
Parallel Algorithms for Connected Domination Problem on Interval and
Circular-arc Graphs �

F.R. Hsu M.K. Shan
Department of Information Technology Department of Computer Science

Taichung Healthcare and Management University National Chengchi University
Taichung, Taiwan Taipei, Taiwan

Abstract: A connected domination set � of a graph is a set of vertices such that every vertex not in � is
adjacent to � and the induced subgraph of � is connected. The minimum connected domination set of
a graph is the connected domination set with the minimum number of vertices. In this paper, we propose
parallel algorithms for finding the minimum connected domination set of interval graphs and circular-arc
graphs. Our algorithms run in ����� �� time algorithm using ���� ��� �� processors while the intervals and
arcs are given in sorted order. Our algorithms are on the EREW PRAM model.

Key-Words: Connected Domination Set, Interval Graph, Circular-arc Graph.

1 Introduction

A graph � � ����� is an interval graph if its ver-
tices can be put in a one-to-one corresponded with a
set 	 of intervals on a real line such that two vertices
are adjacent in � if and only if their corresponding
intervals (circular-arcs) have nonempty intersection.
Such a set 	 is called an interval model of the interval
graph �. See Figure 1. The definition of circular-arc
graphs is the same as that of interval graphs, with the
exception that the set of intervals on the real line is
replaced by a set of circular-arcs on a unit circle
 .
Interval graphs and circular-arc graphs arise in many
application areas, such as scheduling, traffic control,
biology, and VLSI design. There is an extensive dis-
cussion on these graphs in [1].

A connected domination set � of a graph is a set
of vertices such that every vertex not in � is adjacent
to � and the induced subgraph of � is connected.
The minimum connected domination set of a graph
is the connected domination set with the minimum
number of vertices. Once endpoints are given in
sorted order, for the interval graph, Chang proposed a
linear algorithm to compute its minimum connected
domination set [2]. For the circular-arc graph, in [3],
Hung and Chang proposed a linear time algorithm for
the minimum connected domination set. In this paper,
we consider the connected domination problem for

�Supported in part by the National Science Council, Taiwan,
R.O.C, grant NSC-89-2213-E-126-017.

both interval and circular-arc graphs. Once the inter-
val and arcs are given in sorted order, our algorithms
run in ������� time to find the center of interval and
circular-arc graphs using ���� ��� �� EREW PRAM
processors.

The rest of this paper is organized as follows. Sec-
tion 2 describes basic notations and some interesting
properties and data structures on interval graphs. Sec-
tions 3 and 4 give algorithms for the minimum con-
nected domination problem on interval and circular-
arc graphs respectively. Finally, we conclude our re-
sults in Section 5.

2 Preliminaries

In this section, we propose how to compute some
useful data structures on interval graphs which will be
used in our algorithms. Assume that the interval graph
is given by its interval model 	 � ���� ��� � � � � ���
with sorted order, where �� � ��� ���. We can label
intervals in 	 such a way that �� � �� if and only
if � � �. By doing parallel prefix computation [4],
such labelling can be easily obtained from the sorted
array of 	 in ����� �� time using �� ��� � proces-
sors. Since all endpoints are sorted, we can replace
the real value of an endpoint by its rank in the sorted
order. Therefore, we can assume all endpoints are
distinct with coordinates of consecutive integer values
	�
� � � � �
�.

1

4
3

2

5

6
7

8

9

10

11

Figure 1: A set of intervals.

In [5], Chao et al. defined a successor function on
intervals. For each interval ��, among intervals inter-
sect ��, consider intervals with rightmost and leftmost
endpoints respectively. Formally, let ����� ��� �
������� contains ��� and ����� ��� � � where
� is equal to ����� ��� contains ��. For example,
in Figure 1, the array ����� �	� � � � � �� is equal to
��� �� �� �� �� �� �� 		� 		� 		� 		�.

According to the ����� array, the successor
tree �����	 is defined as follows: each interval
�� corresponds a node � in �����	 and its parent
is ����� ���. For node � and its sibling �, � is
on the left side of � if and only if � � �. Let
����� and ��� ��� denote the pre-order number and
the level of interval � in tree �����	 respectively.
In this example, the pre-order traversal of �����	

would be �		� �� �� 	�
� �� �� �� �� �� 	�� and �� �
��� �� �� �� �� �� 	��
� �� 		� 	�. Chao et al. showed
that these data structure can be found efficiently.

