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Abstract: Tn [5] we have introduced the concepts of multisemilattice and multilattice as a generalization of the
concepts of semilattice and lattice, respectively. In this paper, we give another step and we present the concept
of ideal in multisemilattice and multilattice (the ideal concept is demanded by the mathematical and computer
sciences) that generalizes the corresponding concept in semilattice and lattice.
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1 Introduction

Non-deterministic operators  both of fixed and flexi-
ble arity have proven very useful in some applications.
When we say non-deterministic operators, we are re-
ferring to functions of A™ in 24 or of A* in 24, respec-
tively, where A* is the universal language over A, i.e.
A* = UneN A™

The notion of poset has proven very relevant in modern
mathematics being the lattice theory the best example.
Nevertheless, there exist poscts that are not lattices
as, for example, in divisibility theory, special relativity
theory, the Jordan-Hélder theorem ... These poscts, al-
though lacking a proper lattice structure, have some of
their properties. M. Benado [1] gave a first approach
to a generalization of the lattice structure where the
supremum and the infimum are replaced by the set of
minimal upper bounds and the sct of maximal lower
bounds, respectively (in other words, deterministic op-
erators are replaced by non-deterministic operators).
This new structure is called multilattice. M. Benado
use this new structure to work with Dedekind con-
nections, Schreier’s refinement thecorem and evaluation
theory.

Nevertheless, neither the algebraic characterization
given by M. Benado nor the one given by J. Hansen
[3] allow to define the concept of multisemilattice (gen-
eralization of semilattice structure) In [5], we intro-
duce a new algebraic characterization of multilattice
that solves this problem and, morcover, is a more
natural genceralization of the characterization of lat-
tices. Therefore, the unique algebraic characterization
of multisemilattice that exists in the literature, is the
given in [5].

Several fields in Computer Science require working
with multilattices and multisemilattices. It is enough
to consider that the universal language over a set A,

whose elements are called chains, with the relation “to
be a subchain of” is a multilattice.

In this paper we are looking for the adequate concept
of ideal for multisemilattice and multilattice. This con-
cept 18 relevant for the applications that we have just
comment. The paper is structured as follow:

In section 2 we remember the more important re-
sults about non-deterministic operators, multisemilat-
tices and multilattices introduced in [5]. In scction 3
we analyze the definition of ideal for poscts given by
Rachunck [7], and we propose a new and more adequate
definition of ideal for multisemilattices. In section 4 we
develop the theory of ideals in multilattices. Finally,
in section 5, we compare our definition with the one
proposed by Johnston [4] in the framework of poscts.

2 Multisemilattices and multi-
lattices

In this section we resume the concepts that we intro-
duce in [5]. These contributions are the concept of
non-deterministic operator together with their proper-
ties, and the multisemilattice and multilattice algebraic

structures.

2.1 Non-deterministic operators

In a partially ordered sct, the sets of multi-supremum
and multi-infimum of a subsct arc not necessarily uni-
tary. So, it is necessary to consider operators that have
a set of elements of the domain as image.

Definition 2.1 Let A be a set. If F: A" — 24 isa
total application then we say that I is a non-determi-
nistic operator (henceforth ndo) of arity n in A.

If F: A* — 24 is a total application, then we say that



F is a non-deterministic operator of flexible arity
in A, where A* is the universal language defined in A.
If F is an ndo with arity p € NU{x} in A and & #+
B C A, we call restriction of F' to B, denoted by
P, to the ndo in B given by F', () = F(a)NDB. We

/B?

say that F is full if F(a) # @ for all o € AP.

Definition 2.2 Let I’ be a ndo in A and X C A. We
say that X is F-closed if F(X*) C X, with p € NU{x}.

Definition 2.3 Let F be a ndo of flexible arity in A.

1. F is commutative if for all n € N and all
T1yeee Ty € A we have that F(xy,...,x,) =
F(zg1,... ,@on) for all permutations of n ele-
ments, o.

