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Abstract: - In this paper, we investigate the maximum generating rate of the variable-length
Markov random sequence. Our results are generalizations of Han’s results on the variable-
length intrinsic randomness.
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1 Introduction

In 1995, Vembu and Verdu [6] considered the
following problem, called the intrinsic ran-
domness problem:

At what rate can we generate fair
random bits using the given general
source X with arbitrary small (but
nonzero) tolerance?

and clarified that the supremum of achiev-
able fixed-length intrinsic randomness rates is
equal to the spectral inf-entropy rate H(X)
(see [5]) of the source X, and the supremum
of achievable variable-length intrinsic random-
ness rates is equal to lim infn→∞ 1

nH(Xn).
Latterly, the results of variable-length intrin-
sic randomness are generalized to the case
with countably infinite source alphabet by
Han [2].

On the other hand, Han and Uchida [4]
considered the problem of variable-length
nonuniform random number generation and
showed that an optimal source code with cost
can be regarded as a variable-length nonuni-
form random number generator. In this pa-
per, we establish formulae for the optimal
generating rate of the variable-length Markov
random sequence. Our results are generaliza-
tions of the results of Han [2] on the variable-
length intrinsic randomness.

2 Preliminaries

Let X be a countably infinite alphabet
and Y = {0, 1, · · · ,K − 1} be a fi-
nite alphabet, called source alphabet and
code alphabet, respectively. Let X ={

Xn = (X(n)
1 , X

(n)
2 , · · · , X

(n)
n )

}∞
n=1

be the

general source (see, e.g., [5, 2]), where each
component random variable X

(n)
i (1 ≤ i ≤ n)

takes values in X . The stochastic matrix
and initional probability distribution of target
process Y is denoted by Q = {Q(k|j)}j,k∈Y
and q = {q(k)}k∈Y , respectively1. With any
nonnegative integer m we define the random
variable Y (m) taking values in Ym by

Pr{Y (m) =(y1, · · · , ym)}=q(y1)
m∏

i=2

Q(yi|yi−1)

where m is called the length of Y (m) and Y (0)

denotes the constant random variable that co-
incides with the null string Λ with probability
1. From now on, we call Y (m) the Markov ran-
dom sequence of length m. Moreover, given
a nonnegative integer-valued random variable
I, we call Y (I) the variable-length Markov
random sequence.

Let Y∗ be the set of all finite strings (includ-
ing the null string Λ) taken from Y. Given a

1We assume that the process Y is irreducible and
Q(k|j) > 0 (∀j, k ∈ Y).



variable-length mapping ϕn : X n → Y∗, we
define the set Dm for any nonnegative integer
m by

Dm = {x ∈ X n | l(ϕn(x)) = m},
where l(y) denotes the length of y ∈ Y∗ and
we put

J (ϕn) = {m | Pr{Xn ∈ Dm} > 0}.
For any m ∈ J (ϕn), we define Xn

m as the
random variable taking values in Dm with the
distribution given by

PXn
m

(x) =
PXn(x)

Pr{Xn ∈ Dm} (x ∈ Dm).

Let us now consider to construct a map-
ping ϕn : X n → Y∗ for all m ∈ J (ϕn)
such that ϕn(Xn

m) asymptotically approxi-
mates the Markov random sequence of length
m. That is to say, we consider the prob-
lem of constructing ϕn : X n → Y∗ such
that ϕn(Xn) asymptotically approximates
a variable-length Markov random sequence.
The average length per source letter of the
variable-length Markov random sequence gen-
erated by ϕn is given by

1
n

E{l(ϕn(Xn))}=
1
n

∑

m∈J (ϕn)

mPr{Xn ∈ Dm}

which we call the generating rate of the
variable-length Markov random sequence. In
the following section, we consider to gen-
erate a variable-length Markov random se-
quence with as large generating rate as pos-
sible by transforming the coin random num-
ber X = {Xn}∞n=1. (In this paper, all the
logarithms are taken to the base K, and we
assume that 0 log 0 = 0).

3 Generating Rate of the
Variable-Length Markov
Random Number

In this section, we investigate the maximum
generating rate of the variable-length Markov
random sequence.

3.1 Case with the Divergence Dis-
tance

First, we formulate the problem as follows.
(Hereafter, we use the denotation D(X||Y )
as the divergence distance D(PX ||PY ) ≡∑

z∈Z PX(z) log PX(z)
PY (z) ).

Definition 1 : R is called an achievable
variable-length Markov random sequence gen-
erating rate for the source X if there exists a
mapping ϕn : X n → Y∗ such that

lim inf
n→∞

1
n

E{l(ϕn(Xn))} ≥ R,

lim
n→∞ sup

m∈J (ϕn)
D(ϕn(Xn

m)||Y (m)) = 0.

