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Abstract: Soliton graphs having an alternating cycle are characterized with the help of a shrinking procedure.
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1 Introduction

One of the most ambitious goals of research in mod-
ern bioelectronics is to develop a molecular computer.
Inspired by this research soliton automata were intro-
duced in [4] to serve as a mathematical model for cer-
tain molecular switching devices. Many interesting
special cases of soliton automata have been described
(see e.g [5]), but it was not until [1] that matching
theory was recognized as the fundamental theoretical
background for the study of this model.

The underlying object of a soliton automaton is a
so called soliton graph. Such a graph is the topologi-
cal model of a hydrocarbon molecule chain. In order
for the graph to act as an automaton we need to de£ne
its states. To reach this goal we use certain matchings,
called perfect internal matchings, of the graph, where
by a matching of graph G we mean a set of edges, with-
out two incident ones to the same vertex. A soliton
graph must have a perfect internal matching, which is
a matching covering all vertices with degree at least 2.
These vertices – called internal – model carbon atoms,
whereas vertices with degree one – called external –
represent a suitable chemical interface with the out-
side world. Because of the chemical background, the
name state is also used as a synonym for perfect inter-
nal matching. In addition to possessing a state, a soli-
ton graph is also expected to have an external vertex.
The edges of a soliton graph G are also distinguished
between, such as allowed (contained in some state of
G) or forbidden (not contained in any state of G).

The analysis of soliton automata is a complex task,
and the general case is still open. Therefore it is a cen-
tral problem to describe the structure of soliton graphs

with respect to their states. In [2] a decomposition of
soliton graphs into elementary components – maximal
connected subgraphs spanned by allowed edges only –
was worked out, and these components were grouped
into pairwise disjoint families based on how they can
be reached by alternating paths starting from external
vertices. From a practical point of view the most im-
portant special case is the class of deterministic soli-
ton automata, and consequently the graphs associated
with them, called deterministic soliton graphs. The
graph-theoretic characterization of deterministic soli-
ton graphs is given in [3], where it was proved that
a soliton graph G is deterministic iff it does not con-
tain an alternating cycle with respect to any state of G.
However, this characterization does not provide a di-
rect method to solve the important practical problem of
checking the determinism of a soliton graph ef£ciently,
as a graph might have an exponential number of states.

In this paper we show that testing the existence of
an alternating cycle, and thus testing the determinism,
can be solved in O(n3) time, where n denotes the num-
ber of vertices. To reach this goal £rst we show in Sec-
tion 3.1 that the general problem can be reduced to 1-
extendable graphs, which are connected graphs with-
out forbidden edges. Then in Section 3.2 an ear de-
composition of soliton graphs is worked out to serve as
a technique for their structural description. The main
result is based on the shrinking operation presented in
Section 3.3, by which certain internal vertices with de-
gree 2 are eliminated. With the help of the shrink-
ing operation we obtain a characterization of soliton
graphs with alternating cycles, which directly leads to
an ef£cient algorithm.
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2 Problem Formulation

By a graph, throughout the paper, we mean a £nite
undirected graph in the most general sense, with mul-
tiple edges and loops allowed. Our notation and termi-
nology will be compatible with that of [6], except for
the words ”point” and ”line” being replaced by ”ver-
tex” and ”edge”, respectively.

Let G be a graph with set of vertices V (G) and
set of edges E(G). The sets of external and internal
vertices of G will be denoted by Ext(G) and Int(G)
respectively, while for the degree of a vertex v the no-
tation d(v) will be used. Graph G is called open if
Ext(G) �= ∅, otherwise G is closed. External edges
are those that are incident with at least one external
vertex, and an internal edge is one that is not external.
For a subgraph G′ and matching M of G, M(G′) will
denote the restriction of M to G′. A subgraph G′ of G
is nice if it has a perfect internal matching and every
perfect internal matching of G′ can be extended to a
perfect internal matching of G. A matching is called
perfect if it covers all vertices of G.