2. F is associative if for all n € N and all
T1yeee Ty € A we have that F(xy,...,x,) =
F(F(x1,...,2p_1),%n) = F(z1, Fza,... ,2,))

3. F is idempotent if F(T,n ,x) = {z}, for all
x € A and alln € N.

Definition 2.4 Let F and G be two ndos of flexible
arity in A. We say that the pair (F,G) has the ab-
sorption property if for all w € A* we have that:

o Ifx cw, then G{xy) = {x} for all y € F(w).
o Ifx cw, then F(ay) = {x} for ally € G(w).

Definition 2.5 Let F' be ndo with flexible arity in A.
We say that F' is weakly associative if for every a =
gy € A with g £ ¢ and every z € A it satisfies

that: if F(ag) = {2z}, then
FlapFlag)as) = )
a=wiwyws

woFE

Fw F(w2)ws)

2.2 Multisemilattices

We begin by introducing some previous concepts.

Definition 2.6 Let (A, <) be a poset. If B C A, we
denote by Cot! (B) the set of upper bounds of B and by
Cot | (D) the set of lower bounds of B. So, we have two
operators Cot!,Cot| : 24 — 24 defined as follows:

Cot (B) = () (¥]

beB

Cot'(B) =[] b);

beB
Definition 2.7 Let (A, <) be a poset, a€ A and BC A

e A multi-supremum of B is a minimal element
of Cot'(B). We denote by Multi-sup(B) the set
of multi-supremum of B.

o A multi-infimum of B is a mazimal element of
Cot|(B). We denote by Multi-inf(B) the set of
multi-infimum of B.

Now we introduce the concept of multisemilattice.

Definition 2.8 An ordered V-multisemilattice is
a poset, (A, <), such that for every nonempty finite
subset, H C A we have that:

Cot'(H) = | J{[z) | z € Multi-sup (H)} *

For duality, we obtain the definition of ordered A-
multisemilattice.

In order to introduce the algebraic characterization
of multisemilattice, we define a new property for ndos.

Definition 2.9 Let F' be an ond with flexible arity in
A. We say that F has the property of comparabil-
ity if for all w € A* the two following conditions are
satisfied:

comp;: if z € F(w), then F(x,z) = {z} for all x € w.
compsy: if 21,20 € F(w) and F(z1,22) = {z1}, then
Z1 = Z2.

Now we can provide the definition of algebraic mul-
tisemilattice.

Definition 2.10 An algebraic multisemilattice,
(A, F), is a set A with an ndo F of flexible arity in
A, that satisfies the following properties:

(MSR1) Commnutative law.

(MSR2) Weakly associative law.
(MSR3) Idempotency law.
(MSR4) Comparability law.

Theorem 2.11

i) Let M = (A, <) be an ordered V-multisemilattice.
Then, (A,F,) s an algebraic multisemilat-
tice, denoted by M®, where F,(x1,...,1p)
Multi-sup ({z1,... ,xn}).

i) Let M = (A,F,) be an algebraic multisemilat-
tice. The set A with the order relation “x <
y if and only if F,(x,y) = {y}” is an ordered V-
multisemilattice denoted by MS,.

i) If M = (A, <) is an ordered V-multisemilattice,
then (M®*)g = M.

) If M = (A, F,) is an algebraic multisemilattice,
then (M) = M.

The dual result is also true.

INotice that we don’t need that Cot! (H) # @.



From now on, we will use the symbol F_ to denote
both F, and F,.
the associative property reduces multisemilattices to
semilattices.

The following result ensures that

Theorem 2.12 Let (A, F_) be a mulliserilattice.

Then A is a semilattice iff 7Fo s associative and full.
Moreover, if (A, F_) is a bounded multisemilattice, A

is o semilattice iff I, verifies the associative property.

Definition 2.13 Given a multisemilattice (A, F,)
and a subset @ # B C A, we say that B is submulti-
semilattice of A if the restriction of F, to B, F_, .
provides the structure of multisemilattice to B.

