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Abstract: - In this paper the authors present a neural network (NN) backpropagation (BP) training with 
dynamic optimal learning rates and genetic algorithm (GA). An initial learning rate α0 in the hidden-output 
layers and proceed to train the NN with the dynamic optimal rates obtained from [1]. By choosing the optimal 
βopt for each iteration during the training process of the NN, the total squared error J can be found for this 
initial α0. The search must then be continued to yield the optimal αopt such that the total squared error J is a 
minimum. Simulation results have revealed the good performance of the proposed NN BP training with 
optimal learning rates and GA. 
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1   Introduction 
 
In recent years there has been a great deal of interest in 
artificial neural networks and their applications. One 
of the most popular NNs models is the multilayer 
network and the related BP training algorithm [3]. BP 
has been applied to various fields such as signal 
processing and control engineering. BP is used to 
adjust the weights of the NN. This algorithm can be 
considered as gradient descent class algorithm that 
attempts to minimize the error between the desired and 
the NN outputs. The weights of the NN are adjusted so 
that the error is reduced along the descent direction.  

One of the major issues in BP is selection of the 
learning rate in BP. The relatively large or small 
learning rates may affect the performance of the BP 
algorithm and may lead to failure of the learning 
processing. Different authors [1],[2] have investigated 
the optimal learning rate in BP. Authors in [2] 
proposed dynamic optimization of the learning rate 
using derivative information. Nevertheless, the 
analysis of stable learning rates was not discussed. 
Authors in [1] have developed the dynamic optimal 
learning rates of a certain class of fuzzy neural 
networks (FNNs). However, they only considered the 
dynamic optimal learning rate in 2- layers NN in 
certain class of FNNs. They have performed the 
stability analysis of the learning rate 2-layers NN by 
minimizing the total squared error between the actual 
and desired outputs for a set of training vectors. The 
stable and optimal learning rate, in the sense of 
maximum error reduction for each iteration during the 
BP process, can be found in the 2-layers NN.  

In this paper, we present the dynamic optimal 
learning rate and GA for 3-layers NN. The weights of 
the hidden-output layers of the NN are adjusted using 

BP with dynamic optimal learning rate proposed in 
[1]. The optimal learning rate in the input-hidden 
layers is searched by the GA [4]-[7], which has 
emerged as a popular family of methods for global 
optimization. GA performs a search by evolving a 
population potential solutions through the use of its 
operators. Simulation example is presented to 
demonstrate the performance of the proposed method. 

The paper is organized as follow. Section 2 
briefly describes the 3-layers NN and dynamic optimal 
learning rate. Section 3 presents how to use GA to tune 
the learning rate in input-hidden layers. The simulation 
example is presented in section 4. Finally section 5 
concludes the paper with a discussion of the 
significance of the results. 
 
2   Problem Formulation 
 
A 3-layer NN is established as follows: 
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Fig. 1: 3-Layer Neural Network 

There are some notations are defined as: 
[ ]T

Lrrrr f21= ∈ ℜ  L, training data vector, 



  

[ ]LvvvV l21= ∈ ℜ  N×L, weight matrix, 

[ ]T
Niiii vvvv �21= ∈ ℜ  N, ith weigh vector, 

[ ]ZwwwW �21= ∈  ℜ  L×Z, weight matrix,  

[ ]T
Liiii wwww �21= ∈ ℜ  L, ith weight vector, 

[ ]TZyyyy �21= ∈ ℜ  Z, actual output vector; 

[ ]T
Zdddd h21= ∈ ℜ  Z, desired vector, 

and “T” denotes matrix transpose. 
Given P training vectors, there should be P 

desired output vectors. In matrix notations, we let 
[ ]PrrrR �21= ∈ ℜ  L×P,    (2.1) 

the input training matrix,  
[ ]T

P
yyyY �

21
= ∈ ℜ  P×Z,    (2.2) 

the actual output matrix,  
[ ]T

PdddD �21= ∈ ℜ  P×Z,    (2.3) 
the desired output matrix. 

Given a set of training vectors, which forms the 
training matrix R in (2.1), it is desired to use the BP 
technique to train the above NN so that the actual 
outputs converge to the desired outputs. The actual 
output yz is defined as 
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rl, the output of hidden layer (layer II) whose active 
function is hyperbolic tangent, can be easily 
computed: 
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The actual output matrix Y can be shown as 
Y= T

PLR WLZ        (2.6) 
Error function E is defined as 

E=Y−D = RTW−D      (2.7) 
Then we have the total squared error J: 
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To update weighting factor V and W, the BP method is 
applied: 
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Using the chain rule, we get the individual vij for 
i=1,…,N, j=1,…,L as: 
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In order to find the optimal learning rate for βt, we 
apply the theorem 1 & 2 of dynamic optimal 
learning rate approach in [1]. For finding optimal 
learning rate αt, the GA is used. 
 
