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Markov random sequence. Our results are generalizations of Han’s results on the variable-
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1 Introduction

In 1995, Vembu and Verdu [6] considered the
following problem, called the intrinsic ran-
domness problem:

At what rate can we generate fair
random bits using the given general
source X with arbitrary small (but
nonzero) tolerance?

and clarified that the supremum of achiev-
able fized-length intrinsic randomness rates is
equal to the spectral inf-entropy rate H(X)
(see [5]) of the source X, and the supremum
of achievable variable-length intrinsic random-
ness rates is equal to liminf, .., ZH(X™).
Latterly, the results of variable-length intrin-
sic randomness are generalized to the case
with countably infinite source alphabet by
Han [2].

On the other hand, Han and Uchida [4]
considered the problem of variable-length
nonuniform random number generation and
showed that an optimal source code with cost
can be regarded as a variable-length nonuni-
form random number generator. In this pa-
per, we establish formulae for the optimal
generating rate of the variable-length Markov
random sequence. Our results are generaliza-
tions of the results of Han [2] on the variable-
length intrinsic randomness.

2 Preliminaries

Let X be a countably infinite alphabet
and Y = {0,1,---,K — 1} be a fi-
nite alphabet, called source alphabet and

code alphabet, respectively. Let X =
oo
{Xn:(an),Xgn),-..,X}l"))} be the

n=1
general source (see, e.g., [5, 2]), where each

component random variable X Z-(n (1<i<n)
takes values in X. The stochastic matrix
and initional probability distribution of target
process Y is denoted by Q@ = {Q(k|j)};rey
and g = {q(k)}xey, respectivelyl. With any
nonnegative integer m we define the random
variable Y (™ taking values in Y by

Pr{Y ™ =(y1, - ,ym)} =q(w1) [ [ Quilvi—)

1=2

where m is called the length of Y™ and Y'(©)
denotes the constant random variable that co-
incides with the null string A with probability
1. From now on, we call Y (™) the Markov ran-
dom sequence of length m. Moreover, given
a nonnegative integer-valued random variable
I, we call YU the wariable-length Markov
random sequence.

Let Y* be the set of all finite strings (includ-
ing the null string A) taken from ). Given a

"We assume that the process Y is irreducible and

Q(klj) >0 (Vj, k€ )).



variable-length mapping ¢, : X" — V*, we
define the set D,,, for any nonnegative integer
m by

Dm = {z € X" | l{pn(z)) = m},

where [(y) denotes the length of y € Y* and
we put

J(pn) ={m | Pr{X" € D,,} > 0}.

For any m € J(¢n), we define X as the
random variable taking values in D,,, with the
distribution given by

Psxn (ZB) _ PX"(:B)

- _rxl®) D).
B PrixneD,) &P

Let us now consider to construct a map-
ping ¢, : X" — Y* for all m € J(pn)
such that ¢, (X},) asymptotically approxi-
mates the Markov random sequence of length
m. That is to say, we consider the prob-
lem of constructing ¢, : X" — Y* such
that ¢, (X™) asymptotically approximates
a variable-length Markov random sequence.
The average length per source letter of the
variable-length Markov random sequence gen-
erated by ¢, is given by

E{(en(X")} =5 Y mPr{X" D)
meJ (¢n)

which we call the generating rate of the
variable-length Markov random sequence. In
the following section, we consider to gen-
erate a variable-length Markov random se-
quence with as large generating rate as pos-
sible by transforming the coin random num-
ber X = {X"}>°,. (In this paper, all the
logarithms are taken to the base K, and we
assume that 0log0 = 0).

Rate of the
Markov

3 Generating
Variable-Length
Random Number

In this section, we investigate the maximum

generating rate of the variable-length Markov
random sequence.

3.1 Case with the Divergence Dis-
tance

First, we formulate the problem as follows.
(Hereafter, we use the denotation D(X||Y)
as the divergence distance D(Px||Py) =

ez Px(2)log 252).

Definition 1 : R is called an achievable
variable-length Markov random sequence gen-
erating rate for the source X if there exists a
mapping ¢, : X" — V* such that

1
liminf —E{l(p,(X™))} > R,
n—oo 1

lim  sup  D(pn(X5)[[Y™) = 0.
" meT (on)
Moreover, we define the supremum achiev-
able variable-length random number generat-
ing rate ST(X) by the supremum of achiev-
able variable-length Markov random sequence
generating rates.

With this definition, we have the following
first main theorem.

Theorem 1 : For any general source X =

{X"™}>2,, we have
1 1
(X)) = liminf —H(X™).
ST(X) Hy) iminf (X™)

where H(Y') is the entropy rate of the target
process Y.

First, to prove Theorem 1, we ready one
lemma.