2.3 Multilattices

We have now all the neccesary elements to approach
the study of ordered structures generalizing the lattice
structure.

Definition 2.14 An ordered multilattice is a poset
(A, <), such that for every nonempty finite H C A we
have that:

Cot' (H) = U{[2) | z € Multi-sup(H)}
Cot | (H) = J{(2] | # € Multi-inf(H)}

Definition 2.15 An  algebraic multilattice,
(A,F,,F), is a set A with two ndos F,, and F, in A,
that verify the following azioms:

(MR1) Commutative laws.

(M R2) Weakly associative laws.

(M R3) Idempotency laws.

(M RA) Comparability laws.

(MR5) Absorption law.

Theorem 2.16

i) Let M = (A, <) be an ordered multilattice. Then,
(A, F,,F ) is an algebraic multilattice denoted by
M, being F, (x1,...2,) = Multi-sup{a,...2,}
and F (r1,...7,) = Multi-inf{z, ... 2, }

ii) Let M = (A, F,,F,) be an algebraic multilat-
tice. The set A with the order relation given by
‘e < yif and only if F,(z,y) = {y}” is an or-
dered multilattice, denoted by M°.

iii) Given an ordered multilattice M =

(M) = M.

i) Given an algebraic multilattice M= (A, F,,F,),
(M) =M.

(4,<)

b

Proposition 2.17 Let (A, F,) and (A, F) be multi-
semilattices. Then, (A, F,, F, ) is a multilattice if and
only if (F,,F,) it satisfies the property of absorption

Now, we show that, similarly we have scen for multi-
semilattices, associativity reduces the multilattices to
lattices.

Theorem 2.18 Let (A, F,,F.) be a full multilattice.
Then, the following conditions are equivalent:

1. F, is associative.
2. F, 1is associative
3. (A F,,F,) is a lattice.

Corollary 2.19 Let (A, F,, F ) be a bounded multi-
lattice. A is a lattice if and only if either F, or I is
associative.

Definition 2.20 Let (A, F,, F,) be a multilattice. We
say that & # B C A is a submultilattice of A if
(B, F,, .. F, ) is a multilattice.

sYA/B

3 Ideals in Multisemilattices

In this scction we develop the theory of ideals in mul-
tisemilattices. As we will see, it is an appropriate ex-
tension of the corresponding concept in semilattices.

Definition 3.1 Let (A, <) be an V-semilaltice and
@£ 1C A We say that I is an ideal if [ is V-closed
and lower closed.

This definition admits scveral gencralizations to
posct. The widely used in the literature is the fol-
lowing, called s-ideal by Rachunek in [7]:

Definition 3.2 Let (A, <) be a poset and @ + B C A.
B is a s-ideal of A if and only if is a directed® set and
lower closed. We denote by Zdeals®(A) the set of s-
ideales of A.

A s-ideal, B, is principal if it has mazximum. That
is, if B = (D] for some b € B.

The following result characterize the s-ideals in a
multisemilattice.

Proposition 3.3 Let (A, <) be a V-multisemilattice
and @ #% B C A. B is an s-ideal if and only if the

following two conditions hold:
a) If a,b € B, then F,(a,b) N B + &.

b) B is lower closed.

2Given a poset (A,<), a subset @ # B C A is directed if
every nonempty finite subset H of B has an upper bound in B



Proof 1 To prove that B is lower closed is equivalent

to prove that the condition a) is necessary and suffi-

cient to ensure that B is directed. The proof that a) is

sufficient is immediate. We prove that is necessary:
Let B be directed and a,b € B. Then,

@+ Cot'({a,b})NB = (U.TeFv(a.b) [m)) nB
= UzeFv(a,b) ([x) N B)

Therefore, there exist xg € F, (a,b) with [19)N\B # @
and, since B is lower closed, we have that o € B.

