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Abstract: - In this paper, the well-known Lyapunov stability theory is further investigated and two new concepts 
on broad-sense Lyapunov function and Lyapunov distance are introduced. The broad-sense Lyapunov stability 
theory is then developed. It is shown that a broad-sense Lyapunov function V(X) may be positive or negative. If 
the proposed Lyapunov distance satisfies the specified condition in this paper, the system origin will be 
asymptotically stable. It is shown that the Lyapunov stability theory is the special case of the proposed broad-
sense Lyapunov stability theory. Example is given to explain and verify the concepts on the broad-sense 
Lyapunov stability theory.  
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1   Introduction 
 
Given a control system, the first and most important 
question about its various properties is whether it is 
stable, because an unstable control system is typically 
useless and potentially dangerous. The most useful 
and general approach for studying the stability of 
nonlinear control systems is the theory introduced in 
the late 19th century by the Russian mathematician 
Alexander Mikhailovich Lyapunov. Lyapunov’s work 
includes two methods for stability analysis: 
linearization method and direct method [1]. The 
linearization method draws conclusions about a 
nonlinear system’s local stability around an 
equilibrium point from the stability properties of its 
linear approximation. The direct method determines 
the stability properties of a nonlinear system by 
contracting a scalar “energy-like” function for the 
system and examining the function’s time variation. 
Together, the linearization method and the direct 
method constitute the so-called Lyapunov stability 
theory [1]. Since the early 1960’s, Lyapunov stability 
theory has been widely used in control engineering to 
analyse the stability of control systems and to design 
controllers for both linear and nonlinear system with 
the Lyapunov-sense stability. 

The objective of this paper is to further 
investigate the Lyapunov stability theory and two 
new concepts on broad-sense Lyapunov function and 
Lyapunov distance are introduced. The broad-sense 
Lyapunov stability theory is then developed. It is 
shown that a broad-sense Lyapunov function may be 
positive or negative, and if the Lyapunov distance 
satisfies certain condition that will be discussed in the 
later section, the system origin will be asymptotically 
stable. It is shown that the Lyapunov stability theory 
is the special case of the proposed broad-sense 

Lyapunov stability theory. Example is given to 
explain the concepts on the broad-sense Lyapunov 
stability theory. 

The organization of this paper is as follows. 
Section 2 presents a brief review of Lyapunov 
stability theory. Section 3 further investigates the 
Lyapunov stability theory. The new concepts of 
Lyapunov distance and broad-sense Lyapunov 
function are introduced in Section 4. Example to 
illustrate the above concepts is presented in Section 5. 
Section 6 concludes this paper. 
 

2. A Brief Review of Lyapunov 
Stability Theory 
 
Before further investigating the Lyapunov stability 
theory, let review the simple background issues of the 
Lyapunov stability theory. 

A nonlinear dynamic system can usually be 
presented by a set of nonlinear differential equations 
in the form 

),( tXfX =D        (2.1) 
where X is the nx1 state vector, and f is a nx1 
nonlinear vector function 

Definition 2.1: The nonlinear system (2.1) is said to 
be autonomous if f does not depend explicitly on 
time, i.e., if the system’s state equation can be written 

)(XfX =�        (2.2) 
where X is the nx1 state vector, and f is a nx1 
nonlinear vector function. Otherwise, the system is 
called non-autonomous.  

Definition 2.2: A state X* is an equilibrium state of 
the system (2.2) if once X(t) is equal to X*, it remains 
equal to X* for all further time. 



  

Mathematically this means that the constant vector 
X* satisfies 

0 = f(X*)        (2.3) 
Equilibrium points can be found by solving the 
nonlinear algebraic equation  

Definition 2.3: The equilibrium state X=0 is said to 
be stable if for any R>0, there exists r > 0, such that 
if ||X(0)|| < r, then ||X(t)|| < R for all t ≥ 0. 

Definition 2.4: An equilibrium point 0 is 
asymptotically stable if it is stable, and if in addition 
there exists some r>0 such that ||X(0)|| < r implies 
that X(t) → 0 as t  → ∞. 

Definition 2.5: If a function V(X), in a ball centered 
at the system origin with its radius R>0. is positive 
definite and has continuous partial derivatives and its 
time derivative along any trajectory of system (2.2) is 
negative 

0)( ≤XVD         (2.4) 

then V(X) is said to be a Lyapunov function for 
system (2.2). 