Lemma 1 [5] For an interval graph, its correspond-
ing arrays ����� , ����� , ��� and �� can
be computed in ����� �� time using ���� ��� �� pro-
cessors on the EREW PRAM.�

An interval is called proper if it is not contained by
any other interval. Let ���
 ��� �� denote the short-
est path length between �� and �� on 	 . The following
lemmas show how to query the length between �� and
�� .

Lemma 2 [5] For any two intervals �� and �� ,
� � �, if ���
 ��� �� �
, then ���
 ��� �� �
���
 ������ ���� ����� ���� �
. �

Lemma 3 [5]For any proper intervals �� and �� , � �
�,

���
 ��� �� �

����
���

��� ���� ��� ��� � 	�
if ����� � ������

��� ���� ��� ����
otherwise.�

For each interval ��, consider intervals on its right
side. Let �������� denote the interval with the

minimum right endpoint. If no such interval exists,
let �������� � � � 	. Formally, �������� �
�������� � ���

�
�� � 	��. For example, consider

Figure 1. The array ������	� � � � � �� is equal to
��� �� �� �� 	�� 	�� 	�� 	
� 	
� 	
� 	
�. Using the list of
all intervals in 	 sorted by the ���, we can apply the
parallel prefix computations [4] to compute the array
����� in ����� �� time using ���� ��� �� proces-
sors on the EREW PRAM model. Therefore, we have
the following lemma

Lemma 4 For an interval graph, its corresponding
array ����� can be computed in ����� �� time us-
ing ���� ��� �� processors on the EREW PRAM.�

3 Connected Domination Problem on inter-
val graphs

Now consider the minimum connected domination
set problem on interval graphs. Let ��
 denote a
minimum connected domination set of the model 	 .
Note that if a connected set dominates the interval
with the leftmost right endpoint and the interval with
the rightmost left endpoint, then it is a connected dom-
ination set. Therefore we have the following lemma.

Lemma 5 Given an interval model 	 , suppose �� is
the interval with largest left endpoint. Then the short-
est path between ����� �	� and ����� ��� is a
minimum connected domination set. �

Since ����� �	� and ����� ��� are
proper, by Lemma 3, � � ���
 ������ �	��
����� ���� can be computed in constant
time. Furthermore, ������ �	�� �������	��
����� ��	�� � � � � ����� ��	�� ����� ����
is a minimum connected domination set. By the
following lemma, it is not difficult to see that this
path can be found in ����� �� time using ������ ��
EREW PRAM.

Lemma 6 For any non-root interval ��,
����� ���� � ���������� � ����� and
��� ��� � ��� ��� � !�.

1

4

7

2

3

6

5

Figure 2: A circular-arc model on circle
 .

Proof. For any non-root interval ��, by definition,
����� ���� is at level ��� ���� � ! in �����	 .
Since ����� ���� is an ancestor of �� in �����	 ,
�������� ����� � �����. By definition, the
pre-order numbers of ���������’s siblings on its
left side are less than �������������. Besides,
the pre-order numbers of ���������’s siblings
on its right side are greater than �����. There-
fore, ����� ���� � ���������� � ����� and
��� ��� � ��� ��� � !�. �

Therefore, we have the following corollary.

Corollary 7 Given the interval model 	 of an in-
terval graph � with sorted order, the minimum con-
nected domination set can be found in ������� time
using ���� ��� �� processors on the EREW PRAM.�

4 Connected Domination Problem on
Circular-arc Graphs

The circular-arc model of a circular-arc graph con-
sists of a set � � ���� ��� � � � � ��� of � circular-arcs
on the unit circle
 . For example, see Figure 2.
Now consider the connected domination problem for
circular-arc graphs. Without loss of generality, we as-
sume that the union of all arcs is equal to
 (other-
wise, the problem becomes one on interval graphs).
Besides, we assume that there is no arc equal to

(otherwise, the problem becomes trivial). We define
�� � ��� ��� is the arc on
 from � clockwise to ��.
We also assume that the endpoints of the arcs in � are
given in the order in which their ��’s points are vis-
ited during the clockwise traversal along
 by start-
ing at ��. Without loss of generality, we assume all
endpoints are distinct with coordinates of consecutive
integer values 	�
� � � � �
�. Besides, for ease of ref-
erence, we assume the coordinate of � is equal to 1.
Such labelling can be easily obtained from the sorted
array of � in ����� �� time using �� ��� � processors
by doing parallel prefix [4].

