Maximum Generating Rate of Variable-Length Markov Random Sequences

OSAMU UCHIDA
Department of Human and Information Science
Tokai University
1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292
JAPAN

Abstract

In this paper, we investigate the maximum generating rate of the variable-length Markov random sequence. Our results are generalizations of Han's results on the variablelength intrinsic randomness.

Key-Words: - Random number generation, general source, Markov process, divergence distance, variational distance, variable-length random number

1 Introduction

In 1995, Vembu and Verdu [6] considered the following problem, called the intrinsic randomness problem:

At what rate can we generate fair random bits using the given general source \boldsymbol{X} with arbitrary small (but nonzero) tolerance?
and clarified that the supremum of achievable fixed-length intrinsic randomness rates is equal to the spectral inf-entropy rate $\underline{H}(\boldsymbol{X})$ (see [5]) of the source \boldsymbol{X}, and the supremum of achievable variable-length intrinsic randomness rates is equal to $\liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)$. Latterly, the results of variable-length intrinsic randomness are generalized to the case with countably infinite source alphabet by Han [2].

On the other hand, Han and Uchida [4] considered the problem of variable-length nonuniform random number generation and showed that an optimal source code with cost can be regarded as a variable-length nonuniform random number generator. In this paper, we establish formulae for the optimal generating rate of the variable-length Markov random sequence. Our results are generalizations of the results of Han [2] on the variablelength intrinsic randomness.

2 Preliminaries

Let \mathcal{X} be a countably infinite alphabet and $\mathcal{Y}=\{0,1, \cdots, K-1\}$ be a finite alphabet, called source alphabet and code alphabet, respectively. Let $\boldsymbol{X}=$ $\left\{X^{n}=\left(X_{1}^{(n)}, X_{2}^{(n)}, \cdots, X_{n}^{(n)}\right)\right\}_{n=1}^{\infty}$ be the general source (see, e.g., $[5,2]$), where each component random variable $X_{i}^{(n)}(1 \leq i \leq n)$ takes values in \mathcal{X}. The stochastic matrix and initional probability distribution of target process \boldsymbol{Y} is denoted by $Q=\{Q(k \mid j)\}_{j, k \in \mathcal{Y}}$ and $\boldsymbol{q}=\{q(k)\}_{k \in \mathcal{Y}}$, respectively ${ }^{1}$. With any nonnegative integer m we define the random variable $Y^{(m)}$ taking values in \mathcal{Y}^{m} by
$\operatorname{Pr}\left\{Y^{(m)}=\left(y_{1}, \cdots, y_{m}\right)\right\}=q\left(y_{1}\right) \prod_{i=2}^{m} Q\left(y_{i} \mid y_{i-1}\right)$
where m is called the length of $Y^{(m)}$ and $Y^{(0)}$ denotes the constant random variable that coincides with the null string Λ with probability 1. From now on, we call $Y^{(m)}$ the Markov random sequence of length m. Moreover, given a nonnegative integer-valued random variable I, we call $Y^{(I)}$ the variable-length Markov random sequence.

Let \mathcal{Y}^{*} be the set of all finite strings (including the null string Λ) taken from \mathcal{Y}. Given a

[^0]variable-length mapping $\varphi_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$, we define the set \mathcal{D}_{m} for any nonnegative integer m by
$$
\mathcal{D}_{m}=\left\{\boldsymbol{x} \in \mathcal{X}^{n} \mid l\left(\varphi_{n}(\boldsymbol{x})\right)=m\right\},
$$
where $l(\boldsymbol{y})$ denotes the length of $\boldsymbol{y} \in \mathcal{Y}^{*}$ and we put
$$
\mathcal{J}\left(\varphi_{n}\right)=\left\{m \mid \operatorname{Pr}\left\{X^{n} \in \mathcal{D}_{m}\right\}>0\right\} .
$$

For any $m \in \mathcal{J}\left(\varphi_{n}\right)$, we define X_{m}^{n} as the random variable taking values in \mathcal{D}_{m} with the distribution given by

$$
P_{X_{m}^{n}}(\boldsymbol{x})=\frac{P_{X^{n}}(\boldsymbol{x})}{\operatorname{Pr}\left\{X^{n} \in \mathcal{D}_{m}\right\}} \quad\left(\boldsymbol{x} \in \mathcal{D}_{m}\right) .
$$

