
 1

The st-Connectedness Problem for a Fibonacci Graph

MARK KORENBLIT and VADIM E. LEVIT
Department of Computer Science

Holon Academic Institute of Technology
52 Golomb Str., P.O. Box 305, Holon 58102

ISRAEL

Abstract: - The paper presents a method for the solution of the st-connectedness problem for a Fibonacci
graph. It is shown that this problem has a polynomial time complexity. The number of mincuts of a Fibonacci
graph is computed.

Key-Words: - Fibonacci graph, mincut, operating path, probabilistic graph, reliability, st-connectedness, st-dag

1 Introduction
We consider the well-known problem of computing
the probability that there exists an operating path
from a source to a target in a stochastic network
(probabilistic graph). The problem and its
generalizations concerning directed and undirected
graphs belong to the class of network reliability
problems. Network reliability has been considered in
a large number of papers. The problem is NP-
complete in network size in the general case (see
[1], [2], [4], [6], [8]). In this paper, we investigate
the problem in relation to a special graph called a
Fibonacci graph.
 The input to network reliability problems is a
probabilistic graph G=(V,E), where V is a set of
vertices and E is a set of edges, representing pairs of
vertices. If the pairs are ordered (i.e., the pair (v,w)
is different from the pair (w,v)) then we call the
graph directed (digraph). All edges of a
probabilistic graph can fail randomly and
independently of one another, according to certain
known probabilities. Hence, each edge e∈E is
characterized by a known failure probability pe and
by an operation probability qe =1–pe.
 We say that a graph G’=(V’,E’) is a subgraph of
G=(V,E) if V’⊂V and E’⊂E. A two-terminal
directed acyclic graph (st-dag) has only one source s
and only one target t. In an st-dag, every vertex lies
on some path from s to t.

 For a probabilistic graph G and specified vertices
s and t of G, we define the two-terminal reliability to
be the probability that there exists an operating path
(a path of operating edges) between s and t. We call
such a state a system operation and corresponding
event is EP(s,t). A state when no operating path
exists between s and t is said to be a system failure.
In the directed case, the problem of computing the
probability)],(Pr[tsEP is usually called st-
connectedness.
 We define a cutset or simply a cut to be a set of
edges whose failure implies system failure. A size of
a cut is a number of edges in the cut. A mincut is a
minimal cut. A set of all mincuts of an st-dag is
denoted C(s,t).

2 An st-Connectedness for a Fibonacci
Graph
The notion of a Fibonacci graph (FG) was
introduced in [3]. In such an st-dag, two edges leave
each of its n vertices except the two final vertices
(n–1 and n). Two edges leaving the i vertex (1 ≤ i ≤
n–2) enter the i+1 and the i+2 vertices. The single
edge leaving the n–1 vertex enters the n vertex. No
edge leaves the n vertex. This graph is illustrated in
Fig. 1.

1 2 n–1 3

Fig.1. A Fibonacci graph

. i i+1 i+2 n

 2

 We explore the algorithm of Provan and Ball [5]
for computing)],(Pr[tsEP of a probabilistic FG.
The algorithm determines two-terminal reliability in
time that is polynomial in the number of mincuts.
Some preliminary definitions are in order.
 For any mincut C in the st-dag G=(V,E), we
identify the two sets: SN(C)={u∈V: there exists a
path from s to u containing no edges of C} and
TN(C)={v∈V: there exists a path from v to t
containing no edges of C}. The mincut C consists
exactly of those edges with one endpoint in SN(C)
and one endpoint in TN(C). The set of exit vertices
associated with C is defined to be
SE(C)={u∈SN(C): there exists an edge (u,v) with
v∈TN(C)}. For any C∈C(s,t) of G define the event
EC(C)=[there is an operating path from s to all
vertices of SE(C), but not to vertex of TN(C)].
 The method for computing)],(Pr[tsEP adduced
in [5] involves computing the probability

)](Pr[CEC for all C∈C(s,t) and is based on the
two following results:

 ∑
∈

−=
(s,t)C

CECtsEP
C

)](Pr[1)],(Pr[(1)

and:
 For any C∈C(s,t),

=)](Pr[CEC
})]'(Pr[1{

)()'(with),(' '
∑ ∏∏

⊂∈ ∈∈

−
CSNCSNtsC CCe

e

Ce

e pCECp
C I

 (2)

where ∏
∈ CCe

ep
I'

 is defined to be 1 if 0' =CC I .

