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Abstract: - Laplace’s equation is of immense application in fluid dynamics in general and in
water wave problems in particular. The evaluation of hydrodynamic coefficients and loads on
submerged bodies has a lot of significance in designing these structures. Analytical expressions
for the incident potential, diffraction potential and exciting forces due to the effects of diffrac-
tion arising out of interaction of water waves with a submerged sphere are derived. Theory of
multipole expansions is used in obtaining the velocity potential in terms of an infinite series
of associated Legendre polynomials with unknown coefficients. Two motions, namely surge
and heave motions, are considered. Numerical results for the exciting forces are presented in
tabular form for various depth to radius ratios.
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1 Introduction

The forces exerted by the surface waves on a
structure in water are very important for de-
signing these structures. Accurate prediction
of wave loads becomes indispensable in order
to design safe structures. The researchers have
been trying to evaluate the various loads and
coefficients associated with the interaction of
water waves with a submerged sphere.

A number of notable works have been done
over the last few decades on analytical solu-
tions for the linear or first order forces act-
ing on a floating or submerged body of spher-
ical, hemispherical or spheroidal shape in wa-
ter. Havelock can be considered the pioneer in
the area of hydrodynamic loading on spheri-
cal structures. Havelock [1] started with cal-
culating the wave resistance of a submerged
spheroid by replacing it with a distribution of
sources and sinks, or of doublets.

Hulme [2] considered heave and surge mo-
tions of a floating hemisphere to derive added-

mass and damping coefficients associated with
the periodic motions. Wang [3] discussed
the free motions of a submerged vehicle with
spherical hull form but with different metacen-
tric heights. The works of Hulme and Wang
were based on the multipole expansions of
Thorne [4] which proves to be very success-
ful for periodic motions without forward speed
but this method does not seem to be appli-
cable to the problem of a body with forward
speed. Wu and Eatock Taylor [5] considered
a submerged sphere advancing in regular deep
water waves at a constant forward speed. The
solution cleared the doubts about the influence
of forward speed on hydrodynamic forces. Wu
and Eatock Taylor [6] considered a submerged
sphere moving in a circular path at constant
angular velocity, the analysis being based on
the linearized velocity potential theory. Wu
et al. [7] presented a solution for the wave
induced drift forces acting on a submerged
sphere in a finite water depth based on a lin-



earized potential theory. Bora [8] considered a
sphere in finite depth water and used multipole
expansions method to solve the diffraction and
radiation problem for surge, heave and pitch
motions.

In this paper we present an analytical proce-
dure for the boundary value problem to eval-
uate the exciting forces due to diffraction for
a submerged sphere in finite depth water for
surge and heave motions. We consider the
boundary value problem to consist of Laplace’s
equation with a number of appropriate bound-
ary conditions. The diffraction velocity poten-
tial is expressed in terms of an infinite series
of associated Legendre polynomials with un-
known coefficients. Using the body boundary
condition, we set up a linear system of equa-
tions. By solving the linear system, we can find
the velocity potential, and hence the exciting
forces along horizontal and vertical directions
can be evaluated.

2 Problem Formulation

We assume that the fluid is homogeneous, in-
viscid and incompressible, and the fluid motion
is irrotational. The waves are also assumed
to be of small amplitude.
the diffraction-related hydrodynamic loading
with two degrees of freedom, namely, the two
translational motions in the x and z directions,
i.e. surge and heave motions respectively. We
consider a surface wave of amplitude A and
wave frequency o incident on a sphere of ra-
dius a submerged in water of finite depth d.
The wave is parallel to the z-axis at the time
of incidence on the sphere and is propagating
along the positive direction.

We consider two sets of coordinate systems.
One is a right-handed Cartesian coordinate
system (z,y,z), in which the zy plane coin-
cides with the undisturbed free surface and
the z-axis is taken vertically downwards from
the still water level. The other coordinate sys-
tem is the spherical coordinate system (r, 6, 1)
with the origin at the geometric centre of the
sphere. The centre of the sphere is taken at

Here we consider

(0,0,h) with respect to the Cartesian coordi-
nate system.
The relationship between the coordinate

systems is :
R = /224 y% r=/R%2+ (2 — h)?
tanf = R for0<f<n
z—h
tanty = Y for —n <y <m
x

For an incompressible and inviscid fluid, and
for small amplitude wave theory with irrota-
tional motion, we can express the fluid motion
by introducing a velocity potential ®(r, 6,1, 1).
This ® can be written as:

®(r,0,1,t) = Re[p(r,0,1p)e” "]

where Re stands for the real part.