The following example shows that the definition of s-
ideal for a poset is not adequate in the case of multi-

scmilattices. .
N
c d
>

a b

“ b NS
N (a9 " B9

EXAMPLE 1.-

1. Given the V-multisemilattice (A, <) we have that
A is not a s-idecal, because {a, b} is not directed.

2. If we consider the multilattice (B, <), then X =
{0,a,b,¢} and Y = {0,a,b,d} are s-ideals, but
XNY ={0,a,b} is not a s-idcal.

Therefore, we refuse the option proposed by
Rachunek for an arbitrary poset, and we propose the
following notion of idecal:

Definition 3.4 Let (A, <) be a V-multisemilattice and
@+ B C A We say that B is an ideal if B is lower
closed and F,-closed.

Let Tdeals(A) denote the set of all ideals of A and
let Tdealso(A) = Tdeals(A)U{@}. We call Zdealso(A)
the augmented ideals set of A.

An ideal, B, is principal if it has mazimum, that
is, if B = (b] for some b € B.

The next example shows that Zdeals(A) € Tdeals®(A)
and Zdeals*(A) € Tdeals(A).

EXAMPLE 2.- Let us considerer the V-multisemilattices
(4, <) and (B, <) whose diagrams are:

A4,5) < d (B, <)

1 N
N,

1. {0,a,b,¢} € Zdeals*(A) ; {0,a,b,¢} & Tdeals(A)

2. {0,a,b} € Tdeals(B) ; {0,a,b} & Tdeals®*(B)

The following result is immediate:

Proposition 3.5 Let A be a V-multisemilattice. Fv-
ery ideal, B, of A is a submultisemilattice of A.

EXAMPLE 3.- Given the V-multisemilattice (A, <)
whose diagram is:

The ideals and s-ideals of A arc:
o Tdeals(A) = {(0], (al, (8], (], (f], {0, 0, b, ,d, e}, A},

o Tdeals*(A) = {(0], (al, (b]; (c], (d], (e], (]}

4 Ideals in Multilattices

In this section, with the same arguments that in the
casc of multisemilattices, we give a new definition of
ideals for multilattices as a generalization of the same
concept for lattices.

Definition 4.1 Let (A, <) be an lattice and @ # I C
A. We say that I is an ideal if I is an ideal of the
V-semilattice or, equivalently, if the two following con-
ditions hold:

1. Ifa,bel thenavbel.

2. Ifael andx € A thenahx el

Definition 4.2 Let (A, <) be a multilattice. We say
that @ # B C A is an ideal if it is an ideal of the
V-multisemilattice (A, <)

The following characterization of ideals is immediate
from definition:

Proposition 4.3 Let (A, <) be a multilattice and &
B C A. Then, B is an ideal if and only if the following
two conditions hold:

a) If a,b € B, then F,(a,b) C B.

b) Ifxr € B anda € A, then F (a,r) C B.



In lattices, the concepts of ideal and s-ideal coincide, Proof 2 Let By, By € Zdeals(A). If B1 N By # @,

that is, if (4, <) is a lattice we have that: then BiNBsg is an ideal and is the infimum of { By, Ba}.
On the other hand, since A is an ideal that contains By

L
Zdeals(A) = Zdeals®(A) and Bo, then exists T(B1 U Ba) and is the supremum

of {B1, Bs}, and therefore (Zdeals(A),C) is a multi-
lattice. On the other hand, adding the empty set we

have that both (4, <) and (B, <) are multilattices, and 0y o (Zdealso(A), C) and therefore we have
Zdeals*(A) € Tdeals(A) and Tdeals(B) € Tdeals*(B) . (Tdeals(A),C) is associative.

| Notm{ej tflat ;)m: <::on(:'ept 'of 1(1?;%1(118 ?he‘z Il?tl,ll:‘dl trans(i If (A,<) is a bounded multilattice, then every
ation of the characterization of ideals 1n lattices, an ideal contains (0] that is an ideal and, therefore,

also coincides with the ideal concept in rings. (Zdeals(A), ) is a lattice
The following result is immediate: ) T o