 Hence, all mincuts of G should be revealed and
enumerated for computing)],(Pr[tsEP by
equations (1) and (2). With that end in view, the
algorithm for enumerating mincuts of a graph that
proposed in [7] can be used. The time complexity of
the algorithm is O((m + n)µ), where m is a number
of edges in G and µ = |C(s,t)|. As shown in [5], the
total time complexity of the algorithm for computing

)],(Pr[tsEP , based on equations (1) and (2), is
O((m + n)µ2).
 In order to estimate µ for FG, we derive some
recursive relations for the set of mincuts in FG.
 Suppose that all vertices of the certain FG are
numerated successively by increased order from the
source to the target. We identify vertices by their
ordinal numbers. We denote FG enclosed between a
source numbered i and a target numbered j (i<j) as

FG(i,j). Therefore, FG(i,j–1) is a subgraph of
FG(i,j), FG(i,j–2) is a subgraph of FG(i,j) and
FG(i,j–1), etc. We define a mincut of FG(i,j) that
causes also the system failure of its subgraph
FG(i,j–1) as a strong mincut of FG(i,j). We define a
mincut of FG(i,j) that does not cause the system
failure of its subgraph FG(i,j–1) as a weak mincut of
FG(i,j). We denote a set of all mincuts of FG(i,j) as
CF(i,j), a set of all strong mincuts of FG(i,j) as
CF(i,j–1,j), and a set of all weak mincuts of FG(i,j)
as CF(i, 1−j ,j).
 The n-vertex FG depicted in Fig. 1 is FG(1,n).
The source of the initial FG is supposed to be
numbered 1. We reveal the subgraphs from the FG
in such a way that all the subgraphs, including the
initial FG, have the same source. For this reason, the
source number may be omitted when denoting sets
of mincuts, strong mincuts, and weak mincuts. In
such a case, CF(n), CF(n–1,n), and CF(1−n ,n)
denote a set of all mincuts, a set of all strong
mincuts, and a set of all weak mincuts, respectively,
in an n-vertex FG.
 We continue our denotation in the following way.
Let S be a set of sets of edges. In such a case, the set
composed by adding an edge (x,y) to each set of
edges of S will be denoted S× (x,y).
 It is clear that a set of all mincuts in an n-vertex
FG can be presented as

 CF(n) = CF(n–1,n)U CF(1−n ,n). (3)

Consider the general case, when n > 3. All strong
mincuts of CF(n–2,n–1) (and only them!) block the
access to vertices n–2 and n–1, and, thus, block the
access to vertices n–1 and n. For this reason, they
are strong mincuts of CF(n–1,n) also. Weak mincuts
of CF(2−n ,n–1) leave the vertex n–2 reachable. In
such a case, failure of the edge (n–2,n) only can
block the access to the vertex n. Therefore, CF(n–
1,n) is defined recursively as follows:

CF(n–1,n) =
 CF(n–2,n–1)U CF(2−n ,n–1)× (n–2,n). (4)

Weak mincuts of CF(1−n ,n) block the access to
the vertex n but should leave the vertex n–1
reachable. For this reason, any weak mincut of
CF(1−n ,n) includes the edge (n–1,n). Now, if the
vertex n–2 is reachable then the failure of the edge
(n–2,n) is sufficient to block the access to the vertex
n; otherwise, the vertex n–3 should be reachable in
order to support the access to the vertex n–1.

 3

Therefore, CF(1−n ,n) is defined recursively as
follows:

CF(1−n ,n) =
 {(n–2,n),(n–1,n)}U CF(3−n ,n–2)× (n–1,n). (5)

In the special case, for a 3-vertex FG

 CF(2,3) = {(1,2),(1,3)} (6)

and

 CF(2 ,3) = {(1,3),(2,3)}. (7)

A 2-vertex FG including the single edge (1,2) has no
strong mincut. Its single weak mincut is this edge
itself:

CF(1,2) = {(1,2)}. (8)

 Hence, (3)-(8) describe relations between mincuts
in FG.

Lemma 1. |CF(n – 1,n)| = |CF(n – 1)|, n ≥ 3.

 Proof. For n = 3, it is clear. If n > 3, then

|CF(),2()1,2 nnnn −×−− | = |CF()1,2 −− nn |,

and, according to (4) and (3),

|CF(n – 1,n)| = |CF(n – 2,n – 1)U CF(2−n ,n – 1)|

 = |CF(n – 1)|. ■

Lemma 2. CF(1−n ,n) = 




2
n

, n ≥ 2.

 Proof. For n = 2, 3, it is clear. If n > 3, then

|CF(),1()2,3 nnnn −×−− | = |CF()2,3 −− nn |.

Hence, according to (5),

|CF(),1 nn − |

 = |{(n – 2,n),(n – 1,n)}U CF |)2,3(−− nn

 = |CF |)2,3(−− nn + 1.

