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Abstract: - The paper presents a method for the solution of the st-connectedness problem for a Fibonacci 
graph. It is shown that this problem has a polynomial time complexity. The number of mincuts of a Fibonacci 
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1   Introduction 
We consider the well-known problem of computing 
the probability that there exists an operating path 
from a source to a target in a stochastic network 
(probabilistic graph). The problem and its 
generalizations concerning directed and undirected 
graphs belong to the class of network reliability 
problems. Network reliability has been considered in 
a large number of papers. The problem is NP-
complete in network size in the general case (see 
[1], [2], [4], [6], [8]). In this paper, we investigate 
the problem in relation to a special graph called a 
Fibonacci graph. 
    The input to network reliability problems is a 
probabilistic graph G=(V,E), where V is a set of 
vertices and E is a set of edges, representing pairs of 
vertices. If the pairs are ordered (i.e., the pair (v,w) 
is different from the pair (w,v)) then we call the 
graph directed (digraph). All edges of a 
probabilistic graph can fail randomly and 
independently of one another, according to certain 
known probabilities. Hence, each edge e∈E is 
characterized by a known failure probability pe and 
by an operation probability qe =1–pe. 
    We say that a graph G’=(V’,E’) is a subgraph of 
G=(V,E) if V’⊂V and E’⊂E. A two-terminal 
directed acyclic graph (st-dag) has only one source s 
and only one target t. In an st-dag, every vertex lies 
on some path from s to t. 
   
 
 
 
 
 
 
 
 

    For a probabilistic graph G and specified vertices 
s and t of G, we define the two-terminal reliability to 
be the probability that there exists an operating path 
(a path of operating edges) between s and t. We call 
such a state a system operation and corresponding 
event is EP(s,t). A state when no operating path 
exists between s and t is said to be a system failure. 
In the directed case, the problem of computing the 
probability )],(Pr[ tsEP  is usually called st-
connectedness. 
    We define a cutset or simply a cut to be a set of 
edges whose failure implies system failure. A size of 
a cut is a number of edges in the cut. A mincut is a 
minimal cut. A set of all mincuts of an st-dag is 
denoted C(s,t). 
 
 
2  An st-Connectedness for a Fibonacci 
Graph 
The notion of a Fibonacci graph (FG) was 
introduced in [3]. In such an st-dag, two edges leave 
each of its n vertices except the two final vertices 
(n–1 and n). Two edges leaving the i vertex (1 ≤ i ≤ 
n–2) enter the i+1 and the i+2 vertices. The single 
edge leaving the n–1 vertex enters the n vertex. No 
edge leaves the n vertex. This graph is illustrated in 
Fig. 1.  
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Fig.1.  A Fibonacci graph 
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    We explore the algorithm of Provan and Ball [5] 
for computing )],(Pr[ tsEP  of a probabilistic FG. 
The algorithm determines two-terminal reliability in 
time that is polynomial in the number of mincuts. 
Some preliminary definitions are in order. 
    For any mincut C in the st-dag G=(V,E), we 
identify the two sets: SN(C)={u∈V: there exists a 
path from s to u containing no edges of C} and 
TN(C)={v∈V: there exists a path from v to t 
containing no edges of C}. The mincut C consists 
exactly of those edges with one endpoint in SN(C) 
and one endpoint in TN(C). The set of exit vertices 
associated with C is defined to be 
SE(C)={u∈SN(C): there exists an edge (u,v) with 
v∈TN(C)}. For any C∈C(s,t) of G define the event 
EC(C)=[there is an operating path from s to all 
vertices of SE(C), but not to vertex of TN(C)]. 
    The method for computing )],(Pr[ tsEP  adduced 
in [5] involves computing the probability 

)](Pr[ CEC  for all C∈C(s,t) and is based on the 
two following results: 
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    Hence, all mincuts of G should be revealed and 
enumerated for computing )],(Pr[ tsEP  by 
equations (1) and (2). With that end in view, the 
algorithm for enumerating mincuts of a graph that 
proposed in [7] can be used. The time complexity of 
the algorithm is O((m + n)µ), where m is a number 
of edges in G and µ = |C(s,t)|. As shown in [5], the 
total time complexity of the algorithm for computing  

)],(Pr[ tsEP , based on equations (1) and (2), is 
O((m + n)µ2). 
    In order to estimate µ for FG, we derive some 
recursive relations for the set of mincuts in FG. 
    Suppose that all vertices of the certain FG are 
numerated successively by increased order from the 
source to the target. We identify vertices by their 
ordinal numbers. We denote FG enclosed between a 
source numbered i and a target numbered j (i<j) as 

