The st-Connectedness Problem for a Fibonacci Graph

MARK KORENBLIT and VADIM E. LEVIT
Department of Computer Science
Holon Academic Institute of Technology
52 Golomb Str., P.O. Box 305, Holon 58102
ISRAEL

Abstract

The paper presents a method for the solution of the st-connectedness problem for a Fibonacci graph. It is shown that this problem has a polynomial time complexity. The number of mincuts of a Fibonacci graph is computed.

Key-Words: - Fibonacci graph, mincut, operating path, probabilistic graph, reliability, st-connectedness, st-dag

1 Introduction

We consider the well-known problem of computing the probability that there exists an operating path from a source to a target in a stochastic network (probabilistic graph). The problem and its generalizations concerning directed and undirected graphs belong to the class of network reliability problems. Network reliability has been considered in a large number of papers. The problem is NPcomplete in network size in the general case (see [1], [2], [4], [6], [8]). In this paper, we investigate the problem in relation to a special graph called a Fibonacci graph.
The input to network reliability problems is a probabilistic graph $G=(V, E)$, where V is a set of vertices and E is a set of edges, representing pairs of vertices. If the pairs are ordered (i.e., the pair (v, w) is different from the pair (w, v)) then we call the graph directed (digraph). All edges of a probabilistic graph can fail randomly and independently of one another, according to certain known probabilities. Hence, each edge $e \in E$ is characterized by a known failure probability p_{e} and by an operation probability $q_{e}=1-p_{e}$.

We say that a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subset V$ and $E^{\prime} \subset E$. A two-terminal directed acyclic graph (st-dag) has only one source s and only one target t. In an st-dag, every vertex lies on some path from s to t.

For a probabilistic graph G and specified vertices s and t of G, we define the two-terminal reliability to be the probability that there exists an operating path (a path of operating edges) between s and t. We call such a state a system operation and corresponding event is $E P(s, t)$. A state when no operating path exists between s and t is said to be a system failure. In the directed case, the problem of computing the probability $\operatorname{Pr}[E P(s, t)]$ is usually called stconnectedness.
We define a cutset or simply a cut to be a set of edges whose failure implies system failure. A size of a cut is a number of edges in the cut. A mincut is a minimal cut. A set of all mincuts of an st-dag is denoted $\mathbf{C}(s, t)$.

2 An st-Connectedness for a Fibonacci Graph

The notion of a Fibonacci graph $(F G)$ was introduced in [3]. In such an st-dag, two edges leave each of its n vertices except the two final vertices ($n-1$ and n). Two edges leaving the i vertex ($1 \leq i \leq$ $n-2$) enter the $i+1$ and the $i+2$ vertices. The single edge leaving the $n-1$ vertex enters the n vertex. No edge leaves the n vertex. This graph is illustrated in Fig. 1.

Fig.1. A Fibonacci graph

We explore the algorithm of Provan and Ball [5] for computing $\operatorname{Pr}[E P(s, t)]$ of a probabilistic $F G$. The algorithm determines two-terminal reliability in time that is polynomial in the number of mincuts. Some preliminary definitions are in order.
For any mincut C in the st-dag $G=(V, E)$, we identify the two sets: $S N(C)=\{u \in V$: there exists a path from s to u containing no edges of $C\}$ and $T N(C)=\{v \in V$: there exists a path from v to t containing no edges of $C\}$. The mincut C consists exactly of those edges with one endpoint in $S N(C)$ and one endpoint in $T N(C)$. The set of exit vertices associated with C is defined to be $S E(C)=\{u \in S N(C)$: there exists an edge (u, v) with $v \in T N(C)\}$. For any $C \in \mathbf{C}(s, t)$ of G define the event $E C(C)=[$ there is an operating path from s to all vertices of $S E(C)$, but not to vertex of $T N(C)$].
The method for computing $\operatorname{Pr}[E P(s, t)]$ adduced in [5] involves computing the probability $\operatorname{Pr}[E C(C)]$ for all $C \in \mathbf{C}(s, t)$ and is based on the two following results:

$$
\begin{equation*}
\operatorname{Pr}[E P(s, t)]=1-\sum_{C \in \mathbf{C}(s, t)} \operatorname{Pr}[E C(C)] \tag{1}
\end{equation*}
$$