For odd n, using (7), we have

|CF(1−n ,n)| = |CF |)2,3(−− nn + 1

 = |CF |)4,5(−− nn + 2

 = |CF |)6,7(−− nn + 3

 = …

 = |CF |))3(,)2((−−−− nnnn +

2

3−n

 = |CF(2 ,3)| +
2

3−n

 = 1 +
2

3−n




=

−
=

22
1 nn

.

For even n, using (8) we have

|CF(1−n ,n)| = |CF |)2,3(−− nn + 1

 = |CF |)4,5(−− nn + 2

 = |CF |)6,7(−− nn + 3

 = …

 = |CF |))2(,)1((−−−− nnnn +

2

2−n

 = |CF(1,2)| +
2

2−n

 = 1 +
2

2−n




==
22
nn

.

The proof is complete. ■

Theorem 3. For n ≥ 2, the number of mincuts in an

n-vertex FG is 







4

2n
.

 4

Proof. It is clear for n = 2, 3. If n > 3, then, as
follows from (3) and Lemmas 1 and 2,

|CF(n)| = |CF(n – 1,n)| + |CF(1−n ,n)|

= |CF(n – 1)| + 




2
n

= |CF(n – 1 – 1)| + 



 −

2
1n

 + 




2
n

= |CF(n – 2)| + n – 1.

For even n

|CF(n)| = |CF(n – 2)| + n – 1

= |CF(n – 2 – 2)| + n – 2 – 1 + n – 1

= |CF(n – 4)| + 2n – 4

= |CF(n – 6)| + 3n – 9

= |CF(n – 8)| + 4n – 16

= …

= |CF(n – (n – 2))| +
2

2
2

2
2







 −

−
− nnn

= |CF(2)| +
4

42 −n

= 1 + 







==−

44
1

4

222 nnn
.

Using this result, we have for odd n

|CF(n)| = |CF(n – 1)| + 




2
n

=
()

2
1

4
1 2 −

+
− nn

= 







=

−
44

1 22 nn
.

Therefore, the proof of the theorem is complete. ■

Corollary 4. |CF(n – 1,n)| =
()








 −
4
1 2n

, n ≥ 2.

Proof. For n = 2, it is clear. If n > 2, then, according
to Lemma 1 and Theorem 3,

|CF(n – 1,n)| = |CF(n – 1)| =
()








 −
4
1 2n

. ■

 Therefore, the number of mincuts µ in an n-vertex
FG is estimated as O(n2).
 It can be easily shown that the number of edges in
an n-vertex FG is m = 2n – 3. Hence, the number of
edges in FG depends linearly on the number of
vertices in the graph. For this reason, the time
expended enumerating mincuts of FG using the
algorithm in [7] is O((m + n)µ) = O(n3). The total
time complexity of the algorithm computing

)],(Pr[tsEP for an n-vertex FG, based on
equations (1) and (2), is O((m + n)µ2) = O(n5).

3 Conclusion
 The paper presents a method for the solution of the
st-connectedness problem in relation to a Fibonacci
graph. The method is based on revealing mincuts in
this graph and using one algorithm of Provan and
Ball [5]. It is proved that the number of mincuts in

an n-vertex Fibonacci graph is equal to 







4

2n
. It is

also shown that the st-connectedness problem for a
Fibonacci graph can be solved in O(n5) time.

References:
[1] M. O. Ball, C. J. Colbourn, and J. S. Provan,

Network Reliability, Network Models,
Handbooks in OR & MS 7, North-Holland,
Amsterdam, 1995, pp. 673-762.

[2] C. J. Colbourn, The Combinatorics of Network
Reliability, Oxford University Press, Oxford,
New York, 1987.

[3] M. Ch. Golumbic and Y. Perl, Generalized
Fibonacci Maximum Path Graphs, Discr. Math.
28, 1979, pp. 237-245.

[4] J. S. Provan and M. O. Ball, The Complexity of
Counting Cuts and of Computing the Probability
that a Graph is Connected, SIAM J. Comput. 12,
1983, pp. 777-788.

[5] J. S. Provan, and M. O. Ball, Computing
Network Reliability in Time Polynomial in the
Number of Cuts, Oper. Res. 32, 1984, pp. 516-
526.

 5

[6] D. R. Shier, Network Reliability and Algebraic
Structures, Oxford University Press, Oxford,
New York, 1991.

[7] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H.
Ariyoshi, An Algorithm to Enumerate All
Cutsets of a Graph in Linear Time per Cutset, J.
ACM 27, 1980, pp. 619-632.

[8] L. G. Valiant, The Complexity of Enumeration
and Reliability Problems, SIAM J. Comput. 8,
1979, pp. 410-421.