FG(i,j). Therefore, FG(i,j–1) is a subgraph of 
FG(i,j), FG(i,j–2) is a subgraph of FG(i,j) and 
FG(i,j–1), etc. We define a mincut of FG(i,j) that 
causes also the system failure of its subgraph 
FG(i,j–1) as a strong mincut of FG(i,j). We define a 
mincut of FG(i,j) that does not cause the system 
failure of its subgraph FG(i,j–1) as a weak mincut of 
FG(i,j). We denote a set of all mincuts of FG(i,j) as 
CF(i,j), a set of all strong mincuts of FG(i,j) as 
CF(i,j–1,j), and a set of all weak mincuts of FG(i,j) 
as CF(i, 1−j ,j). 
    The n-vertex FG depicted in Fig. 1 is FG(1,n). 
The source of the initial FG is supposed to be 
numbered 1. We reveal the subgraphs from the FG 
in such a way that all the subgraphs, including the 
initial FG, have the same source. For this reason, the 
source number may be omitted when denoting sets 
of mincuts, strong mincuts, and weak mincuts. In 
such a case, CF(n), CF(n–1,n), and CF( 1−n ,n) 
denote a set of all mincuts, a set of all strong 
mincuts, and a set of all weak mincuts, respectively, 
in an n-vertex FG. 
    We continue our denotation in the following way. 
Let S be a set of sets of edges. In such a case, the set 
composed by adding an edge (x,y) to each set of 
edges of S will be denoted S× (x,y). 
    It is clear that a set of all mincuts in an n-vertex 
FG can be presented as 
 
   CF(n) = CF(n–1,n)U CF( 1−n ,n).  (3) 
 
Consider the general case, when n > 3. All strong 
mincuts of CF(n–2,n–1) (and only them!) block the 
access to vertices n–2 and n–1, and, thus, block the 
access to vertices n–1 and n. For this reason, they 
are strong mincuts of CF(n–1,n) also. Weak mincuts 
of CF( 2−n ,n–1) leave the vertex n–2 reachable. In 
such a case, failure of the edge (n–2,n) only can 
block the access to the vertex n. Therefore, CF(n–
1,n) is defined recursively as follows:  
 
CF(n–1,n) = 
        CF(n–2,n–1)U CF( 2−n ,n–1)× (n–2,n).  (4) 
 
Weak mincuts of CF( 1−n ,n) block the access to 
the vertex n but should leave the vertex n–1 
reachable. For this reason, any weak mincut of 
CF( 1−n ,n) includes the edge (n–1,n). Now, if the 
vertex n–2 is reachable then the failure of the edge 
(n–2,n) is sufficient to block the access to the vertex 
n; otherwise, the vertex n–3 should be reachable in 
order to support the access to the vertex n–1. 
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Therefore, CF( 1−n ,n) is defined recursively as 
follows: 
 
CF( 1−n ,n) = 
    {(n–2,n),(n–1,n)}U CF( 3−n ,n–2)× (n–1,n).   (5) 
  
In the special case, for a 3-vertex FG 
 

           CF(2,3) = {(1,2),(1,3)}               (6)                 
  
and 
 

           CF( 2 ,3) = {(1,3),(2,3)}.   (7) 
 

A 2-vertex FG including the single edge (1,2) has no 
strong mincut. Its single weak mincut is this edge 
itself: 
 

CF(1,2) = {(1,2)}.   (8) 
 
    Hence, (3)-(8) describe relations between mincuts 
in FG.  
 
Lemma 1. |CF(n – 1,n)| = |CF(n – 1)|, n ≥ 3. 
 
 Proof. For n = 3, it is clear. If n > 3, then  
 
|CF( ),2()1,2 nnnn −×−− | =  |CF( )1,2 −− nn |,  
 
and, according to (4) and (3), 
 
|CF(n – 1,n)| = |CF(n – 2,n – 1)U CF( 2−n ,n – 1)| 
                     

        = |CF(n – 1)|. ■ 
 

Lemma 2. CF( 1−n ,n) = 




2
n

, n ≥ 2. 

 
 Proof. For n = 2, 3, it is clear. If n > 3, then 
 
|CF( ),1()2,3 nnnn −×−− | =  |CF( )2,3 −− nn |.  
 
Hence, according to (5),  
 
|CF( ),1 nn − |  
             
            = |{( n – 2,n),(n – 1,n)}U CF |)2,3( −− nn  
 
            = |CF |)2,3( −− nn  + 1. 

For odd n, using (7), we have  
 
|CF( 1−n ,n)| = |CF |)2,3( −− nn  + 1 
 

         = |CF |)4,5( −− nn  + 2 
 
         = |CF |)6,7( −− nn  + 3 
 
         = … 
 
         = |CF |))3(,)2(( −−−− nnnn  + 

            
2

3−n
 

 

         = |CF( 2 ,3)| + 
2

3−n
 

 

         = 1 + 
2

3−n




=

−
=

22
1 nn

. 