Let G be a soliton graph, £xed for the rest of this
section, and let M be a state of G. An edge e ∈ E(G)
is said to be M -positive (M -negative) if e ∈ M (re-
spectively, e �∈ M ). An M -alternating path (cycle) in
G is a path (respectively, even-length cycle) stepping
on M -positive and M -negative edges in an alternating
fashion. Let us agree that, if the matching M is under-
stood or irrelevant in a particular context, then it will
not explicitly be indicated in these terms.

An external alternating path is one that has an ex-
ternal endpoint, whereas an internal alternating path is
one that is not external. An alternating path is positive
(negative) if it is such at its internal endpoints, meaning
that the edges incident with those endpoints are posi-
tive (respectively, negative). If both endpoints of an
alternating path are external, then it is called a cross-
ing. For a path α and vertices u, v ∈ V (α) we will use
the notation α[u, v] by which we mean the subpath of
α having endpoints u and v.

An alternating unit is either a crossing or an alter-
nating cycle. Switching on a positive alternating path
or alternating unit α amounts to changing the sign of
each edge along the path (respectively, unit). It is easy
to see that the operation of switching on α creates a
new matching S(M, α) for G, which matching is a
state if the switching is carried out on an alternating
unit. The following two results from [1] characterize
1-extendable graphs by alternating units.

Proposition 1 Any edge of a 1-extendable graph G is
traversed by an alternating unit in every state of G.

Proposition 2 A soliton graph G is 1-extendable iff for
any two edges e, f ∈ E(G) there exists an alternating
unit containing both e and f .

The basic aim of the paper is to test if a soliton graph
contains an alternating cycle. The motivation of the
problem solving is the practical question of deciding if
a soliton graph is deterministic. In [3] it was proved
that the above two problems are equivalent. The naive
approach, i.e. listing all the states of the graph and
checking the existence of an alternating cycle in each
state, is inef£cient, as a soliton graph might have ex-
ponential number of states. So far only the following
suf£cient condition was proved (see [3]).

Proposition 3 Let G be a 1-extendable soliton graph
and G′ is a 1-extendable nice subgraph of G such
that G = G′ + e1 + . . . + ek with k ≥ 2 , where
e1, . . . , ek are internal edges in G. If for any subset
{ei1 , . . . , eir

} ⊂ {e1, . . . , ek} with 1 ≤ r ≤ k − 1,
G′ + ei1 + . . . + eir

is not 1-extendable, then G con-
tains an alternating cycle.

In the followings we will characterize soliton graphs
with alternating cycles, which results in an ef£cient
method.

3 Problem Solution

We will solve the problem through three steps de-
scribed in Sections 3.1-3.3. As an alternating cycle can
contain only allowed edges, we present in Section 3.1
the closure operation on open graphs and show how it
can be applied for identifying the allowed edges. This
algorithm results in a decomposition of allowed edges
into maximal 1-extendable subgraphs. Then by mak-
ing use of the ear-decomposition described in Section
3.2, a reduction procedure is worked out in Section 3.3
proving that our problem can be simpli£ed to search-
ing even length cycles in reduced 1-extendable soliton
graphs.

3.1 The closure of open graphs

In an open graph G, connect the external vertices of
G to each other in all possible ways. Furthermore, if
|V (G)| is odd, then add a new vertex c and introduce
edges from c to all the external vertices. The result-
ing graph G∗ is called the closure of G. It is easy to
see, cf. [2], that G has a perfect internal matching iff
G∗ has a perfect matching. Clearly, the perfect inter-
nal matchings of G can be obtained from the perfect
matchings of G∗ simply by restricting these matchings
to E(G). Furthermore, it was also proved in [2] that
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an edge of graph G is allowed in G iff it is such in G∗.
Making use of the above observations, a perfect inter-
nal matching and the allowed edges in an open graph
can be determined by the following way.