Let us now consider to construct a mapping $\varphi_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$ for all $m \in \mathcal{J}\left(\varphi_{n}\right)$ such that $\varphi_{n}\left(X_{m}^{n}\right)$ asymptotically approximates the Markov random sequence of length m. That is to say, we consider the problem of constructing $\varphi_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$ such that $\varphi_{n}\left(X^{n}\right)$ asymptotically approximates a variable-length Markov random sequence. The average length per source letter of the variable-length Markov random sequence generated by φ_{n} is given by
$\frac{1}{n} E\left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\}=\frac{1}{n} \sum_{m \in \mathcal{J}\left(\varphi_{n}\right)} m \operatorname{Pr}\left\{X^{n} \in \mathcal{D}_{m}\right\}$
which we call the generating rate of the variable-length Markov random sequence. In the following section, we consider to generate a variable-length Markov random sequence with as large generating rate as possible by transforming the coin random number $\boldsymbol{X}=\left\{X^{n}\right\}_{n=1}^{\infty}$. (In this paper, all the logarithms are taken to the base K, and we assume that $0 \log 0=0$).

3 Generating Rate of the Variable-Length Random Number

In this section, we investigate the maximum generating rate of the variable-length Markov random sequence.

3.1 Case with the Divergence Distance

First, we formulate the problem as follows. (Hereafter, we use the denotation $D(X|\mid Y)$ as the divergence distance $D\left(P_{X} \| P_{Y}\right) \equiv$ $\left.\sum_{z \in \mathcal{Z}} P_{X}(z) \log \frac{P_{X}(z)}{P_{Y}(z)}\right)$.
Definition 1: R is called an achievable variable-length Markov random sequence generating rate for the source \boldsymbol{X} if there exists a mapping $\varphi_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$ such that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} E\left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\} \geq R, \\
& \lim _{n \rightarrow \infty} \sup _{m \in \mathcal{J}\left(\varphi_{n}\right)} D\left(\varphi_{n}\left(X_{m}^{n}\right) \| Y^{(m)}\right)=0 .
\end{aligned}
$$

Moreover, we define the supremum achievable variable-length random number generating rate $S^{+}(\boldsymbol{X})$ by the supremum of achievable variable-length Markov random sequence generating rates.

With this definition, we have the following first main theorem.

Theorem 1: For any general source $\boldsymbol{X}=$ $\left\{X^{n}\right\}_{n=1}^{\infty}$, we have

$$
S^{+}(\boldsymbol{X})=\frac{1}{H(\boldsymbol{Y})} \liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)
$$

where $H(\boldsymbol{Y})$ is the entropy rate of the target process \boldsymbol{Y}.
First, to prove Theorem 1, we ready one lemma.

Lemma 1: Let $\left\{\mathcal{W}_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite sets and $R>0, a>0$ be any constants. Suppose that the probabilities of the random variable W_{n} taking values in \mathcal{W}_{n} satisfy the condition

$$
P_{W_{n}}(w) \leq K^{-n(a+\gamma) R} \quad\left(\forall w \in \mathcal{W}_{n}\right),
$$

where $\gamma>0$ is an arbitrary small constant. Then, there exists a mapping $\varphi_{n}: \mathcal{W}_{n} \rightarrow$ $\mathcal{Y}^{\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor}$ such that

$$
\begin{aligned}
& D\left(\varphi_{n}\left(W_{n}\right) \| Y^{\left(\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor\right)}\right) \\
& \leq \quad n a R\left\{K^{-\left\lfloor n a R_{\left.\frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)}+K^{-n \gamma R}\right. \\
& \left.\quad+K^{-\left\lfloor n a R_{\left.\frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}\right\}}\right\}
\end{aligned}
$$

where $\varepsilon>0$ is an arbitrarily small constant and

$$
c=\varepsilon-\frac{K^{2} \log \left(\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor+1\right)}{\left\lfloor n a R_{\overline{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor} .
$$

Proof of Lemma 1:

