditions. In this case we can say AFDCE has 
moving singularity. 

Discrete evolutional equation has remarkable property 
that the equation suffers no effect of singularity except 
that the orbit fall on or cross the singular points or set.   
In other words, we need at least to remove singularity 
from the orbit. Therefore we must regard two cases as 
the same problem. It is sufficient that we only consider 
singularity near the origin in each covering Uj. 
   We must pay more attention for the following 
complexities by the blowing-up; 

1. What kinds of singularities are included in (34)? 
These singularities are isolate, periodic or 
convergent, compact or not.  

2.  How orbit crosses the singularities?  
3.  Whether divergence of number of variables, 

varieties of algebra or coverings by blowing up 
for singularities of (34) occur or not when 
advancing integration steps. 

For these complexities, finiteness of algebraic 
relation for (34) from coherent condition claims 
following strict conditions. The centers of the 
blowing-up are all compact subset of (34) and 
algebraically finite. Here algebraically finite 
means number of the algebraic relations is finite to 
define the variety (manifold). In this case centers 
of the blowing-up correspond to variety (manifold). 
Referring the removal of singularities defined by 
finite number of algebraic relations is out of scope 
of this short article, therefore we show simple 
example. Consider 
(35)
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n: integer, fj, j=1,2,3 are analytic function of yn. We 
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,0,0 111 =−=− +−− uywyuyvy nnnn  

01 =− + vywy nn , here u, v, w and X are defined as 
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u , 

}0|),,{( 3
11 ===∈= +− wvuAyyyX nnn . Clearly 

u=v=w=0 gives algebraic singular points or set. 
On the other hand singular points or set of (35) are 
given by w=0 for forward AFDCE , u=0 for 
backward AFDCE and u=w=0 for reversible 
AFDCE. These conditions are given by 
connections between coverings respect to 

advancing integration step n to n+1 or n to n-1. We 
also define coverings, 
(37) )/,/,( 2111 uwuuvuyU n === − , 0≠u . 
(38) ),/,/,( 212 vwvvuvyU n ===  0≠v . 

(39) )/,/,( 2113 wvwwuwyU n === + , 0≠w . 
By these preparations we found that: Backward 
AFDCE is not singular in U1, because of 0≠u ; 
Forward AFDCE is not singular in U3, because of 

0≠w ; Reversible AFDCE in not singular in 
31 UU ∩ . As a result, for example, singularities 

for forward AFDCE are covered by U1 and U2. If 
(35) in U1 and U2 have singularities again for u2 or 
v2, we must repeat blow-up.  

Hereafter we consider forward AFDCE only. 
Then w=0 of (35) is, 
(36) 0)()( 211 =+− nnn yfyfy . 
If (36) is satisfied by infinite number of points, we 
can not construct finite number of coverings by 
blowing-up. As a result this situation breaks 
coherent condition. 

This simple example makes clear the following 
conclusion. Total number of the algebraic relation 
of AFDCE which satisfies coherent condition 
should be finite count in relations generated by 
blowing-up through the numerical integration. In 
other words if AFDCE does not satisfy this 
condition, the AFDCE is not integrable from 
GAGA point. Please remember that number of 
algebraic relation generated by blowing-up depend 
on the number of singularities and the character of 
singularities also. This result partially supports 
conjecture in [5]. 
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