Consider the closure G∗ of a given open graph G.
Using the Edmonds algorithm (see [6]) determine a
perfect matching of G∗, if there exists one. If the out-
put becomes that G is a soliton graph, then by using the
algorithm of [7], identify the allowed edges in G∗. It
can be proved (see [7]) that the complexity of the pro-
cedure for identifying the allowed edges is the same
as that of the Edmonds algorithm. The Edmonds algo-
rithm can be implemented in O(n∗m) time – where m
denotes the number of edges in G∗ and n denotes the
number of vertices in G∗ –, but the closure operation
may result in O(n2) new edges, thus the complexity of
the above method is O(n3).

It is clear that a forbidden edge is not contained in
any alternating cycle. (If an edge e is traversed by an
alternating cycle α in state M , then either M or state
S(M, α) contains e.) Therefore, by obtaining the out-
put of the above algorithm the forbidden edges can be
removed from G. Then the connected components of
the resulted graph are 1-extendable. If such a compo-
nent Gi does not contain external vertices of G, then,
according to Proposition 1, the existence of an alter-
nating cycle in Gi is equivalent to the condition that
Gi does not consist of a single edge. Consequently, in
the rest of the paper we need to concentrate only on the
1-extendable components containing external vertices.
Therefore, in order to solve the general problem, it is
enough to £nd an ef£cient method to decide if an open
1-extendable graph possesses an alternating cycle.

3.2 Ear decomposition of 1-extendable soliton
graphs

Ear decomposition was recognized as a useful tech-
nique for studying the structure of 1-extendable graphs
with respect to perfect matchings (see [6]). In this sec-
tion we present an ear structure of 1-extendable soliton
graphs without alternating cycles. Theorem 4 will play
an important role in proving the main result of the pa-
per.

Theorem 4 Let G be a 1-extendable soliton graph
without alternating cycles. Then there exists a se-
quence (G0, G1, . . . , Gt) of nice 1-extendable sub-
graphs of G with the following properties:

(i) G0 is a tree containing all of G’s external ver-
tices;

(ii) For each k, 1 ≤ k ≤ t, Gk arises from Gk−1 by
adding one odd length path, called ear, having

both endpoints – but no other points – in Gk−1;
(iii) Gt = G.

Proof. First we prove that there exists a graph
G0 with the conditions of (i). To this end let v be
an external vertex of G and consider a maximal nice
subgraph T of G with the property P that T is a
tree containing v such that Ext(T ) ⊆ Ext(G). Ac-
cording to Proposition 1, v is traversed by an alter-
nating crossing γ. Therefore γ has property P , so a
suitable T exists. Now suppose on the contrary that
Ext(T ) �= Ext(G) and let G1 denote a maximal
nice 1-extendable subgraph of G with the property P1

meaning Ext(G1) = Ext(T ). Furthermore, let M de-
note a state of G such that M(G1) is a perfect internal
matching in T . Based on our assumption G1 �= G,
so there exists a vertex w ∈ V (G) \ V (G1) that is
adjacent to some vertex u ∈ V (G1). G does not con-
tain alternating cycle, thus, according to Proposition
1, there exists an M -alternating crossing α in G con-
taining the edge (u, w). We claim that one endpoint x
of α belongs to Ext(G) \ Ext(G1). Indeed, in other
cases G1 + α would constitute a subgraph of G satis-
fying property P1, which contradicts the fact that G1

is maximal. Now starting from x let y denote the £rst
vertex of α for which y ∈ V (G1). It easily follows
from Proposition 1, that G1 contains a positive exter-
nal MG1-alternating path α′ leading to y. Therefore
α[x, y] + α′ forms a crossing β in G, consequently β
has a pre£x β1 connecting x with an internal vertex
of T such that β1 is edge-disjoint from T . However
T + β1 has property P contradicting the maximality
of T . Thus we conclude that Ext(T ) = Ext(G), by
which T is a suitable choice for G0.