3. Tuning Learning Rate Using GA 
GAs are iterative search algorithms based on an 
analogy with the process of natural selection 
(Darwinism) and evolutionary genetics. The main 
goal is to search for a solution, which optimizes a 
user-defined function called the fitness function. To 
perform this task, it maintains a population or a gene 
pool of randomly encoded chromosomes (or 
individuals, solution candidates), Popt = 
{ 1

tα ,h, sizePop
t

_α } for each generation t. Each i
tα  is 

selected randomly following a uniform distribution 
over search space and can be binary strings or a real 
value. It represents a potential solution to the 
problem at hand and is evaluated. Then, a new 
population (generation t + 1) is formed by selecting 
the more fit chromosomes. Some members of the 
new population undergo transformation by means of 
genetic operators to form new solutions. After some 
generations, it is hoped that the best chromosome 
represents a near-optimal solution. 

There are three operators: selection, crossover, 
and mutation. The selection decides which of the 
chromosomes in a population are selected for further 
genetic operations. Each chromosome i in a 
population is assigned a value ϕi of fitness. The 
fitness values are used to assign a probability value 
ρi to each chromosome. The probability value ρi is 
defined as 

ρi = ∑
=

sizePop

k
ki

_

1

ϕϕ .      (3.1) 

The chromosome with a larger fitness value has a 
larger probability of selection. The crossover 
operation combines the features of two parent 
chromosomes to form two similar offspring by 
swapping corresponding segments of the parents. 
The parameters defining the crossover operation are 
the probability of crossover Pc and the crossover 
position. Mutation is a process of occasional 
alternation of some gene values in a chromosome by 
a random change with a probability less than the 
mutation rate Pm. 

GAs [7] are used to maximize a function or to 
do a minimization. In our application, the error 
function J needs to be scaled and transformed into 
another function to meet the fitness evaluation 
requirement. For a given J, J = ψ10λ, 1<ψ<10, the 
fitness function ϕ (J) is defined as [5]: 



  

ϕ (J) = ϕ (ψ10λ) 
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The expression (3.2) finds a larger fitness value for 
smaller J. In other words, if the value of J is larger, 
it will be mapped to a smaller fitness value and vice 
versa. For example, if J is 0.007, then λ = -3 and the 
equation (3.2) will yield a fitness value of 3.3. If J is 
10238, then λ = 4 and (3.2) will be mapped to 
1.8976e-005. 
Following the training process as explained in [1], 
we start with an initial learning rate α0 in the hidden-
output layer and proceed to train the NN with the 
dynamic optimal rates obtained from Theorems 1and 
2 [1]. By choosing the optimal βopt in each iteration 
in the training process of the NN, the total squared 
error J can be found for this initial α0. The search 
must then be continued to yield the optimal αopt such 
that the total squared error J is a minimum. It is 
obvious that we only have to search for αopt in the 
NN. The determination of βopt is from Theorems 
1and 2. Otherwise, the NN with two learning rates 
(to be searched for by GAs, [6]) will require much 
more searching time.  
 
4   Simulation  
 
Simulations have been performed for adaptive 
filtering using NN. A 3-layers NN is considered. 
The input, hidden and output layers consist 10 
nodes, 150 nodes and 1 node respectively. The 
simulation results are shown in Figure 2. This figure 
illustrates the desired output signal and the NN 
output with optimal learning rates, βopt and  αopt.   
 For comparison, the same NN is trained with fixed 
learning rates, α=0.01 and β=0.02. Figure 3 shows 
the training output of proposed NN with fixed 
learning rates α=0.01,β=0.02, and desired signal.  
The total squared errors of both cases are plotted in 
Figure 4. Figure 5 illustrates the plots of the weights 
||V||+||W|| for the proposed method and the fixed 
learning rate. The results show the proposed method 
has faster error and weight parameters convergences. 
In summary, the simulation results have revealed a 
good performance of the proposed method compared 
with the conventional BP with fixed learning rates. 
 
5   Conclusion 
 
This paper has presented a new approach in training 
NN using BP with dynamic learning rates and GA. 

The result presented can be used in any dynamic NN 
that includes simple 3-layers. The optimal learning 
rate of the hidden-output layers can be obtained from 
theorem 1 and 2 in [1]. The stability analysis of the 
dynamic learning rate in the hidden-output layers 
can also be found in [1]. In this case, we only have 
to search for the optimal learning rate in the input-
hidden layers using GA. Simulation example and 
performance comparison with the conventional BP 
with fixed learning rates have revealed the good 
performance of the proposed method.   

Fig. 2:  (a) the training output of the proposed NN 
with optimal α,β, (b) desired signal. 

 
Fig. 3:  (a) the training output of the NN with fixed 

learning rates α=0.01,β=0.02,(b) desired signal 



  

Fig. 4:  Performance comparison Case a: our 
optimal learning rates α, β. Case b: α=0.01, β=0.02. 

 
Fig. 5: ||V||+||W||, Case a: our optimal learning rates 

Case b: fixed rates α=0.01,β=0.02 
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