The motion is assumed harmonic. Also,
from Bernoulli’s equation, we get pressure,
P(r,0,,t), as

(1)
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where p is the density of water.

In formulating the diffraction problem, the
linearity of the situation enables us to decom-
pose the time-independent velocity potential
¢(r,0,1) into two velocity potentials ¢; and
¢p where ¢7 is the incident potential and ¢p is
the velocity potential due to the diffraction of
the incident wave acting on the sphere. Thus
¢ can be written as ¢ = ¢ + ¢p.

To obtain the velocity potential ¢, the fol-
lowing boundary problem is to be solved:
1) Laplace’s equation in spherical coordinates:

(3)
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V2 =0
2) Free surface condition:

% | Kkp=0
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3) Bottom boundary condition:
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4) Radiation condition:

I{l%\/ﬁ(%—ikg)QS:O (6)

where K = ”Tf, and kg is the finite depth wave
number defined by

ko sinh kod — K cosh kod = 0 (7)

Moreover, the incident and diffraction poten-
tials satisfy the body surface condition

961 __9ow
on  On (8)

where n denotes the normal vector from body
surface to fluid.

onr=a

2.1 Incident Potential
The incoming waves of amplitude A and
frequency o propagating in the positive z-
direction can be described by the following in-
cident velocity potential,

Ag cosh kO (Z - d) eikoRcosw

1= o cosh kod

(9)
Using Thorne’s expansion [4], the incident po-
tential can be expressed in terms of associated
Legendre polynomial as:

Ag
or 720 cost ad Z €mi" cos m) X
io: {(_1)s+m6ko(d—h) +ek0(h—d)}
o)
X Gt m) P"(cos 0) (10)

where ¢ = 1 and €, = 2 for m > 1. P"(cosf)
is the associated Legendre polynomial. We can
write for our convenience,

$1(r,0,9) = > ¢r(r,0)cosmy  (11)
m=0
where
R . k s-l—m
br(r0) = —emz Z 50—17—02m)

x P
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(cos 0) (12)

with
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Xs = 2 cosh kyd
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2.2 Diffraction Potential

The diffraction velocity potential ¢p satisfies
equations (3)-(6) and (8). We can express this
potential by making it ¥-independent as:

o0

op(r.0,9) = Y dp(r,0)cosmyp  (14)
m=0
where the 1-independent potential is
$p(r,0) =D a" Ay, G (15)

n=m

Here A,,, are the unknown complex coeffi-
cients and G} are the multipole potentials.
Multipole potentials are solutions of Laplace’s
equation which satisfy the free surface and bot-
tom boundary conditions and behave like out-
going waves from the singular point which in
this case is the centre of the sphere.
G can be expressed as

P (cos a) 1

m P (cos 0)
G = : ,r,n—i—l
1

n ,rn+1

(n —m)!
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The quantities a and 71 are defined as :

R

\/R2 + (d+ H — z)?, tana—m
where R,d and H have already been defined.
The potentials G}' and ¢p satisfy Laplace’s
equation, free surface condition, bottom sur-

face condition and the radiation condition.
The second and third terms in equation (16)
can be expanded in the region near the body



surface into a series of associated Legendre’s
polynomials by

Z B ( > o Pl . (cos )
(17)

P (cos a)
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and
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where B and Cs(n, m) are given by
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with us(kH) as
coshkH, s=0,2,4,...
us(kH)—{ —sinhkH, s=1,3,5,...
(21)

Hence the multipole potentials G can finally
be written as

P (cos 0 >

M + Z (B + Cs(n,m)]

s=0
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From the expressions for G and ngSI from
equations (22) and (12) respectively and using
the orthogonality property of associated Leg-
endre polynomials, we arrive at

&)
> Apn Bl =T
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fors=m,m+1,m+2,... (23)

where
Tsm = — Agko Emim(koa)sfl
o
s
— 24
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Equation (23) is a complex matrix equation
in the unknowns A,,,. Since the infinite se-
ries appearing in equations (24) and (26) have
excellent truncation property, the infinite ma-
trices can be truncated at a certain term to
solve equation (23) numerically. Commercially
available complex matrix inversion routines
are used to obtain the solution of the modified
equation. Once these coefficients are known,
the diffraction problem is completely known.