Moreover, we define the supremum achiev-
able variable-length random number generat-
ing rate S+(X) by the supremum of achiev-
able variable-length Markov random sequence
generating rates.

With this definition, we have the following
first main theorem.

Theorem 1 : For any general source X =
{Xn}∞n=1, we have

S+(X) =
1

H(Y )
lim inf
n→∞

1
n

H(Xn).

where H(Y ) is the entropy rate of the target
process Y .

First, to prove Theorem 1, we ready one
lemma.

Lemma 1 : Let {Wn}∞n=1 be a sequence of
finite sets and R > 0, a > 0 be any constants.
Suppose that the probabilities of the random
variable Wn taking values in Wn satisfy the
condition

PWn(w) ≤ K−n(a+γ)R (∀w ∈ Wn),

where γ > 0 is an arbitrary small constant.
Then, there exists a mapping ϕn : Wn →
YbnaR 1

H(Y )+ε
c such that

D(ϕn(Wn)||Y (bnaR 1
H(Y )+ε

c))

≤ naR
{

K
−bnaR 1

H(Y )+ε
c(H(Y )−ε) + K−nγR

+K
−bnaR 1

H(Y )+ε
cc}

,



where ε > 0 is an arbitrarily small constant
and

c = ε−
K2 log

(⌊
naR 1

H(Y )+ε

⌋
+ 1

)
⌊
naR 1

H(Y )+ε

⌋ .

Proof of Lemma 1:
Given y ∈ Y∗, let n(v|u) be the number

of transitions from the letter u to the let-
ter v in y with the cyclic convention that
yn precedes y1. Let P (u, v) = n(v|u)

n and
p(u) =

∑
v∈Y P (u, v). Then, given a se-

quence y ∈ Y∗, we define its Markov type
as the empirical distribution on Y × Y given
by {Q(u, v)}u,v∈Y . Moreover, we define the
conditional empirical divergence as

D(P ||Q|p) =
∑

u,v∈Y
p(u)P (v|u) log

P (v|u)
Q(v|u)

,

where P (v|u) = P (u,v)
p(u) .

Now, we set

T ε
n =

{
y ∈ YbnaR 1

H(Y )+ε
c | D(P ||Q|p) ≤ ε

}
,

where ε > 0 is an arbitrary small constant
(T ε

n is called the ε− typical set of sequences
with length bnaR 1

H(Y )+εc). It can be shown
(see, e.g., [1, 7]) that

Pr{Yn /∈ T ε
n} ≤ K

−bnaR 1
H(Y )+1

cc
, (1)

where

c = ε−
K2 log

(⌊
naR 1

H(Y )+ε

⌋
+ 1

)
⌊
naR 1

H(Y )+ε

⌋

and Yn = Y
(bnaR 1

H(Y )+ε
c). Next, we number

all the elements of T ε
n in order as

T ε
n = {y1, y2, · · · , yMn

} (Mn = |T ε
n|).

From the basic property of the typical se-
quence

PYn(y) ≥ K
−bnaR 1

H(Y )+ε
c(H(Y )+ε)

≥ K−naR (y ∈ T ε
n), (2)

we have

1 ≥
∑

y∈T ε
n

PYn(y) ≥
∑

y∈T ε
n

K−naR = MnK−naR,

and hence,

Mn ≤ KnaR. (3)

Let us now construct the mapping ϕn :
Wn → YbnaR 1

H(Y )+ε
c as follows. First, for y1,

select a subset A(1) of Wn so as to satisfy the
conditions:

∑

w∈A(1)

PWn(w) ≤ PYn(y1)

and, for any w′ ∈ Wn −A(1),

PYn(y1) <
∑

w∈A(1)

PWn(w) + PWn(w′).

Next, for y2, select a subset A(2) ⊂ Wn−A(1)
so as to satisfy the conditions:

∑

w∈A(2)

PWn(w) ≤ PYn(y2)

and, for any w′ ∈ Wn −A(1) ∪A(2),

PYn(y2) <
∑

w∈A(2)

PWn(w) + PWn(w′).

In an analogous manner, we define the subsets
A(3), · · · , A(Mn − 1). Moreover, we define

A(Mn) = Wn −
Mn−1⋃

i=1

A(i).

