

Neural Network With Dynamic Optimal Learning Rates and Genetic
Algorithm

SENG KAH PHOOI, HAN-LEIH LIU

School of Microelectronics, Griffith University, Kessels Rd, Nathan QLD 4111,AUSTRALIA
S.Phooi@mailbox.gu.edu.au, sikuo@lycos.com

Abstract: - In this paper the authors present a neural network (NN) backpropagation (BP) training with
dynamic optimal learning rates and genetic algorithm (GA). An initial learning rate α0 in the hidden-output
layers and proceed to train the NN with the dynamic optimal rates obtained from [1]. By choosing the optimal
βopt for each iteration during the training process of the NN, the total squared error J can be found for this
initial α0. The search must then be continued to yield the optimal αopt such that the total squared error J is a
minimum. Simulation results have revealed the good performance of the proposed NN BP training with
optimal learning rates and GA.

Key-Words: Neural network, backpropagation, genetic algorithm, signal processing

1 Introduction

In recent years there has been a great deal of interest in
artificial neural networks and their applications. One
of the most popular NNs models is the multilayer
network and the related BP training algorithm [3]. BP
has been applied to various fields such as signal
processing and control engineering. BP is used to
adjust the weights of the NN. This algorithm can be
considered as gradient descent class algorithm that
attempts to minimize the error between the desired and
the NN outputs. The weights of the NN are adjusted so
that the error is reduced along the descent direction.

One of the major issues in BP is selection of the
learning rate in BP. The relatively large or small
learning rates may affect the performance of the BP
algorithm and may lead to failure of the learning
processing. Different authors [1],[2] have investigated
the optimal learning rate in BP. Authors in [2]
proposed dynamic optimization of the learning rate
using derivative information. Nevertheless, the
analysis of stable learning rates was not discussed.
Authors in [1] have developed the dynamic optimal
learning rates of a certain class of fuzzy neural
networks (FNNs). However, they only considered the
dynamic optimal learning rate in 2- layers NN in
certain class of FNNs. They have performed the
stability analysis of the learning rate 2-layers NN by
minimizing the total squared error between the actual
and desired outputs for a set of training vectors. The
stable and optimal learning rate, in the sense of
maximum error reduction for each iteration during the
BP process, can be found in the 2-layers NN.

In this paper, we present the dynamic optimal
learning rate and GA for 3-layers NN. The weights of
the hidden-output layers of the NN are adjusted using

BP with dynamic optimal learning rate proposed in
[1]. The optimal learning rate in the input-hidden
layers is searched by the GA [4]-[7], which has
emerged as a popular family of methods for global
optimization. GA performs a search by evolving a
population potential solutions through the use of its
operators. Simulation example is presented to
demonstrate the performance of the proposed method.

The paper is organized as follow. Section 2
briefly describes the 3-layers NN and dynamic optimal
learning rate. Section 3 presents how to use GA to tune
the learning rate in input-hidden layers. The simulation
example is presented in section 4. Finally section 5
concludes the paper with a discussion of the
significance of the results.

2 Problem Formulation

A 3-layer NN is established as follows:

�

r L

r 1

d 1

d 2

d Z

V

�

W

y Z

y1

�

�

L a ye r I L a ye r II

≅

≅

≅

� �

y2

�

x 1

x 2

x N

L a ye r III
Fig. 1: 3-Layer Neural Network

There are some notations are defined as:
[]T

Lrrrr f21= ∈ ℜ L, training data vector,

[]LvvvV l21= ∈ ℜ N×L, weight matrix,

[]T
Niiii vvvv �21= ∈ ℜ N, ith weigh vector,

[]ZwwwW �21= ∈ ℜ L×Z, weight matrix,

[]T
Liiii wwww �21= ∈ ℜ L, ith weight vector,

[]TZyyyy �21= ∈ ℜ Z, actual output vector;

[]T
Zdddd h21= ∈ ℜ Z, desired vector,

and “T” denotes matrix transpose.
Given P training vectors, there should be P

desired output vectors. In matrix notations, we let
[]PrrrR �21= ∈ ℜ L×P, (2.1)

the input training matrix,
[]T

P
yyyY �

21
= ∈ ℜ P×Z, (2.2)

the actual output matrix,
[]T

PdddD �21= ∈ ℜ P×Z, (2.3)
the desired output matrix.