Now for the proof of (ii) and (iii), as an induc-
tion hypothesis we can suppose that an appropriate
1-extendable nice subgraph Gk of G with k ≥ 0 is
given. If G=Gk, then we are ready. So suppose there
is an edge e of G − Gk with at least one endpoint
in Gk. Let M be a state of G such that M(Gk) is a
perfect internal matching in Gk, and let α be an M -
alternating crossing passing through e. Then it is clear
that the edges of E(α) \E(Gk) constitute a set of ears
P = {β1, . . . , βm}, m ≥ 1, with respect to Gk. There-
fore we only need to prove that for some 1 ≤ j ≤ m,
Gk + βj is 1-extendable.

Clearly, we may assume without the loss of gen-
erality that each ear of P is a single edge. Then, by
using an induction on m, we can easily £nish the proof
with the help of Proposition 3. Indeed, if m = 1, then
there is nothing to prove. In other cases, according to
Proposition 3, there exists a subset P ′ = {βi1 , . . . , βil

}
of P (l < m), such that Gk + βi1 + . . . + βil

is 1-
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extendable. Then, according to the induction hypoth-
esis, there exists an element βij

of P ′ with Gk + βij

being 1-extendable. Therefore the proof is complete.
♦

3.3 Minimal representation of 1-extendable
soliton graphs

In this section we will show how to reduce the prob-
lem of searching alternating cycles to checking the ex-
istence of even cycles. A reduction procedure must be
introduced for this goal, which is based on the shrink-
ing construction described in Proposition 5.

Proposition 5 Let e1 = (v1, v) and e2 = (v, v2) be
internal edges of graph G such that v, v1 and v2 are
distinct vertices and the degree of v is 2. Moreover, let
E1 = {e ∈ E(G) | e �= e1 and e is incident with v1

in G } and let E′ denote the set of edges obtained from
the elements of E1 by replacing v1 with v2 at the ap-
propriate endpoint of each edge of E1.
Then G′ = G−{v, v1}+ E′ is a soliton graph iff G is
a soliton graph.

Proof. Straightforward, omitted. ♦
Intuitively, G′ is obtained from G by shrinking the path
α = v1, e1, v, e2, v2 to a single vertex. The minimal
representation R(G) of graph G is the graph obtained
by repeated applications of the above construction to G
until no further shrinking action can be done. A graph
is called reduced if G = R(G).

Proposition 6 A soliton graph G contains an alternat-
ing cycle iff R(G) does.

Proof. It is enough to show that one shrinking ac-
tion and its inverse preserve alternating cycles. To this
end £rst let M be a state of G, β be an M -alternating
cycle in G and (v1, v), (v, v2) be the edges through
which the shrinking action is applied. Then either
(v1, v) ∈ M or (v, v2) ∈ M . Consequently, either
(v1, v), (v, v2) ∈ E(β) or at most one of v1 and v2 is
contained in β. In both cases the claim of the ’Only if’
part is straightforward.

Conversely, it is also clear that an alternating cycle
α of R(G) is also present in G, if no vertex of α is the
result of the shrinking. Otherwise, if a shrinking has
resulted in a vertex v of α, then we evidently obtain,
after blowing-up through v, that the extended α is also
alternating. ♦
Proposition 7 The minimal representation of a 1-
extendable graph is also 1-extendable.

Proof. Let G be a 1-extendable graph, v1, v2 and
v be distinct internal vertices with d(v) = 2 and

(v1, v), (v, v2) ∈ E(G). Apply a shrinking action
through vertex v and let G′ denote the resulted graph.
It is enough to prove that any edge e of G′ is allowed.

If at most one endpoint of e is incident with the
shrunken vertex, then we can prove, by using the same
argument as in the proof of the ’Only if’ part of Propo-
sition 6, that the alternating unit containing e in G is
preserved after the shrinking. Therefore, if we show
that e is not a looping edge around the shrunken ver-
tex, then we are ready. The above statement is indeed
true, as otherwise either e is a looping edge in G or it
connects v1 and v2, in both cases meaning that e is for-
bidden in G; which is a contradiction. ♦
A connected graph is a generalized tree if it does not
contain even-length cycles. Note that any edge of a
generalized tree G is contained in at most one cycle of
G. In the proof of the main result we will make use of
the following lemma.