This is not truc in multilattices. In example 2 we

Proposition 4.4 Let (A, <) be a multilattice. Every EXAMPLE 5.- Let us consider the multilattices (A, <)
ideal is a submultilattice. and (B, <) whose diagrams are:

As direct consequence of the definition of ideal, we 3
can eunsure:

Q —

Proposition 4.5 Let (A, <) be a multilattice. For any \d

two ideals By, By in A, we have that BN By is an ideal ‘ 1t
of A. c/ \d |><I

b

N,

This allows us to give the following definition:

Definition 4.6 Let (A, <) be a mullilattice and @ =
X C A, We call ideal generated by X, and we

denote by T(X), to the intersection of all the ideals The diagrams of the associative multilattice
that contain, it. (Zdeals(A),C) and the lattices (Zdealso(A),C) and

(Zdeals(B), C) are:

EXAMPLE 4.- Let us considerer the multilattice, (A, <),
whosce diagram is: A

f g AN f
\/ (fl\(c/g] i\/ <1]

7N
c/ \d (a/ \(b] (a;\ / l\ /
I><I (Zdeals(A), C) (Zdealso(A), C) (Zdeals(B),C)
a b
N

5 Other considerations

I({c}) = (e ={0,a,b,c,d, e} Johnston introduces another concept of ideal in the
I({a,b}) = (] ={0,a,b,c,d, e} framework of the posets which is too weak when ap-
I({f.9}) = plied to multisemilattices and multilattices. In this sce-

We conclude the section with the result whose real-  tion we analyze this concept in relation with the one

ization has guided all our study. we have introduced.
Theorem 4.7 Lel (A, <) be a mullilattice. Then: Definition 5.1 [ Definition of Johnston [4]] Let (4, <)

be a poset and @ # B C A. B is a m-ideal if and only
if for every nonempty finite subset H of B we have

2. (Idealso(A), C) is a lattice. that, if exists SupIl, then (SupH] C B.

=

1. (Zdeals(A),C) is an associative multilattice.

3. If (A, <) is bounded, then (Zdeals(A), C) is a lal- We denote by Zdeals™(A) the set of m-ideales of
tice. a poset A. Tt is casy to prove that Zdeals®(A) C

ot



Tdeals™(A).

ample, this inclusion is in general strict:

Also, as it is shown in the following cx-

EXAMPLE 6.- Let (4, <) be a poset whose diagram is:

(4,5) 1

AN

€

S — 0 — QL

N,

Then, {0,a,b0} € Zdeals™(A),
Tdeals®(A)

The concept of m-ideal proposed by Johnston, can be

but {0,a,0} ¢

characterized in the multisemilattices in the following
way:

Proposition 5.2 Let (A, <) be a V-multisemilattice
and @ # B C A. Then B is a m-ideal if and only
if the following two conditions hold:

a) If a,b € B and Fy(a,b) = {c}, then c€ B
b) B is lower closed.

The following proposition is immediate and ensures
that our definition of ideal is stronger that the defini-
tion of m-ideal.

Proposition 5.3 Let (A, <) be a V-multisemilattice.
Then,
Tdeals(A) C Tdeals™(A)

EXAMPLE 7.- Let (A, <) be a V-multisemilattice whose
diagram is:

S — 0 — Q

N,

The ideals, s-ideals and m-ideals of A arc represented
in the following diagram:

From definition 4.6 we have that, if there exists the
smallest m-ideal containing a subscet X #£ @ of a mul-
tilattice, A, denoted by Z,,(X), then Z,,(X) C T(X).
However, the other inclusion is not true, as we can see
in the following example.

ExXAMPLE 8.- Let us consider the multilattice, (A, <),
whose diagram is:

—

Q—

\d

)

X

S

N
Then Z, ({e,d}) = (f] € ZT({e,d}) = A.
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