Now, define the mapping ϕn : Wn →
YbnaR 1

H(Y )+ε
c as

ϕn(w) = yi for w ∈ A(i) (i = 1, 2, · · · ,Mn)

and set Ỹn = ϕn(Wn). Then, it can be easily
shown that

PỸn
(yi) ≤ PYn(yi) (i = 1, 2, · · · ,Mn−1),

(4)



PỸn
(yMn

)

≤ PYn(yMn
) + (Mn − 1)K−n(a+γ)R

+Pr{Yn /∈ T ε
n}

≤ PYn(yMn
) + K−nγR

+K
−bnaR 1

H(Y )+ε
cc (5)

where the last inequality follows from (1) and
(3). Therefore, from (2),(4),(5) and the basic
property of the typical sequence

PYn(y) ≤ K
−bnaR 1

H(Y )+1
c(H(Y )−ε) (∀y ∈ T ε

n),

we conclude that

D(ϕn(Wn)||Y (bnaR 1
H(Y )+ε

c)
Y )

=
∑

y∈YbnaR 1
H(Y )+ε

c

PỸn
(y) log

PỸn
(y)

PYn(y)

=
Mn∑

i=1

PỸn
(yi) log

PỸn
(yi)

PYn(yi)

≤ PỸn
(yMn

) log
PỸn

(yMn
)

PYn(yMn
)

≤ PỸn
(yMn

) log
1

PYn(yMn
)

≤ naR
{

K
−bnaR 1

H(Y )+ε
c(H(Y )−ε)

+ K−nγR + K
−bnaR 1

H(Y )+ε
cc}

.

2

Proof of Theorem 1:
i)Direct Part:

The fundamental way of this proof is equiv-
alent to the way of the proof of the direct part
of [2, Theorem 3.1].

Letting γ > 0 be an arbitrarily small con-
stant, we partition the interval [0, +∞) into
the subintervals as

Ij = [Rj , Rj+1) (j = 0, 1, 2, · · · )
where Rj = 3γj. According to this interval
partition, we divide the set X n into mutually
disjoint subsets as follows

S(j)
n =

{
x ∈ X n | 1

n
log

1
PXn(x)

∈ Ij

}

(j = 0, 1, 2, · · · ).
Next, divide J = {0, 1, · · · } into the following
two subsets:

J1 =
{

j ≥ 1 | Pr
{

Xn ∈ S(j)
n

}
≥ K−nγRj

}
,

(6)

J2 = {0}∪
{

j ≥ 1 | Pr
{

Xn ∈ S(j)
n

}
< K−nγRj

}

and, for each j ∈ J1 define the random vari-
able X̃n

j taking values in S
(j)
n by

PX̃n
j
(x) =

PXn(x)

Pr
{

Xn ∈ S
(j)
n

} (x ∈ S(j)
n ). (7)

Since x ∈ S
(j)
n implies PXn(x) ≤ K−nRj ,

it follows from (6) and(7) that, for all x ∈
S

(j)
n (j ∈ J1)

PX̃n
j
(x) ≤ K−n(1−γ)Rj .

Then, by means of Lemma 1 with R =
Rj , a = 1 − 2γ,Wn = S

(j)
n , Wn = X̃n

j ,

there exists a mapping ϕ
(j)
n : S

(j)
n →

Ybn(1−2γ)Rj
1

H(Y )+ε
c such that

D(ϕ(j)
n (X̃n

j )||Y (bn(1−2γ)Rj
1

H(Y )+ε
c))

≤ n(1− 2γ)Rj

{
K−bn(1−2γ)Rj

1
H(Y )+ε

c(H(Y )−ε)

+K−nγRj + K−bn(1−2γ)Rj
1

H(Y )+ε
cc

}

(j ∈ J1) (8)

where

c = ε−
K2 log

(⌊
naR 1

H(Y )+ε

⌋
+ 1

)
⌊
naR 1

H(Y )+ε

⌋ .

Now, define the variable-length encoder ϕn :
X n → Y∗ as

ϕn(x) =

{
ϕ

(j)
n (x) for x ∈ S

(j)
n (∃j ∈ J1),

Λ otherwise

where Λ is the null string of length 0. Then,
(8) is rewritten as

D(ϕn(X̃n
j )||Y (bn(1−2γ)Rj

1
H(Y )+ε

c))

≤ n(1− 2γ)Rj

{
K−bn(1−2γ)Rj

1
H(Y )+ε

c(H(Y )−ε)

+K−nγRj + K−bn(1−2γ)Rj
1

H(Y )+ε
cc

}

(j ∈ J1) (9)



Since Rj = 3γj, we observe here that for each
j ∈ J1

(1− 2γ)Rj+1 > (1− 2γ)Rj > 0

holds, which means that the length
bn(1 − 2γ)Rj

1
H(Y )+εc of the ranges

Ybn(1−2γ)Rj
1

H(Y )+ε
c of the mappings ϕ

(j)
n

are all different for all sufficiently learge n
(∀j ∈ J1).