Given a set of training vectors, which forms the
training matrix R in (2.1), it is desired to use the BP
technique to train the above NN so that the actual
outputs converge to the desired outputs. The actual
output yz is defined as

∑
=

=
L

l
lzlz wry

1
z

T wr= (2.4)

rl, the output of hidden layer (layer II) whose active
function is hyperbolic tangent, can be easily
computed:

)tanh(
1

nl

N

n
pnl vxr ∑

=

= (2.5)

The actual output matrix Y can be shown as
Y= T

PLR WLZ (2.6)
Error function E is defined as

E=Y−D = RTW−D (2.7)
Then we have the total squared error J:

J=)(
2

1 TEETR
ZP ⋅

 (2.8)

To update weighting factor V and W, the BP method is
applied:

)(
)()1(

tV
JtVtV t ∂

∂−=+ α (2.9)

RE
ZP

tW

tW
JtWtW

t

t

⋅
−=

∂
∂−=+

1)(

)(
)()1(

β

β
 (2.10)

Using the chain rule, we get the individual vij for
i=1,…,N, j=1,…,L as:

pinj

N

n
pn

P

p

Z

z
jzpzpztij

ij
tijij

xtvxtwdy
PZ

tv

tv
Jtvtv

)))(tanh(1()()(1)(

)(
)()1(

2

11 1
∑∑∑

== =
−−−=

∂
∂−=+

α

α

In order to find the optimal learning rate for βt, we
apply the theorem 1 & 2 of dynamic optimal
learning rate approach in [1]. For finding optimal
learning rate αt, the GA is used.

3. Tuning Learning Rate Using GA
GAs are iterative search algorithms based on an
analogy with the process of natural selection
(Darwinism) and evolutionary genetics. The main
goal is to search for a solution, which optimizes a
user-defined function called the fitness function. To
perform this task, it maintains a population or a gene
pool of randomly encoded chromosomes (or
individuals, solution candidates), Popt =
{ 1

tα ,h, sizePop
t

_α } for each generation t. Each i
tα is

selected randomly following a uniform distribution
over search space and can be binary strings or a real
value. It represents a potential solution to the
problem at hand and is evaluated. Then, a new
population (generation t + 1) is formed by selecting
the more fit chromosomes. Some members of the
new population undergo transformation by means of
genetic operators to form new solutions. After some
generations, it is hoped that the best chromosome
represents a near-optimal solution.

There are three operators: selection, crossover,
and mutation. The selection decides which of the
chromosomes in a population are selected for further
genetic operations. Each chromosome i in a
population is assigned a value ϕi of fitness. The
fitness values are used to assign a probability value
ρi to each chromosome. The probability value ρi is
defined as

ρi = ∑
=

sizePop

k
ki

_

1

ϕϕ . (3.1)

The chromosome with a larger fitness value has a
larger probability of selection. The crossover
operation combines the features of two parent
chromosomes to form two similar offspring by
swapping corresponding segments of the parents.
The parameters defining the crossover operation are
the probability of crossover Pc and the crossover
position. Mutation is a process of occasional
alternation of some gene values in a chromosome by
a random change with a probability less than the
mutation rate Pm.

GAs [7] are used to maximize a function or to
do a minimization. In our application, the error
function J needs to be scaled and transformed into
another function to meet the fitness evaluation
requirement. For a given J, J = ψ10λ, 1<ψ<10, the
fitness function ϕ (J) is defined as [5]:

ϕ (J) = ϕ (ψ10λ)

=

≥−+

<−+−

+
+− 0,

10
10/110

0,
10

1

)1(
)1(λψ

λψλ

λ
λ if

if
 (3.2)