Given $\boldsymbol{y} \in \mathcal{Y}^{*}$, let $n(v \mid u)$ be the number of transitions from the letter u to the letter v in \boldsymbol{y} with the cyclic convention that y_{n} precedes y_{1}. Let $P(u, v)=\frac{n(v \mid u)}{n}$ and $p(u)=\sum_{v \in \mathcal{Y}} P(u, v)$. Then, given a sequence $\boldsymbol{y} \in \mathcal{Y}^{*}$, we define its Markov type as the empirical distribution on $\mathcal{Y} \times \mathcal{Y}$ given by $\{Q(u, v)\}_{u, v \in \mathcal{Y}}$. Moreover, we define the conditional empirical divergence as

$$
D(P \| Q \mid p)=\sum_{u, v \in \mathcal{Y}} p(u) P(v \mid u) \log \frac{P(v \mid u)}{Q(v \mid u)}
$$

where $P(v \mid u)=\frac{P(u, v)}{p(u)}$.
Now, we set

$$
T_{n}^{\varepsilon}=\left\{\left.\boldsymbol{y} \in \mathcal{Y}^{\left\lfloor n a R_{\left.\frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}\right.} \right\rvert\, D(P \| Q \mid p) \leq \varepsilon\right\}
$$

where $\varepsilon>0$ is an arbitrary small constant (T_{n}^{ε} is called the ε - typical set of sequences with length $\left.\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor\right)$. It can be shown (see, e.g., $[1,7]$) that

$$
\begin{equation*}
\operatorname{Pr}\left\{Y_{n} \notin T_{n}^{\varepsilon}\right\} \leq K^{-\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+1}}\right\rfloor c} \tag{1}
\end{equation*}
$$

where

$$
c=\varepsilon-\frac{K^{2} \log \left(\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor+1\right)}{\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor}
$$

and $Y_{n}=Y^{\left(\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor\right)}$. Next, we number all the elements of T_{n}^{ε} in order as

$$
T_{n}^{\varepsilon}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{M_{n}}\right\} \quad\left(M_{n}=\left|T_{n}^{\varepsilon}\right|\right)
$$

From the basic property of the typical sequence

$$
\begin{align*}
P_{Y_{n}}(\boldsymbol{y}) & \geq K^{-\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor(H(\boldsymbol{Y})+\varepsilon)} \\
& \geq K^{-n a R} \quad\left(\boldsymbol{y} \in T_{n}^{\varepsilon}\right), \tag{2}
\end{align*}
$$

$$
1 \geq \sum_{\boldsymbol{y} \in T_{n}^{\varepsilon}} P_{Y_{n}}(\boldsymbol{y}) \geq \sum_{\boldsymbol{y} \in T_{n}^{\varepsilon}} K^{-n a R}=M_{n} K^{-n a R}
$$

and hence,

$$
\begin{equation*}
M_{n} \leq K^{n a R} \tag{3}
\end{equation*}
$$

Let us now construct the mapping φ_{n} : $\mathcal{W}_{n} \rightarrow \mathcal{Y}^{\left\lfloor n a R^{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}$ as follows. First, for \boldsymbol{y}_{1}, select a subset $A(1)$ of \mathcal{W}_{n} so as to satisfy the conditions:

$$
\sum_{w \in A(1)} P_{W_{n}}(w) \leq P_{Y_{n}}\left(\boldsymbol{y}_{1}\right)
$$

and, for any $w^{\prime} \in \mathcal{W}_{n}-A(1)$,

$$
P_{Y_{n}}\left(\boldsymbol{y}_{1}\right)<\sum_{w \in A(1)} P_{W_{n}}(w)+P_{W_{n}}\left(w^{\prime}\right)
$$

Next, for \boldsymbol{y}_{2}, select a subset $A(2) \subset \mathcal{W}_{n}-A(1)$ so as to satisfy the conditions:

$$
\sum_{w \in A(2)} P_{W_{n}}(w) \leq P_{Y_{n}}\left(\boldsymbol{y}_{2}\right)
$$

and, for any $w^{\prime} \in \mathcal{W}_{n}-A(1) \cup A(2)$,

$$
P_{Y_{n}}\left(\boldsymbol{y}_{2}\right)<\sum_{w \in A(2)} P_{W_{n}}(w)+P_{W_{n}}\left(w^{\prime}\right)
$$