 
For even n, using (8) we have 

 
|CF( 1−n ,n)| = |CF |)2,3( −− nn  + 1 
 

         = |CF |)4,5( −− nn  + 2 
 
         = |CF |)6,7( −− nn  + 3 
 
         = … 
 
         = |CF |))2(,)1(( −−−− nnnn  + 

            
2

2−n
 

 

         = |CF(1,2)| + 
2

2−n
 

 

         = 1 + 
2

2−n




==
22
nn

. 

 
The proof is complete. ■  
 
Theorem 3. For n ≥ 2, the number of mincuts in an 

n-vertex FG  is 







4

2n
.   
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Proof. It is clear for n = 2, 3. If n > 3, then, as 
follows from (3) and Lemmas 1 and 2, 
 
|CF(n)| = |CF(n – 1,n)| + |CF( 1−n ,n)| 

 

= |CF(n – 1)| + 




2
n

 
 

= |CF(n – 1 – 1)| + 



 −

2
1n

 + 




2
n

 
 

= |CF(n – 2)| + n – 1. 
 
For even n 

 
|CF(n)| = |CF(n – 2)| + n – 1 
       

= |CF(n – 2 – 2)| + n – 2 – 1 + n – 1 
 

= |CF(n – 4)| + 2n – 4 
 

= |CF(n – 6)| + 3n – 9 
 

= |CF(n – 8)| + 4n – 16 
 

= …  
 

= |CF(n – (n – 2))| + 
2

2
2

2
2







 −

−
− nnn

 

 

= |CF(2)| + 
4

42 −n
 

 

= 1 + 







==−

44
1

4

222 nnn
. 

 
Using this result, we have for odd n 
  

|CF(n)| = |CF(n – 1)| + 




2
n

 

 

= 
( )

2
1

4
1 2 −

+
− nn

= 







=

−
44

1 22 nn
.  

 
Therefore, the proof of the theorem is complete. ■ 
 

Corollary 4.  |CF(n – 1,n)| = 
( )








 −
4
1 2n

, n ≥ 2. 

Proof. For n = 2, it is clear. If n > 2, then, according 
to Lemma 1 and Theorem 3,  
 

|CF(n – 1,n)| = |CF(n – 1)| = 
( )








 −
4
1 2n

. ■ 

 
    Therefore, the number of mincuts µ in an n-vertex 
FG is estimated as O(n2). 
    It can be easily shown that the number of edges in 
an n-vertex FG is m = 2n – 3. Hence, the number of 
edges in FG depends linearly on the number of 
vertices in the graph. For this reason, the time 
expended enumerating mincuts of FG using the 
algorithm in [7] is O((m + n)µ) = O(n3). The total 
time complexity of the algorithm computing 

)],(Pr[ tsEP  for an n-vertex FG, based on 
equations (1) and (2), is O((m + n)µ2) = O(n5). 
 
 
3   Conclusion 
 The paper presents a method for the solution of the 
st-connectedness problem in relation to a Fibonacci 
graph. The method is based on revealing mincuts in 
this graph and using one algorithm of Provan and 
Ball [5]. It is proved that the number of mincuts in 

an n-vertex Fibonacci graph is equal to 







4

2n
. It is 

also shown that the st-connectedness problem for a 
Fibonacci graph can be solved in O(n5) time. 
  
 
References: 
[1] M. O. Ball, C. J. Colbourn, and J. S. Provan,  

Network Reliability, Network Models, 
Handbooks in OR & MS 7, North-Holland, 
Amsterdam, 1995, pp. 673-762.  

[2] C. J. Colbourn, The Combinatorics of Network 
Reliability, Oxford University Press, Oxford, 
New York, 1987. 

[3] M. Ch. Golumbic and Y. Perl, Generalized 
Fibonacci Maximum Path Graphs, Discr. Math. 
28, 1979, pp. 237-245. 

[4] J. S. Provan and M. O. Ball, The Complexity of 
Counting Cuts and of Computing the Probability 
that a Graph is Connected, SIAM J. Comput. 12, 
1983, pp. 777-788.   

[5] J. S. Provan, and M. O. Ball, Computing 
Network Reliability in Time Polynomial in the 
Number of Cuts, Oper. Res. 32, 1984, pp. 516-
526.   



 5 

[6] D. R. Shier, Network Reliability and Algebraic 
Structures, Oxford University Press, Oxford, 
New York, 1991.  

[7] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. 
Ariyoshi, An Algorithm to Enumerate All 
Cutsets of a Graph in Linear Time per Cutset, J. 
ACM 27, 1980, pp. 619-632. 

[8] L. G. Valiant, The Complexity of Enumeration 
and Reliability Problems, SIAM J. Comput. 8, 
1979, pp. 410-421.  

 
 
 

 


