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Abstract: - There are several attempts to give exact solutions of the Navier-Stokes equations. Certain progress 
has been made in that direction, with the exception of the three dimensional case with two independent 
variables. In this note, a new exact solution of the Navier-Stokes equations in conjunction with the continuity 
equation is proposed, describing the characteristics of three-dimensional axi-symmetric pipe flows with 
variable suction and injection at the porous pipe walls, with application to blood flow. To solve these equations, 
it is assumed that the effect of the body force by mass transfer phenomena is the ‘porosity’ of the porous pipe in 
which the fluid moves. The resultant of the forces in the pores can be expressed as filtration resistance. The 
developed solutions are of general application and can be applied to any swirling flow in porous pipes. 
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1 Introduction 
The effect of porous boundaries on steady laminar 
flow as well as on species concentration profiles 
has been considered for several different shapes 
and systems [1-3]. In certain physical and 
physiological processes filtration and mass transfer 
occurs as a fluid flows through a permeable tube[5-
6]. The velocity and pressure fields in these 
situations differ from simple Poiseuille flow in an 
impermeable tube since the fluid in contact with the 
wall has a normal velocity component. In most 
cases, the Navier-Stokes equations are reduced to 
ordinary non-linear differential equations of third 
order for which approximate solutions are obtained 
by a mixture of analytical and numerical methods 
[6,7,8]. 
In this study, an exact solution of the Navier-Stokes 
equations is  proposed, describing the flow in a 
porous pipe allowing the suction or injection at the 
wall to vary with axial distance. In the current 
research work, a new exact solution of Terrill’s 
proposed phenomenology [9] is presented similar 
to the model of blood flow through a porous pipe 
with variable injection and suction at the walls. In 
the new flow model, a variation of the solutions 
with Bessel functions based on Terrill’s theoretical 
flow models is adopted. This study uses 
biomechanical procedures to find exact solutions of 
the Navier-Stokes equations, governing steady 
porous pipe flows of a viscous incompressible fluid 
in a three-dimensional case with two variables, 
including body force term. 
 
 

2 The governing equations 
The basic equations that describe the mechanics 
e.g. of blood flow in cardiovascular circulation 
vessels are the mass conservation equation, and the 
equations of motion (Navier-Stokes), in a 
cylindrical polar coordinate system (r,φ,z) where 
the axis z lies along the centre of the pipe, r is the 
radial distance and φ is the azimuthal angle. 
Starting from the solutions form suggested by 
Terrill [9]  and taking into account body force 
phenomena, the following solution is proposed. It 
is considered that in the porous space of the pipe, 
mass transfer phenomena appear the body force of 
that is equivalent to the radial pressure gradient. 
Moreover, when porous spaces exist, a new term is 
added to the radial pressure gradient which is 
involved in the first of the Navier-Stokes equations 
while the following simplified assumptions are 
made: a) axial symmetry b) the fluid is 
homogeneous and behaves as a Newtonian fluid c) 
the pipe is considered of finite length and before 
the fluid enters the porous pipe its profile has 
already been developed d) the permeable 
membrane is treated as a ‘fluid medium’. 
The Navier-Stokes equations and the continuity 
equation for the case of the steady axi-symmetric 
motion of an incompressible fluid in a porous 
horizontal pipe are: 
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where ρ is the mass density, µ is the dynamic 
viscosity, ν is the kinematic viscosity, Uz

* , Ur
* , Uϕ

*  
are the velocity components in the directions z*, r* 
(increasing) and φ respectively, fr, is the body force 
per unit mass and p* is the pressure. The above 
equations can be transformed to dimensionless 
form by applying the following: 
z*=zR     
 (5) 
r*=rR     
 (6) 

UUU z
*
z =     

 (7) 
UUU r

*
r =                  (8) 

UUU*
ϕϕ =     

 (9) 
2* Upp ⋅ρ⋅=                (10) 
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where: 
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and 
v

URRe =  

For a ‘fluid-tissue’ system, according to Darcy’s 
law: 
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with the dimensionless ‘porosity’ parameter ξ: 
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δA is the membrane area, k is the permeability 
coefficient, m is the mass flow rate across the 

membrane, Vδ

•
 is the volumetric flow rate through 

the porous space and δ is the thickness of the 
interstitium. All these data can be calculated from 
the literature. 
 
3 The proposed solution 
Extending the procedure of Terrill, the axial 
velocity Uz, the radial velocity Ur, and the 
tangential velocity Uφ are expressed in terms of two 
functions: 
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where 0J  and 1J are the Bessel functions of the 
first kind and b is the zero of 0J ( 0)b(J0 = ). 
The following boundary conditions are satisfied:  
a. The no-slip condition at the tube wall: 
Uz = 0  at r=1             (21) 
b. The suction (b>0) or injection (b<0) condition at 
the pipe axis: 
Ur = 0  at r=0             (22) 
(the speed of suction or injection is assumed to 
have a value at the walls) 
c. The swirl condition at the pipe axis: 
Uφ= 0  at r=0             (23) 
(the particles rotation-tangential velocity is 
assumed to have a value at the walls) 
By replacing the forms (18),(19),(20) in the 
continuity equation and having the known 
recurrence relations :  
( ) ( ) ( ) ( ) ( ) ( )J br J br J br br br J br1 0 1 0 1

' ',= − = −    J   (24) 
the following equations are derived: 
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Integration of equation (26) with respect to z gives: 
)r()z,r(pe})]br(J[)]br(J{[5.0 bz22

0
2

1 ζ+−=+ −     (27) 
Differentiating the above equation with respect to r 
and combining the equations (25) and (27) it is 
finally found : 
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Thus, the required solutions for our model are : 
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4 Conclusions 
In this note, a new exact solution of the Navier-
Stokes equations is proposed, describing the 
characteristics of three-dimensional axi-symmetric 
pipe flows with variable suction and injection at the 
porous pipe walls, with application to blood flow. In 
fig. 1 the axial velocity distribution across the pipe 
has  been plotted, concerning both the theory of [3] 
and the presented concept of the exact solution 
blood flow model with porous wall. The pressure 
and the pressure gradient are dependent on the 
radial coordinate r in the porous tube. Body force 
mechanisms in biological membranes are included 
because of their importance for mass transport. The 
body force mechanisms which represents here the 
volume flow rate in the porous space is strongly 
connected with the angular velocity (twist of the 
internal particles). The developed solutions are of 
general application and can be applied to any 
swirling flow in porous pipes. 
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