Similar to the ����� function on an inter-
val graph, for an arc �� on a circular-arc graph,
we define
���� ��� as follows. Let ���� de-
note the set ��� ��� in ���. Starting from ��, we
visit right endpoints of arcs in ���� clockwise one
by one. Let
���� ��� denote the last arc vis-
ited. For example, consider Figure 2. The ar-
rays
���� �	� � � � � �� is equal to �
� �� �� �� 	� 	� 	�.
Similar to the ����� function on an inter-
val graph, for an arc �� on a circular-arc graph,
For ease of reference, let
�������� denote

���� �
���� ������� and
���� ���� �

���� ���. Besides,
���� ���� � �.

In the following, we will show many problems on
circular-arc graphs can be transformed into problems
on interval graphs. We describe how to map � into an
interval model 	 �. This mapping is done as if circle

 is open at � and unrolled onto the real line twice.
Any arc �� is mapped into two intervals "�� and "�

�

as follows. If the interior of �� does not contain �,
then "�

� � ��� ��� and "�
� � �� �
�� �� �
��. If

the interior of �� contains �, "�
� � �� �
�� ��� and

"�
� � ��� �� �
��. Note that the mapping can be

found by checking every endpoint in � to see whether
it is an endpoint of an arc that contains �. This can
be done in ����� �� time using ���� ��� �� EREW
PRAM processors.

Directly from the mapping, we have the following
lemma. The following lemma shows how to compute
array
���� of � through the help of 	�. For an
interval on 	 �, its corresponding arc on � is the arc
which mapped into the interval.

Lemma 8 Given a circular-arc model �, �� is an arc
on it. Then,
���� ��� is equal to the correspond-
ing arc of ����� �"�

� � on 	 �. �

Similar to the ����� function on an interval
graph, for an arc �� on a circular-arc graph, we define

������� as follows. Starting from �� clockwise, we
visit right endpoints of arcs which do not intersect ��.
Let
������� denote the first arc visited. In Fig-
ure 2, array
���� � ��� �� �� ��
�
�
�.

Similar to Lemma 8, for the
���� function, we
have the following lemma.

Lemma 9 Given a circular-arc model �, �� is an arc
on it. Then,
������� is equal to the corresponding
arc of ������"�

� � on 	 �. �

By Lemma 8 and 9, we can compute arrays

���� and
���� on a circular-arc graph
by computing its corresponding arrays ����� ,

����� and ����� on its corresponding interval
graph. By Lemma 1 and 4, we have the following
lemma.

Lemma 10 For a circular-arc graph, its correspond-
ing array
���� and
���� can be computed
in ������� time using ���� ��� �� processors on the
EREW PRAM model. �

For arc �� in �, let ���� denote the shortest path
length walking from �� clockwise and visiting ��
again. For example, in Figure 2, ���� ��� ��� ��� ��� is
a path and ��	� � �.

For two arcs �� and �� , let #$!%��� �� denote a
shortest path from �� to �� clockwise. Let &������� ��
denote the union of arcs in #$!%��� ��. By definition,
we have the following lemma.

Lemma 11 For any arc �� and positive integer �
and � � ����, &�������
���� ����� is equal to
��� ����	 �����. �

Consider the connected domination sets walking
from arc � clockwise. Let #�'��� denote the one
with minimum arcs. Let ��� denote a minimum
connected domination set of the model �. It follows
���� � � �����#�'������ � ��.

Now consider how to find #�'���. We have the
following lemma.

Lemma 12 For any proper arc �� in the circular-
arc model �, let �#�'���� � �. Then
#$!%���
���� ������� is a #�'��� and �����
 �
� � ����.

Proof. Suppose �� is a proper arc in the circular-arc
model �. For ease of reference, let �#�'���� � �.
Suppose (� ���� � ��� � � � � � ���� is a #�'���. Let � be
the set of arcs in #$!%���
�����������. Note that
��� � �. By definition of
���� , union of arcs in
� is contained by union of arcs in �. Therefore arcs
in #$!%���
���� ������� form a #�'���.

By definition of ����, arc ����	��������� con-

nects arc ��. Therefore, &�������
��������������
is equal to a circle. It follows
#$!%���
�������������� is a connected domina-
tion set and � � ����.