and:
For any $C \in \mathbf{C}(s, t)$,

$$
\begin{align*}
& \operatorname{Pr}[E C(C)]= \\
& \prod_{e \in C} p_{e}\left\{1-\sum_{C^{\prime} \in \mathbf{C}(s, t)} \operatorname{pith} S N\left(C^{\prime}\right) \subset S N(C)\right. \tag{2}\\
& \left.\operatorname{Pr}\left[E C\left(C^{\prime}\right)\right] / \prod_{e \in C^{\prime} \cap C} p_{e}\right\}
\end{align*}
$$

where $\prod_{e \in C^{\prime} \cap C} p_{e}$ is defined to be 1 if $C^{\prime} \cap C=0$.
Hence, all mincuts of G should be revealed and enumerated for computing $\operatorname{Pr}[E P(s, t)]$ by equations (1) and (2). With that end in view, the algorithm for enumerating mincuts of a graph that proposed in [7] can be used. The time complexity of the algorithm is $O((m+n) \mu)$, where m is a number of edges in G and $\mu=|\mathbf{C}(s, t)|$. As shown in [5], the total time complexity of the algorithm for computing $\operatorname{Pr}[E P(s, t)]$, based on equations (1) and (2), is $O\left((m+n) \mu^{2}\right)$.

In order to estimate μ for $F G$, we derive some recursive relations for the set of mincuts in $F G$.

Suppose that all vertices of the certain $F G$ are numerated successively by increased order from the source to the target. We identify vertices by their ordinal numbers. We denote $F G$ enclosed between a source numbered i and a target numbered $j(i<j)$ as
$F G(i, j)$. Therefore, $F G(i, j-1)$ is a subgraph of $F G(i, j), F G(i, j-2)$ is a subgraph of $F G(i, j)$ and $F G(i, j-1)$, etc. We define a mincut of $F G(i, j)$ that causes also the system failure of its subgraph $F G(i, j-1)$ as a strong mincut of $F G(i, j)$. We define a mincut of $F G(i, j)$ that does not cause the system failure of its subgraph $F G(i, j-1)$ as a weak mincut of $F G(i, j)$. We denote a set of all mincuts of $F G(i, j)$ as $\boldsymbol{C F}(i, j)$, a set of all strong mincuts of $F G(i, j)$ as $\boldsymbol{C F}(i, j-1, j)$, and a set of all weak mincuts of $F G(i, j)$ as $\boldsymbol{C F}(i, \overline{j-1}, j)$.

The n-vertex $F G$ depicted in Fig. 1 is $F G(1, n)$. The source of the initial $F G$ is supposed to be numbered 1. We reveal the subgraphs from the $F G$ in such a way that all the subgraphs, including the initial $F G$, have the same source. For this reason, the source number may be omitted when denoting sets of mincuts, strong mincuts, and weak mincuts. In such a case, $\boldsymbol{C F}(n), \boldsymbol{C F}(n-1, n)$, and $\boldsymbol{C F}(\overline{n-1}, n)$ denote a set of all mincuts, a set of all strong mincuts, and a set of all weak mincuts, respectively, in an n-vertex $F G$.

We continue our denotation in the following way. Let \boldsymbol{S} be a set of sets of edges. In such a case, the set composed by adding an edge (x, y) to each set of edges of \boldsymbol{S} will be denoted $\boldsymbol{S} \times(x, y)$.

It is clear that a set of all mincuts in an n-vertex $F G$ can be presented as

$$
\begin{equation*}
\boldsymbol{C F}(n)=\boldsymbol{C F}(n-1, n) \cup \boldsymbol{C F}(\overline{n-1}, n) \tag{3}
\end{equation*}
$$

Consider the general case, when $n>3$. All strong mincuts of $\boldsymbol{C F}(n-2, n-1)$ (and only them!) block the access to vertices $n-2$ and $n-1$, and, thus, block the access to vertices $n-1$ and n. For this reason, they are strong mincuts of $\boldsymbol{C F}(n-1, n)$ also. Weak mincuts of $\boldsymbol{C F}(\overline{n-2}, n-1)$ leave the vertex $n-2$ reachable. In such a case, failure of the edge ($n-2, n$) only can block the access to the vertex n. Therefore, $\boldsymbol{C F}(n-$ $1, n)$ is defined recursively as follows:

$$
\begin{align*}
& \boldsymbol{C F}(n-1, n)= \\
& \quad \boldsymbol{C F}(n-2, n-1) \cup \boldsymbol{C F}(\overline{n-2}, n-1) \times(n-2, n) . \tag{4}
\end{align*}
$$

Weak mincuts of $\boldsymbol{C F}(\overline{n-1}, n)$ block the access to the vertex n but should leave the vertex $n-1$ reachable. For this reason, any weak mincut of $\boldsymbol{C F}(\overline{n-1}, n)$ includes the edge $(n-1, n)$. Now, if the vertex $n-2$ is reachable then the failure of the edge ($n-2, n$) is sufficient to block the access to the vertex n; otherwise, the vertex $n-3$ should be reachable in order to support the access to the vertex $n-1$.