Moreover, if we put Cn = ϕ−1
n (Λ) and de-

fine the random variable Xn
0 taking values in

Cn by

PXn
0
(x) =

PXn(x)
Pr{Xn ∈ Cn} (x ∈ Cn)

it follows that

D(ϕn(Xn
0 )||Y (0)) = 0 (∀n = 1, 2, · · · ). (10)

Define

J (ϕn)

={0}∪
{⌊

n(1− 2γ)Rj
1

H(Y ) + ε

⌋
| j ∈ J1

}

and for each m ∈ J (ϕn)−{0} define the ran-
dom variable Xn

m to be

Xn
m = X̃n

j

(
m=

⌊
n(1− 2γ)Rj

1
H(Y ) + ε

⌋)
.

Then, (9) can be rewritten in the following
form:

D(ϕn(Xn
m)||Y (m))

≤ n(1− 2γ)Rjm ·{
K
−bn(1−2γ)Rjm

1
H(Y )+ε

c(H(Y )−ε)

+ K−nγRjm + K
−bn(1−2γ)Rjm

1
H(Y )+ε

cc}

(m ∈ J (ϕn)− {0}) (11)

where j = jm is uniquely determined by m ∈
J (ϕn)−{0} owing to the equation m = bn(1−
2γ)Rj

1
H(Y )+εc. Then, summarizing (10) and

(11), we have

lim
n→∞ sup

m∈J (ϕn)
D(ϕn(Xn

m)||Y (m)) = 0. (12)

On the other hand, from the fact that

E{l(ϕn(Xn))}
=

∑

m∈J (ϕn)

m Pr{ϕn(Xn) = m}

=
∑

j∈J1

⌊
n(1− 2γ)Rj

1
H(Y ) + ε

⌋
·

Pr
{

Xn ∈ S(j)
n

}
,

we have
1
n

E{l(ϕn(Xn))}

≥ 1
H(Y ) + ε

·
[

1− 2γ

n
H(Xn)− 6γ(1− 2γ)K−3nγ2

(1−K−3nγ2)2

−6γ(1− 2γ)− 1
n

]
(13)

in a same fashion as in the proof of the
converse part of [2, Theorem3.1]. Taking
lim infn→∞ on the both sides of (13), we fave

lim inf
n→∞

1
n

E{l(ϕn(Xn))}

≥ 1
H(Y ) + ε

·
[
lim inf
n→∞

1
n

H(Xn)− 2γ

(
lim inf
n→∞

1
n

H(Xn)
)

−6γ(1− 2γ)
]
. (14)

Since γ > 0 and ε > 0 are arbitrary small,
expressions (12) and (14) imply that any rate
R such that

R <
1

H(Y )
lim inf
n→∞

1
n

H(Xn)

is achievable. 2

ii)Converse Part:
In view of Pinsker’s inequality

log e

2

(
d(ϕn(Xn

m), Y (m))
)2
≤D(ϕn(Xn

m)||Y (m)),

the converse part of Theorem 2 of the fol-
lowing subsection implies the converse part
of Theorem 1. 2



Remark 1 : In the case where Y (m) is uni-
form random number, Theorem 1 coincides
with [2, Theorem 3.1].

3.2 Case with the Variational Dis-
tance

The variational distance d(X, Y ) between two
random variables X,Y taking values in a fi-
nite set Z is defined by

d(X, Y ) =
∑

z∈Z
|PX(z)− PY (z)|.

Definition 2 : R is called an achievable
variable-length Markov random sequence gen-
erating rate for the source X if there exists a
mapping ϕn : X n → Y∗ such that

lim inf
n→∞

1
n

E{l(ϕn(Xn))} ≥ R,

lim
n→∞ sup

m∈J (ϕn)
d(ϕn(Xn

m), Y (m)) = 0.

Moreover, we define the supremum achievable
variable-length Markov random sequence gen-
erating rate S(X) by the supremum of achiev-
able variable-length Markov random sequence
generating rates.

With this definition, we have the following
second main theorem.

Theorem 2 : For any general source X =
{Xn}∞n=1, we have

S(X) =
1

H(Y )
lim inf
n→∞

1
n

H(Xn).

Proof:
i)Direct Part:

In view of Pinsker’s inequality

log e

2

(
d(ϕn(Xn

m), Y (m))
)2
≤D(ϕn(Xn

m)||Y (m)),

the achievability of a rate R in the sense of
Definition 1 implies that of the rate R of Def-
inition 2. Then, from Theorem 1, we conclude
that any rate R such that

R <
1

H(Y )
lim inf
n→∞

1
n

H(Xn)

is achievable. 2

ii)Converse Part:
From the fact that H(Y (m)) ≥ mH(Y )

(see, e.g., [3, Remark 3.4]), we can show the
converse part of Theorem 2 in an entirely
same manner as in the proof of the converse
part of [2, Theorem 4.1]. 2

Remark 2 : In the case where Y (m) is uni-
form random number, Theorem 2 coincides
with [2, Theorem 4.1].
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