Suppose � � ���� � �. Consider
#$!%���
���� �����. Arc
�������������
dose not intersect &�������
���������. There-
fore, #$!%���
���� ����� is not a connected
domination set. Note that there are � � 	 arcs in
#$!%���
���� �����. It follows ��
 � �. Hence,
�����
 � � � ����. �

By Lemma 12, �#�'���� has only three possibil-
ity: ���� �
, ���� � 	 and ����. Note that by def-
inition, ���� �
. If ���� �
, then �� is an unit
circle and �� itself is a minimum connected domina-
tion set. Now consider that ���� � �. According
to the above lemma, for any proper arc ��, we can
find #�'��� as follows. First, we test if �#�'����
is equal to ���� �
. We test if there exists any
arc not connected with &�������
��������������.
Note that &�������
�������������� is equal to
��� ����	����������. We can perform this test
by testing if there exists any arc contained in
�����	���������� ��. We denote this area as �	���.
If no such arc exists, �#�'���� � �����
 and arcs in
#$!%���
�������������� form a #�'���. Other-
wise, we test if �#�'���� is equal to ���� � 	 sim-
ilarly. That is to test if there exists any arc con-
tained in �����	���������� ��. We denote this area
as �
���. If �#�'���� is neither equal to �����
 nor
to ����� 	, then �#�'���� is equal to ���� and arcs in
#$!%���
����������� form a #�'���.

Suppose ! � ������ ����. Let the set of arcs
�(� �������� � ! or ���� � ! � 	�. Since there
are only three possibility for �#�'����, in order to find
�� with minimum number of �#�'����, we can only
find #�'��� in �(.

Now, we list steps for finding the minimum con-
nected domination sets of circular-arc graphs.
Step 1. For every arc �� in �, compute ����.
Step 2. Find ������ ����. Let ! � ������ ����. Let
the set of arcs �(� �������� � ! or ���� � !� 	�.
Step 3. For every arc �� in �(, compute �	��� and
�
���.
Step 4. For every arc �� in �(, find �#�'���� by test-
ing if there exists any arc in �	��� and �
���.
Step 5. Find the minimum connected domination set
#�'��� where �#�'���� � �����#�'������� � �(�.

Now, we consider Step 1. Recall that when we map
the circular-arc model � into its corresponding inter-
val model 	 �, we map each arc �� into two intervals
"�
� and "�

� . We have the following lemma.

Lemma 13 Given a circular-arc model � and its
corresponding interval model 	�, ���� is equal to
���
 ��"�

� � "
�
� � in 	 �. �

For an interval model 	 , for interval �� and �� ,
we describe how to query ���
 ��� ��. Without
loss of generality, suppose � � �. There are only
three cases: 1)���
 ��� �� � 	, 2)���
 ��� �� �

and 3)���
 ��� �� �
. First, we test whether
���
 ��� �� � 	 or not in constant time. Second, if

���
 ��� �� �� 	, we try to test whether ���
 ��� ��
is equal to 2 or not. It is not difficult to see that
if ���
 ��� �� �
, then �����	 ��� intersects �� .
Therefore, we can test whether ���
 ��� �� �

in constant time. Now consider the case that
���
 ��� �� �
. By Lemma 2, ���
 ��� �� �
���
 ������ ���� ����� ���� �
.
Note that ����� ��� and ����� ���
are proper. By Lemma 3, we can find
���
 ������ ���� ����� ���� in constant
time. Therefore, we can use one processor to query
���
 ��"�

� � "
�
� � in constant time. Note that in order

to avoid read conflict, for every interval �� in 	 �, we
need to store �������� ����, �������� ����,
��� ������ ���� and ��� ������ ���� for
future query during the preprocessing phase. There-
fore, Step 1 can be performed in ����� �� time using
���� ��� �� EREW PRAM processors. Obviously,
Step 2 can be done in the same time and processor
complexity.

Regarding Step 3, we need to find �	���
and �
���. That is, we need to query

������������� and
�������������. Note
that
���� ���� is equal to ��������� in its
corresponding �����	 tree. We can use the tech-
nique of the level-ancestor query in trees introduced
by Berkman and Vishkin [6] to solve these queries.
However, it is a fairly hard implemented algorithm
and run on the CREW PRAM. In stead of answering
these queries individually, we perform these queries
in batch. With the help of �����	 , the following
lemma shows how to find
�������� for all �� in
� for some fixed �.

Lemma 14 Given a circular-arc model � and a pos-
itive integer �,
�������� for all �� in � can
be found in ����� �� time using ���� ��� �� EREW
PRAM processors.