Lemma 8 Let G be a generalized tree with u, v ∈
Int(G) such that G + (u, v) is a reduced 1-extendable
graph. Then u and v are connected by a positive al-
ternating path with respect to some state of G iff there
exists an odd length path between u and v in G.

Proof. We may suppose without the loss of general-
ity that G is a reduced 1-extendable generalized tree.
Indeed, let us cut G + (u, v) at the edge e = (u, v),
that is, replace (u, v) by two new external edges, each
being incident with one internal endpoint of e. Then it
is easy to see that the resulted graph is a 1-extendable
generalized tree, and it contains a positive alternating
path between u and v iff there exists such a path in G.

Let α be an odd-length path connecting u and v and
let Mα be the unique perfect matching of α. Moreover,
let G1, . . . , Gk denote the connected components of
G−E(α). It is easy to see – as G is a generalized tree
– that for each 1 ≤ i ≤ k, 1 ≤| V (Gi) ∩ V (α) |≤ 2.
Now construct a graph G′

i from Gi for 1 ≤ i ≤ k in
the following way: If | V (Gi) ∩ V (α) |= 1, then let
G′

i = Gi, otherwise extend Gi by the subpath of α
connecting the vertices v1

i , v2
i of V (Gi) ∩ V (α) and

attach a new external edge to vj
i (j = 1, 2). Note that

the subgraphs G′
1, . . . , G

′
k are pairwise edge-disjoint.

We will construct a state M i for each G′
i such that

Mα
(αi)

= M i
(αi)

for the subpath αi constituted by
E(α) ∩ E(G′

i). By the above fact our proof will be
complete, as for any state M of G corresponding to
the union of the matchings with the above conditions,
M(α) = Mα will hold.

Suppose £rst that Gi has a unique common vertex
with α. Then a state M ′ of G exists such that M ′

(Gi)

is a perfect internal matching in Gi (remember that G
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is 1-extendable), thus in this case M ′
(Gi)

is a suitable

choice for M i.
Now consider the case when | V (Gi)∩V (α) |= 2.

Then the subpath αi of α belonging to G′
i is a part of an

odd-length cycle βi of G′
i. Let w1

i , . . . , w
l
i denote the

vertices of βi. Then for each 1 ≤ j ≤ l, the notation
Gj

i will be used for the maximal connected subgraph
of Gi with wj

i being the unique common vertex of Gj
i

and βi. Note that the subgraphs G1
i , . . . , G

l
i are pair-

wise vertex-disjoint. Observe that for any 1 ≤ j ≤ l,
Gj

i has a perfect internal matching Mp
ij and a match-

ing Mn
ij covering all internal vertices but wj

i . Indeed,
it is clear that G′

i is a reduced 1-extendable generalized
tree, thus there exist states M i1 and M i2 of G′

i such
that M i1

(Gj
i )

is a perfect internal matching of Gj
i and

M i2
(Gj

i )
is a matching covering all vertices but wj

i in Gj
i .

Now let Mn
i = ∪l

j=1M
n
ij and construct a maximum

matching Mβi of βi such that the restriction of Mβi to
α is equal to the set of edges of αi covered by Mα. It is
clear that Mβi exists with the property of possessing a
unique uncovered vertex wr

i of βi. Therefore the state
Mβi ∪ Mp

ir ∪ (Mn
i \ Mn

ir) is a suitable choice for M i,
by which the proof is complete. ♦
Now we are ready to prove our main result.

Theorem 9 A 1-extendable soliton graph G contains
an alternating cycle iff R(G) is not a generalized tree.

Proof. If R(G) is a generalized tree, then according
to Proposition 6, G does not contain an alternating cy-
cle, thus it is enough to prove the ’If’ part. We will use
induction on the number of internal edges of R(G).