In an analogous manner, we define the subsets $A(3), \cdots, A\left(M_{n}-1\right)$. Moreover, we define

$$
A\left(M_{n}\right)=\mathcal{W}_{n}-\bigcup_{i=1}^{M_{n}-1} A(i)
$$

Now, define the mapping $\varphi_{n}: \mathcal{W}_{n} \rightarrow$ $\mathcal{Y}^{\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor}$ as
$\varphi_{n}(w)=\boldsymbol{y}_{i}$ for $w \in A(i) \quad\left(i=1,2, \cdots, M_{n}\right)$
and set $\tilde{Y}_{n}=\varphi_{n}\left(W_{n}\right)$. Then, it can be easily shown that

$$
\begin{equation*}
P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{i}\right) \leq P_{Y_{n}}\left(\boldsymbol{y}_{i}\right) \quad\left(i=1,2, \cdots, M_{n}-1\right) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
P_{\tilde{Y}_{n}} & \left(\boldsymbol{y}_{M_{n}}\right) \\
\leq & P_{Y_{n}}\left(\boldsymbol{y}_{M_{n}}\right)+\left(M_{n}-1\right) K^{-n(a+\gamma) R} \\
& +\operatorname{Pr}\left\{Y_{n} \notin T_{n}^{\varepsilon}\right\} \\
\leq & P_{Y_{n}}\left(\boldsymbol{y}_{M_{n}}\right)+K^{-n \gamma R} \\
& +K^{-\left\lfloor n a R_{\overline{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor c} \tag{5}
\end{align*}
$$

where the last inequality follows from (1) and (3). Therefore, from $(2),(4),(5)$ and the basic property of the typical sequence
$P_{Y_{n}}(\boldsymbol{y}) \leq K^{-\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+1}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)} \quad\left(\forall \boldsymbol{y} \in T_{n}^{\varepsilon}\right)$,
we conclude that

$$
\begin{aligned}
& D\left(\varphi_{n}\left(W_{n}\right) \| Y_{\boldsymbol{Y}}^{\left(\left\lfloor n a R_{\overline{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor\right)}\right) \\
&= \sum_{\left.\boldsymbol{y} \in \mathcal{Y}^{\lfloor n a R} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor} P_{\tilde{Y}_{n}}(\boldsymbol{y}) \log \frac{P_{\tilde{Y}_{n}}(\boldsymbol{y})}{P_{Y_{n}}(\boldsymbol{y})} \\
&= \sum_{i=1}^{M_{n}} P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{i}\right) \log \frac{P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{i}\right)}{P_{Y_{n}}\left(\boldsymbol{y}_{i}\right)} \\
& \leq P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{M_{n}}\right) \log \frac{P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{M_{n}}\right)}{P_{Y_{n}}\left(\boldsymbol{y}_{M_{n}}\right)} \\
& \leq P_{\tilde{Y}_{n}}\left(\boldsymbol{y}_{M_{n}}\right) \log \frac{1}{P_{Y_{n}}\left(\boldsymbol{y}_{M_{n}}\right)} \\
& \leq \quad n a R\left\{K^{-\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)}\right. \\
&\left.+K^{-n \gamma R}+K^{-\left\lfloor n a R_{\frac{1}{H(\boldsymbol{Y})+\varepsilon}}\right\rfloor c}\right\}
\end{aligned}
$$

Proof of Theorem 1:

i) Direct Part:

The fundamental way of this proof is equivalent to the way of the proof of the direct part of [2, Theorem 3.1].