Proof. First, we map the circular-arc model � into cor-
responding interval model 	�. Given arc �� on �, by
Lemma 8,
���� ���� is equal to the corresponding
arc of ����� ��"�

� � on 	 �.
Now, consider how to compute �������!� on

	 � for all !. Note that �������!� is the ancestor
of ! on level ��� �!� � � in �����	 . By Lemma 6,
we can compute �������!� on 	 � for all node !
at level � as follows. We merge the nodes on level
� � � and � according to their pre-order number in
�����	 . For nodes on level � � � and on level �,
define ")�!� such that ")�!� � ! if node ! is on
level � � �, otherwise ")�!� � �. Then, the pre-
fix maximum of ") on the merged list is equal to

����� ��!� for node ! on level �. The merging
process for two sorted lists and prefix computation
can be performed in ����� %� time using ��%� ��� %�
EREW PRAM processors [4, 7], where % is the size
of lists. The total size for all levels is at most
�.
Then, ����� ��!� on 	 � for all ! can be computed
in ����� �� time using ���� ��� �� EREW PRAM
processors.

It follows
�������� for all arc �� on � can be
found in the same time and processor complexity. �

Suppose ! � ������ ���� and �(� �������� � !
or ���� � !�	�. We can find �	��� and �
��� for
every arc �� in �(, by performing batch query (as de-
scribed in Lemma 14) three times. Therefore, Step
3 can be done in ����� �� time using ���� ��� ��
EREW PRAM processors.

Now, consider Step 4. We need to test if there exists
any arc in �	��� or �
��� for arc �� . The following
lemma shows how to perform this test efficiently.

Lemma 15 For arc �� in �, there exists any arc con-
tained in ���� �� if and only if arc
������� is con-
tained in ���� ��.

Proof. The ’if’ part is trivial and its proof is omit-
ted. Now consider the ’only if’ part. By definition of

�������, starting from ��, visiting the right end-
points of arcs which do not intersect �� clockwise,

������� is the first arc visited. Clearly, �������

is contained in ���� ��.

Assume that there exists arc �� which is con-
tained in ���� ��. It follows �� does not inter-
sect ��. Therefore, the clockwise order should
be ���� �������� ��������� ��� ��. Therefore, arc

������� is also contained in ���� ��. �

Recall that when we compute �	��� and �
���,
we store
������������� and
�������������
for node �. To avoid read conflict, in Step
3, when we compute �	��� and �
���, we
can also store
�����
�������������� and

�����
�������������� for node �. Therefore,
Step 4 be done in ����� �� time using ���� ��� ��
EREW PRAM processors. Obviously, Step 5 can be
performed in the same time and processor complexity.
Therefore, we have the following corollary.

Corollary 16 Given the circular-arc model � of an
interval graph � with sorted order, the center can be
found in ������� time using ���� ��� �� processors
on the EREW PRAM.�

5 Conclusion

In this paper, we propose parallel algorithms for
center problems on interval and circular-arc graphs.
Our parallel algorithms lead to new linear time algo-
rithms. We define some useful data structures on in-
terval graphs. These data structures may be useful for
other problems, like the median problem, on interval
and circular-arc graphs. The extension to trapezoid
graphs [8] is left for future study.

References

[1] M.C. Golumbic. Algorithmic Graph Theory and
Perfect Graphs. Academic Press, New York,
1980.

[2] M. S. Chang. Efficient algorithms for the domina-
tion problems on interal and circular-arc graphs.
SIAM J. on Computing, 27:1671–1694, 1998.

[3] R. W. Hung and M. S. Chang. A linear algo-
rithm for the connected domination problem on
circular-arc graphs. Proc. of the 19th Workshop
on Combinatorial Mathematics and Computation
Theory, pages 70–78, Mar. 2002.

[4] S.G. Akl. Parallel computation: models and
methods. Prentice Hall, Upper Saddle River, New
Jersey, 1997.

[5] H. S. Chao, F. R. Hsu, and R. C. T. Lee. On the
shortest length queries for interval and circular-
arc graphs. Proc. of the Fifth World Multi-
conference on Systemics, Cybernetics and Infor-
matics, Orlando, USA, VII:331–336, 2001.

[6] O. Berkamn and U. Vishkin. Finding level-
ancestors in trees. J. Comput. System Sci.,
48:214–230, 1994.

[7] R. Cole. Parallel merge sort. SIAM J. on Comput-
ing, 17:770–785, 1988.

[8] I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trape-
zoid graphs and their coloring. Discr. Applied
Math., 21:35–46, 1988.