Therefore, $\boldsymbol{C F}(\overline{n-1}, n)$ is defined recursively as follows:

$$
\begin{align*}
& \boldsymbol{C F}(\overline{n-1}, n)= \\
& \quad\{(n-2, n),(n-1, n)\} \cup \boldsymbol{C F}(\overline{n-3}, n-2) \times(n-1, n) . \tag{5}
\end{align*}
$$

In the special case, for a 3-vertex $F G$

$$
\begin{equation*}
\boldsymbol{C F}(2,3)=\{(1,2),(1,3)\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{C F}(\overline{2}, 3)=\{(1,3),(2,3)\} . \tag{7}
\end{equation*}
$$

A 2-vertex $F G$ including the single edge $(1,2)$ has no strong mincut. Its single weak mincut is this edge itself:

$$
\begin{equation*}
\boldsymbol{C F}(\overline{1}, 2)=\{(1,2)\} . \tag{8}
\end{equation*}
$$

Hence, (3)-(8) describe relations between mincuts in $F G$.

Lemma 1. $|\boldsymbol{C F}(n-1, n)|=|\boldsymbol{C F}(n-1)|, n \geq 3$.
Proof. For $n=3$, it is clear. If $n>3$, then
$|\boldsymbol{C F}(\overline{n-2}, n-1) \times(n-2, n)|=|\boldsymbol{C F}(\overline{n-2}, n-1)|$, and, according to (4) and (3),

$$
\begin{aligned}
|\boldsymbol{C F}(n-1, n)| & =|\boldsymbol{C F}(n-2, n-1) \bigcup \boldsymbol{C F}(\overline{n-2}, n-1)| \\
& =|\boldsymbol{C F}(n-1)| .
\end{aligned}
$$

Lemma 2. $\boldsymbol{C F}(\overline{n-1}, n)=\left\lfloor\frac{n}{2}\right\rfloor, n \geq 2$.
Proof. For $n=2,3$, it is clear. If $n>3$, then
$|\boldsymbol{C F}(\overline{n-3}, n-2) \times(n-1, n)|=|\boldsymbol{C F}(\overline{n-3}, n-2)|$.
Hence, according to (5),
$|\boldsymbol{C F}(\overline{n-1}, n)|$

$$
\begin{aligned}
& =|\{(n-2, n),(n-1, n)\} \cup \boldsymbol{C F}(\overline{n-3}, n-2)| \\
& =|\boldsymbol{C F}(\overline{n-3}, n-2)|+1 .
\end{aligned}
$$

For odd n, using (7), we have

$$
\begin{aligned}
|\boldsymbol{C F}(\overline{n-1}, n)|= & |\boldsymbol{C F}(\overline{n-3}, n-2)|+1 \\
= & |\boldsymbol{C F}(\overline{n-5}, n-4)|+2 \\
= & |\boldsymbol{C F}(\overline{n-7}, n-6)|+3 \\
= & \ldots \\
= & |\boldsymbol{C F}(\overline{n-(n-2)}, n-(n-3))|+ \\
& \frac{n-3}{2} \\
= & |\boldsymbol{C F}(\overline{2}, 3)|+\frac{n-3}{2} \\
= & 1+\frac{n-3}{2}=\frac{n-1}{2}=\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

For even n, using (8) we have

$$
\begin{aligned}
|\boldsymbol{C F}(\overline{n-1}, n)|= & |\boldsymbol{C F}(\overline{n-3}, n-2)|+1 \\
= & |\boldsymbol{C F}(\overline{n-5}, n-4)|+2 \\
= & |\boldsymbol{C F}(\overline{n-7}, n-6)|+3 \\
= & \ldots \\
= & |\boldsymbol{C F}(\overline{n-(n-1)}, n-(n-2))|+ \\
& \frac{n-2}{2} \\
= & |\boldsymbol{C F}(\overline{1}, 2)|+\frac{n-2}{2} \\
= & 1+\frac{n-2}{2}=\frac{n}{2}=\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