Letting $\gamma>0$ be an arbitrarily small constant, we partition the interval $[0,+\infty)$ into the subintervals as

$$
I_{j}=\left[R_{j}, R_{j+1}\right) \quad(j=0,1,2, \cdots)
$$

where $R_{j}=3 \gamma j$. According to this interval partition, we divide the set \mathcal{X}^{n} into mutually disjoint subsets as follows

$$
S_{n}^{(j)}=\left\{\boldsymbol{x} \in \mathcal{X}^{n} \left\lvert\, \frac{1}{n} \log \frac{1}{P_{X^{n}}(\boldsymbol{x})} \in I_{j}\right.\right\}
$$

$$
(j=0,1,2, \cdots)
$$

Next, divide $J=\{0,1, \cdots\}$ into the following two subsets:

$$
\begin{equation*}
J_{1}=\left\{j \geq 1 \mid \operatorname{Pr}\left\{X^{n} \in S_{n}^{(j)}\right\} \geq K^{-n \gamma R_{j}}\right\} \tag{6}
\end{equation*}
$$

$J_{2}=\{0\} \cup\left\{j \geq 1 \mid \operatorname{Pr}\left\{X^{n} \in S_{n}^{(j)}\right\}<K^{-n \gamma R_{j}}\right\}$ and, for each $j \in J_{1}$ define the random variable \tilde{X}_{j}^{n} taking values in $S_{n}^{(j)}$ by

$$
\begin{equation*}
P_{\tilde{X}_{j}^{n}}(\boldsymbol{x})=\frac{P_{X^{n}}(\boldsymbol{x})}{\operatorname{Pr}\left\{X^{n} \in S_{n}^{(j)}\right\}} \quad\left(\boldsymbol{x} \in S_{n}^{(j)}\right) \tag{7}
\end{equation*}
$$

Since $\boldsymbol{x} \in S_{n}^{(j)}$ implies $P_{X^{n}}(\boldsymbol{x}) \leq K^{-n R_{j}}$, it follows from (6) and(7) that, for all $\boldsymbol{x} \in$ $S_{n}^{(j)}\left(j \in J_{1}\right)$

$$
P_{\tilde{X}_{j}^{n}}(\boldsymbol{x}) \leq K^{-n(1-\gamma) R_{j}}
$$

Then, by means of Lemma 1 with $R=$ $R_{j}, a=1-2 \gamma, \mathcal{W}_{n}=S_{n}^{(j)}, W_{n}=\tilde{X}_{j}^{n}$, there exists a mapping $\varphi_{n}^{(j)}: S_{n}^{(j)} \rightarrow$ $\mathcal{Y}^{\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}$ such that

$$
\begin{aligned}
& D\left(\varphi_{n}^{(j)}\left(\tilde{X}_{j}^{n}\right) \| Y^{\left(\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor\right)}\right) \\
& \leq \\
& \quad n(1-2 \gamma) R_{j}\left\{K^{-\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)}\right. \\
& \left.\quad+K^{-n \gamma R_{j}}+K^{-\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor c}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\left(j \in J_{1}\right) \tag{8}
\end{equation*}
$$

where

$$
c=\varepsilon-\frac{K^{2} \log \left(\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor+1\right)}{\left\lfloor n a R \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor} .
$$

Now, define the variable-length encoder φ_{n} : $\mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$ as

$$
\varphi_{n}(\boldsymbol{x})= \begin{cases}\varphi_{n}^{(j)}(\boldsymbol{x}) & \text { for } \boldsymbol{x} \in S_{n}^{(j)}\left(\exists j \in J_{1}\right) \\ \Lambda & \text { otherwise }\end{cases}
$$

where Λ is the null string of length 0 . Then, (8) is rewritten as

$$
\begin{align*}
& D\left(\varphi_{n}\left(\tilde{X}_{j}^{n}\right) \| Y^{\left(\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor\right)}\right) \\
& \leq n(1-2 \gamma) R_{j}\left\{K^{-\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)}\right. \\
& \left.\quad+K^{-n \gamma R_{j}}+K^{-\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor c}\right\}
\end{align*}
$$

Since $R_{j}=3 \gamma j$, we observe here that for each $j \in J_{1}$

$$
(1-2 \gamma) R_{j+1}>(1-2 \gamma) R_{j}>0
$$

holds, which means that the length $\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor \quad$ of the ranges $\mathcal{Y}^{\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor}$ of the mappings $\varphi_{n}^{(j)}$ are all different for all sufficiently learge n $\left(\forall j \in J_{1}\right)$.
Moreover, if we put $C_{n}=\varphi_{n}^{-1}(\Lambda)$ and define the random variable X_{0}^{n} taking values in C_{n} by

$$
P_{X_{0}^{n}}(\boldsymbol{x})=\frac{P_{X^{n}}(\boldsymbol{x})}{\operatorname{Pr}\left\{X^{n} \in C_{n}\right\}} \quad\left(\boldsymbol{x} \in C_{n}\right)
$$

it follows that

$$
\begin{equation*}
D\left(\varphi_{n}\left(X_{0}^{n}\right) \| Y^{(0)}\right)=0 \quad(\forall n=1,2, \cdots) \tag{10}
\end{equation*}
$$