Based on the above definitions, we can now state 
two Lyapunov stability theorems: 

Theorem 2.1 (Local stability): If, in a ball RoB , there 
exists a scalar function V(X) with continuous first 
partial derivatives such that  

V(X) is positive definite (locally in RoB ) 

)(XVD  is negative semi-definite (locally in RoB ) 
then the equilibrium point 0 is table. If, actually, the 
derivative )(XVD is locally negative definite, then the 
stability is asymptotic. 

Theorem 2.2 (Global stability): Assume that there 
exists a scalar function V(X) with continuous first 
partial derivatives such that 

V(X) is positive definite  
xxVV DD +  is negative semi-definite  

V(X) → ∞ as ||X|| → ∞ 

Then the equilibrium point at the origin is globally 
asymptotically stable. 
 
3. Further Analysis of Lyapunov 
Stability Theory  
 
Now let us do further analysis for the Lyapunov 
stability theory. First, according to the theorem 2.2, if 
V(X) is a Lyapunov function (V > 0 and )(XVD < 0), 
the equilibrium point 0 is a asymptotically stable. 

This means that, when the time tends to infinity, the 
distance Op will reduce to zero or d(Op)/dt < 0. 
Therefore, mathematically we have 

0)(
22
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+

+=
xV
xxVV

dt
Opd DD

    (3.1) 

where  

Op = 22 xV +       (3.2) 

Because the value of the distance Op is non-negative, 
the expression (3.2) can be reduced as  

0<+ xxVV DD        (3.3) 

Remark 3.1: According to the definitions 2.2 and 
2.3, we can easily prove that expression (3.3) is a 
sufficient condition for the system origin to be 
asymptotically stable. 

Remark 3.2: It is seen from the expression (3.3) that 
in order to reduce the distance Op to zero, it is not 
necessary for the function V to be positive and VD to 
be negative. However, it is necessary for 

0<+ xxVV DD . This point may motivate us to think 
about the extension of Lyapunov stability theory. 

 
Figure 1: Concept of stability 

 

4 Broad-Sense Lyapunov Stability 
Theory 
 
Now we introduce two new concepts called Lyapunov 
distance and broad-sense Lyapunov function. 

Definition 4.1: If, in a ball RoB , the function V(X) 
has continuous partial derivatives and its derivative 
along any state trajectory of system (2.2) satisfies the 
following inequality 

0<+ xxVV DD        (4.1) 
the function V(X) is said to be a broad-sense 
Lyapunov function and the distance  

Op = 22 xV +       (4.2) 
is said to be a Lyapunov distance. 

Remark 4.1: It is seen that a broad-sense Lyapunov 
function may not be positive, and a Lyapunov 
distance has the following property: 



  

d(Op)/dt < 0       (4.3) 

Like an ordinary Lyapunov function, a Lyapunov 
distance Op can be given simple geometrical 
interpretations. In Figure 1, the distance Op is seen to 
always reduced toward to the system origin, and the 
state point is seen to move corresponding to the lower 
and the lower values of the distance Op. 
            
5   Example  
Given a nonlinear system [1] 
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The origin of the state-space is an equilibrium point 
for the system. Let V be the negative definite function 

0)( 2
2

2
1

2

1 <+−=

















= xx

x
x

XV  

The derivative of V along any system trajectory:   
2211 22 xxxxV DDD −−= . 

We then obtain  
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Therefore, we obtain 

0
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<
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XV
XXVV

dt
dOP DD  

If the initial values of (x1, x2) are (10, -5), the 
response of the system can be generated and are 
shown in the figures 2 and 3. This example has shown 
that a broad-sense Lyapunov function may be 
negative. Furthermore, if the Lyapunov distance 
satisfies the condition, d(OP)/dt < 0, the system 
origin will be asymptotically stable. Figures 2 and 3 
have verified our investigated.  
 
6   Conclusion 
 
This paper has presented a new investigation of well-
known Lyapunov stability theory. Two new concepts 
on broad-sense Lyapunov function and Lyapunov 
distance have been introduced. The broad-sense 
Lyapunov stability theory has been developed. It is 

shown that a broad-sense Lyapunov function V(X) 
may be positive or negative, and if the Lyapunov 
distance satisfies the condition the condition stated in 
this paper, the system origin will be asymptotically 
stable. Authors have showed the Lyapunov stability 
theory is the special case of the proposed broad-sense 
Lyapunov stability theory. Example is given to 
explain the concepts on the broad-sense Lyapunov 
stability theory. Future work and experiment need to 
be conducted to further verify the theory and apply it 
to some applications.  
 

 
Figure 2: The parameter, x1 

 
Figure 3: The parameter, x2 
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