The proof is complete.
Theorem 3. For $n \geq 2$, the number of mincuts in an n-vertex $F G$ is $\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Proof. It is clear for $n=2$, 3. If $n>3$, then, as follows from (3) and Lemmas 1 and 2,

$$
\begin{aligned}
|\boldsymbol{C F}(n)| & =|\boldsymbol{C F}(n-1, n)|+|\boldsymbol{C F}(\overline{n-1}, n)| \\
& =|\boldsymbol{C F}(n-1)|+\left\lfloor\frac{n}{2}\right\rfloor \\
& =|\boldsymbol{C F}(n-1-1)|+\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor \\
& =|\boldsymbol{C F}(n-2)|+n-1 .
\end{aligned}
$$

For even n

$$
\begin{aligned}
|\boldsymbol{C F}(n)| & =|\boldsymbol{C F}(n-2)|+n-1 \\
& =|\boldsymbol{C F}(n-2-2)|+n-2-1+n-1 \\
& =|\boldsymbol{C F}(n-4)|+2 n-4 \\
& =|\boldsymbol{C F}(n-6)|+3 n-9 \\
& =|\boldsymbol{C F}(n-8)|+4 n-16 \\
& =\ldots \\
& =|\boldsymbol{C F}(n-(n-2))|+\frac{n-2}{2} n-\left(\frac{n-2}{2}\right)^{2} \\
& =|\boldsymbol{C F}(2)|+\frac{n^{2}-4}{4} \\
& =1+\frac{n^{2}}{4}-1=\frac{n^{2}}{4}=\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{aligned}
$$

Using this result, we have for odd n

$$
\begin{aligned}
|\boldsymbol{C F}(n)| & =|\boldsymbol{C F}(n-1)|+\left\lfloor\frac{n}{2}\right\rfloor \\
& =\frac{(n-1)^{2}}{4}+\frac{n-1}{2}=\frac{n^{2}-1}{4}=\left\lfloor\frac{n^{2}}{4}\right\rfloor .
\end{aligned}
$$

Therefore, the proof of the theorem is complete.

Corollary 4. $|\boldsymbol{C F}(n-1, n)|=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor, n \geq 2$.

Proof. For $n=2$, it is clear. If $n>2$, then, according to Lemma 1 and Theorem 3,
$|\boldsymbol{C F}(n-1, n)|=|\boldsymbol{C F}(n-1)|=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$.

Therefore, the number of mincuts μ in an n-vertex $F G$ is estimated as $O\left(n^{2}\right)$.

It can be easily shown that the number of edges in an n-vertex $F G$ is $m=2 n-3$. Hence, the number of edges in $F G$ depends linearly on the number of vertices in the graph. For this reason, the time expended enumerating mincuts of $F G$ using the algorithm in [7] is $O((m+n) \mu)=O\left(n^{3}\right)$. The total time complexity of the algorithm computing $\operatorname{Pr}[E P(s, t)]$ for an n-vertex $F G$, based on equations (1) and (2), is $O\left((m+n) \mu^{2}\right)=O\left(n^{5}\right)$.

3 Conclusion

The paper presents a method for the solution of the st-connectedness problem in relation to a Fibonacci graph. The method is based on revealing mincuts in this graph and using one algorithm of Provan and Ball [5]. It is proved that the number of mincuts in an n-vertex Fibonacci graph is equal to $\left\lfloor\frac{n^{2}}{4}\right\rfloor$. It is also shown that the st-connectedness problem for a Fibonacci graph can be solved in $O\left(n^{5}\right)$ time.

References:

[1] M. O. Ball, C. J. Colbourn, and J. S. Provan, Network Reliability, Network Models, Handbooks in OR \& MS 7, North-Holland, Amsterdam, 1995, pp. 673-762.
[2] C. J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, Oxford, New York, 1987.
[3] M. Ch. Golumbic and Y. Perl, Generalized Fibonacci Maximum Path Graphs, Discr. Math. 28, 1979, pp. 237-245.
[4] J. S. Provan and M. O. Ball, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput. 12, 1983, pp. 777-788.
[5] J. S. Provan, and M. O. Ball, Computing Network Reliability in Time Polynomial in the Number of Cuts, Oper. Res. 32, 1984, pp. 516526.
[6] D. R. Shier, Network Reliability and Algebraic Structures, Oxford University Press, Oxford, New York, 1991.
[7] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi, An Algorithm to Enumerate All Cutsets of a Graph in Linear Time per Cutset, J. ACM 27, 1980, pp. 619-632.
[8] L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J. Comput. 8, 1979, pp. 410-421.