Define

$$
\begin{aligned}
& \mathcal{J}\left(\varphi_{n}\right) \\
& \quad=\{0\} \cup\left\{\left.\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor \right\rvert\, j \in J_{1}\right\}
\end{aligned}
$$

and for each $m \in \mathcal{J}\left(\varphi_{n}\right)-\{0\}$ define the random variable X_{m}^{n} to be
$X_{m}^{n}=\tilde{X}_{j}^{n} \quad\left(m=\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor\right)$.
Then, (9) can be rewritten in the following form:

$$
\begin{align*}
& D\left(\varphi_{n}\left(X_{m}^{n}\right) \| Y^{(m)}\right) \\
& \leq n(1-2 \gamma) R_{j_{m}} . \\
& \quad\left\{K^{-\left\lfloor n(1-2 \gamma) R_{j_{m}} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor(H(\boldsymbol{Y})-\varepsilon)}\right. \\
& \left.\quad+K^{-n \gamma R_{j_{m}}}+K^{-\left\lfloor n(1-2 \gamma) R_{j_{m}} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor c}\right\} \\
& \quad\left(m \in \mathcal{J}\left(\varphi_{n}\right)-\{0\}\right) \tag{11}
\end{align*}
$$

where $j=j_{m}$ is uniquely determined by $m \in$ $\mathcal{J}\left(\varphi_{n}\right)-\{0\}$ owing to the equation $m=\lfloor n(1-$ $\left.2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor$. Then, summarizing (10) and (11), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{m \in \mathcal{J}\left(\varphi_{n}\right)} D\left(\varphi_{n}\left(X_{m}^{n}\right) \| Y^{(m)}\right)=0 \tag{12}
\end{equation*}
$$

On the other hand, from the fact that

$$
\begin{aligned}
E & \left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\} \\
= & \sum_{m \in \mathcal{J}\left(\varphi_{n}\right)} m \operatorname{Pr}\left\{\varphi_{n}\left(X^{n}\right)=m\right\} \\
= & \sum_{j \in J_{1}}\left\lfloor n(1-2 \gamma) R_{j} \frac{1}{H(\boldsymbol{Y})+\varepsilon}\right\rfloor \\
& \operatorname{Pr}\left\{X^{n} \in S_{n}^{(j)}\right\}
\end{aligned}
$$

we have
$\frac{1}{n} E\left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\}$

$$
\geq \frac{1}{H(\boldsymbol{Y})+\varepsilon}
$$

$$
\left[\frac{1-2 \gamma}{n} H\left(X^{n}\right)-\frac{6 \gamma(1-2 \gamma) K^{-3 n \gamma^{2}}}{\left(1-K^{-3 n \gamma^{2}}\right)^{2}}\right.
$$

$$
\begin{equation*}
\left.-6 \gamma(1-2 \gamma)-\frac{1}{n}\right] \tag{13}
\end{equation*}
$$

in a same fashion as in the proof of the converse part of [2, Theorem3.1]. Taking $\lim \inf _{n \rightarrow \infty}$ on the both sides of (13), we fave $\liminf _{n \rightarrow \infty} \frac{1}{n} E\left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\}$

$$
\geq \frac{1}{H(\boldsymbol{Y})+\varepsilon}
$$

$$
\left[\liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)-2 \gamma\left(\liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)\right)\right.
$$

$$
\begin{equation*}
-6 \gamma(1-2 \gamma)] \tag{14}
\end{equation*}
$$

Since $\gamma>0$ and $\varepsilon>0$ are arbitrary small, expressions (12) and (14) imply that any rate R such that

$$
R<\frac{1}{H(\boldsymbol{Y})} \liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)
$$

is achievable.
ii)Converse Part:

In view of Pinsker's inequality
$\frac{\log e}{2}\left(d\left(\varphi_{n}\left(X_{m}^{n}\right), Y^{(m)}\right)\right)^{2} \leq D\left(\varphi_{n}\left(X_{m}^{n}\right) \| Y^{(m)}\right)$,
the converse part of Theorem 2 of the following subsection implies the converse part of Theorem 1.