The basis steps are trivial, because a generalized
tree with at most one internal edge is clearly a tree.
For the induction step suppose on the contrary that G
is a 1-extendable soliton graph without alternating cy-
cle, but R(G) contains an even-length cycle α. We will
show that the above condition implies the existence of
an alternating cycle in R(G), which is a contradiction
because of Proposition 6.

We know by Propositions 6 and 7 that with our as-
sumption R(G) is a 1-extendable soliton graph which
does not contain alternating cycles, thus we can apply
Theorem 4 for R(G). Note that the last ear in the above
ear-decomposition is a single edge e, as R(G) is a re-
duced graph. Now let v and w denote the endpoints of
e and let G′ = R(G) − e.

If G′ is a generalized tree, then α must contain e.
Consequently v and w are connected by an odd length

path in G′, which implies, by applying Lemma 8, that
there exists an alternating cycle traversing e.

Otherwise suppose that R(G′) is not a generalized
tree. In this case the existence of an alternating cycle
in G′ follows from the induction hypothesis and from
Proposition 6.

As a consequence of the preceding two paragraphs,
we may assume for the rest of the proof that R(G′) is a
generalized tree, but G′ contains an even-length cycle.
Therefore at least one of v and w, say vertex v, has de-
gree 2 in G′ such that it is adjacent to distinct internal
vertices. Apply a shrinking action in G′ through vertex
v, and let Gv denote the resulted graph. There are two
cases.

Case 1. Gv is a generalized tree. In this case let v1

and v2 denote the vertices adjacent to v in G′. Then it
is clear that both v1 and v2 must be present in each even
cycle of G′, but no even cycle may contain v. Based on
this observation, we can describe the structure of G′.

The even-length cycles of G′, denoted by
β1, . . . , βm, are pairwise edge-disjoint and V (βi) ∩
V (βj) = {v1, v2} for every 1 ≤ i, j ≤ m. Fur-
thermore, for any vertex x of Gβ = β1 ∪ . . . ∪ βm,
there exists a maximal connected subgraph Gx of G′
such that x is the unique common vertex of Gx and
Gβ . Note that for any two distinct x, y ∈ V (Gβ),
Gx and Gy are vertex-disjoint, and Gx �= x for any
x ∈ V (Gβ) being different from v1, v2 and w. Now
we can conclude that if V (Gβ) = {x1, . . . , xk}, then
G′ = Gβ + Gx1 + . . . + Gxk

+ (v1, v) + (v, v2).
G′ is 1-extendable, thus as we have seen in a sim-

ilar situation in the proof of Lemma 8, for any x ∈
V (Gβ), there exists a matching Mn

x of Gx covering all
internal vertices but x of V (Gx), and Gx has a perfect
internal matching Mp

x . We will use the above notations
throughout the proof.

Now let x denote the vertex of V (Gβ) for which
w ∈ Gx. Moreover, let βi denote the cycle containing
x and let f be an edge of βi incident with x. According
to Proposition 2, there exists an M ′-alternating cross-
ing γ in some state M ′ of G′ traversing both f and
some edge incident with w. (If w = x, then any alter-
nating crossing traversing f is suitable.) We may also
suppose that f ∈ M ′, because if the case was not this,
then S(M ′, γ) can be considered.

Assume £rst that x and w are at even distance on
γ. Then γ[x, w] is negative at vertex x. Let β′

i denote
the subpath of βi between v1 and v2 which contains x
(if x = v1 or x = v2, then both subpaths are suitable)
and let β′′

i = βi − β′
i. It is clear that the length of

both β′
i and β′′

i is odd. We may suppose without the
loss of generality that x is at an odd distance from v1

on β′
i and let y denote the £rst vertex after x on the
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subpath β′
i[x, v2]. Let Mi be a matching of βi cover-

ing all vertices except for v2 and y. Now assemble the
state M of R(G) by the following way. M consists
of Mi ∪ {(v2, v)} ∪ M ′

(Gx) ∪ Mp
y , a perfect match-

ing Mj of each βj (j �= i and 1 ≤ j ≤ m), Mn
u

for each element u ∈ V (Gβ) different from both x
and y. Now the M -alternating cycle is obtained by
β′′

i + (v2, v) + (v, w) + γ[w, x] + β′
i[x, v1].