3 Problem Solution

The forces associated with the incident and
diffraction potentials are the exciting forces
which play a very important role in the wave
field for a structure in water. The exciting

(e)

forces Fj can be obtained from:

™ ™
F = 2ipao A /0 /0 ¢, _n; sin 0dOdy)
(27)
where 7 = 0 corresponds to heave motion and
j =1 to surge motion.

nj = —Plj(cos f)cosjyp, j=0,1 (28)

Applying the body surface condition (8) and
after some simplifications, we have

Plr=a = az Z

m=0 n=m

2n+1

x P’ (cos 0) cos map (29)
Now the exciting forces are given by
- 2 T o0
() 2ipoa” Am / <2n + 1)
e - e a7
X Ajn P (cos 0) sin 0d9 (30)



where ¢; =1 for j =0, ¢, =2 forj > 1.
Using the orthogonality property of associ-
ated Legendre polynomials, we obtain

Fl9 = —4ip07ra3AAj1

; (31)

Hence the surge exciting force F,Ee) = fzq and

the heave exciting force Fz(e) = f,q are given
by

fmd
dipo Ara? = ~4u (32)
and ;
zd
TpoAra® ~ A0 33)

After non-dimensionalizing the expressions
in equations (32) and (33) we present the re-
sults of the analytical expressions for the excit-
ing forces due to surge and heave motions. The
complex matrix equation (23) is to be solved
in order to determine the unknown coefficients
Apyp for m = 0 and m = 1. To compute
the horizontal exciting force, f.q, we need to
solve the equation (32) and the vertical excit-
ing force, f,q, is evaluated by solving equation
(33). This infinite system of equations repre-
sented by equation (23) is made finite by trun-
cating as

Np
n=0

Tables 1 to 4 give us the exciting force co-
efficients for both fixed submergence and fixed
depth. The results have been compared with
the results of Wang [3] and Wu et al. [T7]
and they seem to agree with those sets of re-
sults. The first two tables present the surge
and heave exciting forces for a fixed submer-
gence h/a = 1.25 for various depths, e.g.
d/a = 2.5, 5, 11.0 and d/a = 20.0. Table
3 and Table 4 present us the surge and heave
exciting forces for a fixed depth d/a = 6.0 but
for a set of different submergence values.

4 Conclusion
The work is motivated by the need for analyti-
cal solutions for the exciting forces. It has been

— d/a —

Ka 2.5 5.0 11.0 20.0

10 3.1539  2.1872  1.5893 1.4897
20 21152 1.5902 1.3151 1.2621
B0 1.6347  1.1861 1.1361 1.1102
40 1.2862 0.9861 0.9858 0.9826
b0 11134 0.8862 0.8852 0.8834
60 0.9217 0.8682 0.7809 0.8124
70 0.7692  0.7398  0.6947 0.7395
.80 0.6824 0.6482 0.6345 0.6315
90 0.5824 0.5789 0.5786 0.5785
1.00 0.5037 0.4925 0.4911 0.4901
1.20 0.3476 0.3391 0.3379 0.3377

Table 1: Surge exciting force (h/a=1.25)

shown that the body submergence and depth
have influence on the exciting forces. The use
of associated Legendre polynomial reduces the
solutions to simpler forms. The pitch motion
was not considered since, for a spherical body,
the moment acting on it becomes zero. The
radiation problem can be considered in a sim-
ilar manner and that will help us know about
added-mass and damping effect of the struc-
ture. It will be interesting to extend the inves-
tigation further to consider two or more sub-
merged spheres. The analysis of interaction
among several structures nearer to each other
would be more important from the practical
point of view. The main challenge will be the
problems related to arbitrarily shaped geome-
tries for which the above work will contribute
only qualitatively.
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