Remark 1 : In the case where $Y^{(m)}$ is uniform random number, Theorem 1 coincides with [2, Theorem 3.1].

3.2 Case with the Variational Distance

The variational distance $d(X, Y)$ between two random variables X, Y taking values in a finite set \mathcal{Z} is defined by

$$
d(X, Y)=\sum_{z \in \mathcal{Z}}\left|P_{X}(z)-P_{Y}(z)\right|
$$

Definition 2: R is called an achievable variable-length Markov random sequence generating rate for the source \boldsymbol{X} if there exists a mapping $\varphi_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{*}$ such that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} E\left\{l\left(\varphi_{n}\left(X^{n}\right)\right)\right\} \geq R \\
& \lim _{n \rightarrow \infty} \sup _{m \in \mathcal{J}\left(\varphi_{n}\right)} d\left(\varphi_{n}\left(X_{m}^{n}\right), Y^{(m)}\right)=0
\end{aligned}
$$

Moreover, we define the supremum achievable variable-length Markov random sequence generating rate $S(\boldsymbol{X})$ by the supremum of achievable variable-length Markov random sequence generating rates.

With this definition, we have the following second main theorem.

Theorem 2 : For any general source $\boldsymbol{X}=$ $\left\{X^{n}\right\}_{n=1}^{\infty}$, we have

$$
S(\boldsymbol{X})=\frac{1}{H(\boldsymbol{Y})} \liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)
$$

Proof:

i)Direct Part:

In view of Pinsker's inequality
$\frac{\log e}{2}\left(d\left(\varphi_{n}\left(X_{m}^{n}\right), Y^{(m)}\right)\right)^{2} \leq D\left(\varphi_{n}\left(X_{m}^{n}\right) \| Y^{(m)}\right)$,
the achievability of a rate R in the sense of Definition 1 implies that of the rate R of Definition 2. Then, from Theorem 1, we conclude that any rate R such that

$$
R<\frac{1}{H(\boldsymbol{Y})} \liminf _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)
$$

is achievable.
ii)Converse Part:

From the fact that $H\left(Y^{(m)}\right) \geq m H(\boldsymbol{Y})$ (see, e.g., [3, Remark 3.4]), we can show the converse part of Theorem 2 in an entirely same manner as in the proof of the converse part of [2, Theorem 4.1].

Remark 2 : In the case where $Y^{(m)}$ is uniform random number, Theorem 2 coincides with [2, Theorem 4.1].

References

[1] L. D. Davisson, G. Longo and A. Sgarro, "The error exponent for the noiseless encoding of finite ergodic Markov sources," IEEE Trans. Inform. Theory, vol. IT-27, pp.431-438, July 1981.
[2] T. S. Han, "Theorems on the variablelength intrinsic randomness," IEEE Trans. Inform. Theory, Vol. 46, pp.21082116, Sept. 2000.
[3] T. S. Han and K. Kobayashi, Mathematics of Information and Coding, American Math. Soc., 2002.
[4] T. S. Han and O. Uchida, "Source code with cost as a nonuniform random number generator," IEEE Trans. Inform. Theory, vol. 46, pp.712-717, March 2000.
[5] T. S. Han and S. Verdú, "Approximation theory of output statistics," IEEE Trans. Inform. Theory, vol. 39, pp.752772, May 1993.
[6] S. Vembu and S. Verdu, "Generating random bits from an arbitrary source: fundamental limits," IEEE Trans. Inform. Theory, vol. 41, pp.1322-1332, Sept. 1995.
[7] S. Natarajan, "Large deviations, hypotheses testing, and source coding for finite Marko chains," IEEE Trans. Inform. Theory, vol. IT-31, pp.360-365, May 1985.

[^0]: ${ }^{1}$ We assume that the process \boldsymbol{Y} is irreducible and $Q(k \mid j)>0(\forall j, k \in \mathcal{Y})$.