Lemma 1 : Let {W,}°°, be a sequence of
finite sets and R > 0,a > 0 be any constants.
Suppose that the probabilities of the random
variable W,, taking values in W, satisfy the
condition

Py, (w) < KR (v e W),

where v > 0 is an arbitrary small constant.
Then, there exists a mapping ¢, : W, —

YR awz] guch that
D(pn(Wy,)||y IreF ey

< naR {K‘\_naRﬁj(H(Y)—g) +K—an

+K~ LnaRch} :



where € > 0 is an arbitrarily small constant
and

K?log QnaR (Y)JrgJ + 1)

LnaRmJ

Proof of Lemma 1:

Given y € Y*, let n(v|u) be the number
of transitions from the letter u to the let-
ter v in y with the cyclic convention that
yn precedes yi. Let P(u,v) = % and
p(u) = > ey P(u,v). Then, given a se-
quence y € Y*, we define its Markov type
as the empirical distribution on ) x ) given
by {Q(u,v)}yvey. Moreover, we define the
conditional empirical divergence as

C—=¢& —

_ P(ulu)
D(P||Qlp) = u;yp(u)P(U!U) log Q)
where P(v|u) = Pp(Z;’;)).

Now, we set

T; = {y e Y mE) | D(PYQly) < ¢}

where € > 0 is an arbitrary small constant
(T% is called the e— typlcal set of sequences
with length |naR4 Y )+5J)' It can be shown

(see, e.g., [1, 7]) that

Pr{Y, ¢ T5} < K~ "fmoele )

where

K2log (|naR b | +1)
|naR gy |

H(Y)+€J)_

cC=¢&—

and Y,, = y(lnakt Next, we number

all the elements of T in order as

T?i:{ylay%'” 7yMn} (Mn:’Tﬁ,’)

From the basic property of the typical se-
quence

K- Lnaij (H(Y )+e)
K—naR (y c Tg)’

Py, (y)

AVANAY]

(2)

we have

1> ) Py =Y K=MK "
yeTs yeTs

and hence,
M, < K"k, (3)

Let us now construct the mapping ¢, :

I_nozRi1 | K
Wp — Y HX)+<- as follows. First, for y;,
select a subset A(1) of W, so as to satisfy the
conditions:

> P

weA(1

) < Py, (y1)

and, for any w’ € W,, — A(1),

Z P, (w

weA(1

Next, for y,, select a subset A(2) C W, —A(1)
so as to satisfy the conditions:

Y Py, (w)

wEA(2)

< Py, (y2)

and, for any w’ € W,, — A(1) U A(2),

< Y Py, (w

weA(2)

Py, (y) ) + Py, (w').

In an analogous manner, we define the subsets
A(3),---, A(M,, —1). Moreover, we define

M,—1

- U 46
i=1

Now, define the mapping ¢,
yLnaRmJ as

A(M,,) =

Wn —

on(w) =y, for we A@G) (i=1,2,---,M,)

and set Y, = ¢, (W,,). Then, it can be easily
shown that

Py (y;) < Py, (y;)

n



Pf/n (yMn)
< Py (ya,) + (M, — 1)K @R
+Pr{Y, ¢ T}
< Py, (ya,) + K
I maRvy e (5)

where the last inequality follows from (1) and
(3). Therefore, from (2),(4),(5) and the basic
property of the typical sequence

Py, (y) < K~ =2 gy ¢ ey,

we conclude that

([na
D(‘Pn(Wn)HYY

- ¥

|naR
yey

Py (y)
Py, (y)

Py (y)log

T
H(Y)+e

Py (y;)
B ZP (i) log PYn(yz)

Pyn (yMn )

Py, (’!JMn)
1

Py, (yMn)
naR {K—LnaRmJ(H(Y)—E)

IN

P, Y, (yMn) log

IN

P, Y, (yMn) log

IN

+ KR KT LMRH(YHEJC} .

Proof of Theorem 1:
i)Direct Part:

The fundamental way of this proof is equiv-
alent to the way of the proof of the direct part
of [2, Theorem 3.1].

Letting v > 0 be an arbitrarily small con-
stant, we partition the interval [0, +00) into
the subintervals as

IJZ[RJ’RJ+1) (]:07172>)

where R; = 37vj. According to this interval
partition, we divide the set X™ into mutually
disjoint subsets as follows

S I]}

. 1 1
() — no|
Sy {:13 S - log P (@)

(]:071727)

Next, divide J = {0, 1, - - - } into the following

two subsets:

Jy = {j >1 | Pr{X” c Sgﬁ} > K*MRJ},

(6)

Ty = {O}U{j >1| Pr {X” c S;ﬁ} < K—’WRJ}

and, for each j € Ji define the random vari-
able Xj” taking values in S}f ) by

PXn (33)
Pr{xne s}

Py, (@) = (w € SP). (7

Since z € S implies Pxn(x) < K",
it follows from (6) and(7) that, for all = €
S (j € 1)

an(m) < K-7ER;
Then, by means of Lemma 1 with R =
Rja = 1 - 29W, = S¢, w, = X7,
there exists a mapping g07(1) : S,gj) —