The expression (3.2) finds a larger fitness value for
smaller J. In other words, if the value of J is larger,
it will be mapped to a smaller fitness value and vice
versa. For example, if J is 0.007, then λ = -3 and the
equation (3.2) will yield a fitness value of 3.3. If J is
10238, then λ = 4 and (3.2) will be mapped to
1.8976e-005.
Following the training process as explained in [1],
we start with an initial learning rate α0 in the hidden-
output layer and proceed to train the NN with the
dynamic optimal rates obtained from Theorems 1and
2 [1]. By choosing the optimal βopt in each iteration
in the training process of the NN, the total squared
error J can be found for this initial α0. The search
must then be continued to yield the optimal αopt such
that the total squared error J is a minimum. It is
obvious that we only have to search for αopt in the
NN. The determination of βopt is from Theorems
1and 2. Otherwise, the NN with two learning rates
(to be searched for by GAs, [6]) will require much
more searching time.

4 Simulation

Simulations have been performed for adaptive
filtering using NN. A 3-layers NN is considered.
The input, hidden and output layers consist 10
nodes, 150 nodes and 1 node respectively. The
simulation results are shown in Figure 2. This figure
illustrates the desired output signal and the NN
output with optimal learning rates, βopt and αopt.
 For comparison, the same NN is trained with fixed
learning rates, α=0.01 and β=0.02. Figure 3 shows
the training output of proposed NN with fixed
learning rates α=0.01,β=0.02, and desired signal.
The total squared errors of both cases are plotted in
Figure 4. Figure 5 illustrates the plots of the weights
||V||+||W|| for the proposed method and the fixed
learning rate. The results show the proposed method
has faster error and weight parameters convergences.
In summary, the simulation results have revealed a
good performance of the proposed method compared
with the conventional BP with fixed learning rates.

5 Conclusion

This paper has presented a new approach in training
NN using BP with dynamic learning rates and GA.

The result presented can be used in any dynamic NN
that includes simple 3-layers. The optimal learning
rate of the hidden-output layers can be obtained from
theorem 1 and 2 in [1]. The stability analysis of the
dynamic learning rate in the hidden-output layers
can also be found in [1]. In this case, we only have
to search for the optimal learning rate in the input-
hidden layers using GA. Simulation example and
performance comparison with the conventional BP
with fixed learning rates have revealed the good
performance of the proposed method.

Fig. 2: (a) the training output of the proposed NN
with optimal α,β, (b) desired signal.

Fig. 3: (a) the training output of the NN with fixed

learning rates α=0.01,β=0.02,(b) desired signal

Fig. 4: Performance comparison Case a: our
optimal learning rates α, β. Case b: α=0.01, β=0.02.

Fig. 5: ||V||+||W||, Case a: our optimal learning rates

Case b: fixed rates α=0.01,β=0.02

References:

[1] C. H. Wang, H. L. Liu, and C. T. Lin

“Dynamic Optimal Learning Rates of a
Certain Class of Fuzzy Neural Networks and
its Applications with Genetic Algorithm”,
IEEE Trans. on Syst. Man Cyber.-part B, Vol.
31, No. 3, June 2001, pp. 467-475.

[2] X. H. Yu, “Dynamic learning rate optimisation
of the backpropagation algorithm”, IEEE
Trans. Neural Networks, vol. 6, pp. 669-677,
May 1995.

[3] Rumelhart, D.E. and J. L. McClelland, Parallel
Distributed Processing: Explorations in

Microstructures of Cognition, Vol. 1:
Foundations. MIT Press, Cambridge, MA,
1986.

[4] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs. Springer-
Verlag, New York, 3rd edition, 1996.

[5] K. S. Tang, K. F. Man, and D. W. Gu,
Structured genetic algorithm for robust H∞
control systems design,” IEEE Trans.
Industrial Electronics , Vol. 43, No. 5,
October 1996, pp. 575-582.

[6] Chen-Chien Hsu, Kai-Ming Tse and Chi-Hsu
Wang, Digital redesign of continuous systems
with improved suitability using genetic
algorithms,” IEE Electronics., Vol. 33, No. 15,
July 1997, pp. 1345-1347.

[7] B. Kosko, Neural Network and Fuzzy Systems,
Prentice Hall, Eaglewood Cliffs, NJ. 1992.