If x and w are at odd distance on γ, then let Mj de-
note a perfect matching of βj for each 1 ≤ j ≤ m
and let Mw denote the matching S(M ′

(Gx), γ[z, w]),
where z denotes the external endpoint of γ in Gx. Then
the required state M of R(G) consists of M1 ∪ . . . ∪
Mm ∪ Mw, the edge (v, w), and Mn

u for each ele-
ment u of V (Gβ). In this case we obtain that β1 is an
M -alternating cycle, which makes the proof of Case 1
complete.

Case 2. Gv is not a generalized tree. In this case
d(w) = 2 in G′ and w is adjacent to distinct internal
vertices w1 and w2, as R(G′) is a generalized tree by
assumption. Construct then graph Gw analogously to
Gv. If Gw is a generalized tree, then the Theorem is
proved by Case 1, because in this situation the role of
v and w is symmetric. Otherwise, using the same no-
tation as in Case 1, Gw = Gβ + Gx1 + . . . + Gxk

+
(v1, v) + (v, v2). Observe now that w is shrunk into
either v1 or v2 in such a way that w1 is incident with v.
Indeed, in any other case it would be easy to check that
Gv would be a generalized tree. Then we may assume
without the loss of generality that w is shrunk into v2,
by which G′ = Gβ+Gx1+. . .+Gxk

+Gw1+β′, where
β′ consists of the edges (v1, v), (v, w1), (w1, w) and
(w, w2) such that w2 = v2, and Gw1 is a maximal con-
nected subgraph of G′ with V (Gw1) ∩ V (β′) = {w1}.
Note that Gw1 �= w1 and it is vertex-disjoint from
Gx1 +. . .+Gxk

. Then, as we have seen in the last para-
graph of the proof of Case 1, a perfect internal match-
ing M ′ of G′ − β′ can be assembled such that Gβ con-
tains an M ′-alternating cycle γ . Now M ′ ∪ {(v, w)},
together with a perfect internal matching of Gw1 , con-
stitute the required state of R(G) with respect to which
γ is alternating .

As all possibilities were considered, and in each
case we concluded that the assumption for the exis-
tence of an even-length cycle enabled us to construct
an alternating cycle, the proof is complete. ♦
By making use of the above result we can give an
ef£cient method to decide if a 1-extendable soliton
graph contains an alternating cycle, which consists of
the shrinking procedure and testing the existence of an
even-length cycle. The method of Section 3.1 reduced
our general problem to 1-extendable soliton graphs

with a time complexity of O(n3), where n denotes the
number of vertices. It is clear that both the shrinking
procedure and testing the existence of an even-length
cycle can be implemented in O(m) time, where m is
the number of edges. Therefore the complexity of the
whole problem is also O(n3).

4 Conclusion

In this paper we showed that soliton graphs with alter-
nating cycles can be characterized with the help of a
shrinking operation eliminating the vertices which are
only adjacent to distinct internal vertices and have de-
gree 2. Before proving the main result £rst we pre-
sented the closure operation with the help of which
classical matching algorithms were applied for iden-
tifying the forbidden edges. This observation re-
duced our problem to searching alternating cycles in
1-extendable soliton graphs. We proved as the main re-
sult that a 1-extendable soliton graph contains an alter-
nating cycle if its minimal representation with respect
to the shrinking operation contains an even-length cy-
cle. This theorem suggests a method consisting of the
shrinking procedure and testing the existence of even-
length cycles. This method, together with the proce-
dure identifying the forbidden edges, results in an al-
gorithm searching alternating cycles. Our algorithm
runs in O(n3) time, where n is the number of vertices
in the graph.
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