YO=29R mreyzz) guch that

D(@SA{)(X”)HY(L"“*ZV)RJ' H&Haj))

< n(1—27)R; {K (=29 R; greeyee J(H(Y) =)
+K—TL’YRj _"_K_Ln(l_Q'Y)ijJc}

(jeh) (8)

where

Kzlog(LnaR V)T J—i—l)
[naR '

c=¢—
H(Y)-‘rsJ
Now, define the variable-length encoder ¢, :
X" — YV* as
@g)(w) for z € SY (3j € ),
() = A .
otherwise

where A is the null string of length 0. Then,
(8) is rewritten as

D(Son(Xn)‘|Y(Ln(172’7)ijJ))
< (1~ 29) Ry { BRI R (100~
LKTMR K—L"(1—2'Y)RjWJC}

(Jeq) (9)



Since R; = 3j, we observe here that for each
Jjen

(1-29)Rjy1 > (1—-27)R; >0

the
the

which means that

holds,
(n(l — 29)Rigrgge)  of

yln(l—Qv)Rj TvyTe

length
ranges

of the mappings (p,(lj)

are all different for all sufficiently learge n
(Vj € J1).

Moreover, if we put C,, = ¢, }(A) and de-
fine the random variable X/ taking values in
C, by
Pxn ()

Pxp@) = sxne o

(xeCy)

it follows that
D(en(X)IYO) =0 (¥n=1,2,---). (10)
Define

T (¢n)
:{o}uﬂn(l - 27)RjH(Y1)+€J 7€ Jl}

and for each m € J(¢n) — {0} define the ran-
dom variable X to be

Xn = X7

m J

Then, (9) can be rewritten in the following
form:

D(pn(X1)|[Y ™)
<n(l—=2v)Rj,, -
[k e (H(Y)—o)

4 KR 4 g =20 Rp WJC}
(11)

(m € J(en) —{0})

where j = j,, is uniquely determined by m &
J (¢n)—{0} owing to the equation m = [n(1—
27)ijj. Then, summarizing (10) and

(11), we have

lim  sup  D(pa(X0)[IY0™) = 0. (12)

(== ] )

On the other hand, from the fact that

E{l(pn(X™)}
= Y mPr{en(X") = m}

meJ (pn)

= 3oy

Pr {X" € Sg)},

we have
E{i(en(X"))
2w
[1 —n 2y H(X™) — 67((11_— 12{7) 5;2::72
~6y(1-27)~ (13)

in a same fashion as in the proof of the
converse part of [2, Theorem3.1]. Taking
liminf,_,~ on the both sides of (13), we fave

1
liminf —E{l(pn(X"))}
n—oo n
>t
~“HY)+e
1 1
[lim inf —H(X") — 2y (lim inf H(X"))

n—oo n n—oo n

~61(1-23)| (14)
Since v > 0 and € > 0 are arbitrary small,
expressions (12) and (14) imply that any rate
R such that

N

is achievable. O

ii)Converse Part:
In view of Pinsker’s inequality

oge
2

the converse part of Theorem 2 of the fol-
lowing subsection implies the converse part
of Theorem 1. O

(AlaX3).Y0) < Dl (XR) V™),



Remark 1 : In the case where Y™ is uni-
form random number, Theorem 1 coincides
with [2, Theorem 3.1].

3.2 Case with the Variational Dis-
tance

The variational distance d(X,Y") between two
random variables X,Y taking values in a fi-
nite set Z is defined by

d(X,Y) =Y |Px(z) = Pr(2)|.
z€EZ

Definition 2 : R is called an achievable
variable-length Markov random sequence gen-
erating rate for the source X if there exists a
mapping ¢, : X™ — Y* such that

liminf ~ E{l(ga(X™)} > R,

n—oo n

sup  d(pn(X;,), V™) = 0.
mEJ(SDn)

lim

n—oo
Moreover, we define the supremum achievable
variable-length Markov random sequence gen-
erating rate S(X) by the supremum of achiev-
able variable-length Markov random sequence
generating rates.

With this definition, we have the following
second main theorem.

Theorem 2 : For any general source X =

{X™}> |, we have
1
S(X) = liminf —H(X™).
(%) = Ty ninf o H (X7
Proof:

i)Direct Part:
In view of Pinsker’s inequality

loge
2

(den(X3).¥ ")) < Dlpa(X5) IV ),

the achievability of a rate R in the sense of
Definition 1 implies that of the rate R of Def-
inition 2. Then, from Theorem 1, we conclude
that any rate R such that

lim inf lH(X")

1
R
< H(Y) n— n

is achievable.

ii)Converse Part:

From the fact that H(Y (™) > mH(Y)
(see, e.g., [3, Remark 3.4]), we can show the
converse part of Theorem 2 in an entirely
same manner as in the proof of the converse
part of [2, Theorem 4.1]. O

Remark 2 : In the case where Y™ is uni-
form random number, Theorem 2 coincides
with [2, Theorem 4.1].
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