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Abstract. Optimal alphabetic binary trees (OATs) have a wide variety of applications in computer science and information 
systems. Algorithms for building such trees in O(n log n) time and O(n) space do exist. In this paper, we introduce a new 
simpler method for solving the same problem. An earlier algorithm, for merging two optimal alphabetic binary trees  into 
one optimal alphabetic binary tree in linear time, is used to build the OAT recursively in a divide-and-conquer manner. 
Although the resulting algorithm has the same order complexity as previously known algorithms, the new method 
considerably outperforms the other implementations . The  analysis in the paper justifies the improvement. The figure 
below compares the new implementation with the Hu-Tucker O(nlogn) implementation. 
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1 Introduction 

Binary trees have received a considerable attention 
in computer science research. Some tree building 
algorithms assume an equally weighted node tree, in 
which case an optimal tree means a balanced one. 
However, when the nodes of the tree, both internal and 
external, have different access frequencies, it becomes 
natural to assign a different weight for each node. In this 
case, an optimal tree is the one with minimal cost, where 
the cost is the summation of the products of the node 
weight by the node level over all nodes. Optimal binary 
trees of this kind can be built in O(n2) time complexity 
[11]. For the simpler case where only external nodes 
have weights, the optimal tree can be found in time O(n 
log n) .  An example is the Huffman tree [9] which is 
widely used in coding and information theory. A more 
constrained kind is the binary alphabetic tree, also called 
an insertion tree, where nodes must appear in their 
original order in the final tree  [6,7].  

In the last few years more results on optimal binary 
alphabetic trees (OAT) were reported in the literature. 
The equivalence of the OAT to optimal binary search 
trees was reported in [2]. The use of the 1-dimensional 
O(n log n) algorithm for 2-dimensional information 
retrieval was considered in [1,3]. The search for sub 
O(nlogn) algorithms for the OAT problem was also 
recently reported [10,12]. It was recently shown in [8] 
that linear time algorithms for building optimal binary  
 

 
 
 
alphabetic trees are possible for some special weight 
sequences. 

An O(n) time algorithm to merge two OATs with 
n1,n2 nodes into an (n=n1+n2) nodes OAT is presented in 
[4].  In this paper, we use this algorithm to build an OAT 
for a given weight sequence in a divide-and-conqueer 
manner. 
 Section 2 is a preface that gives a brief 
description of the Hu-Tucker algorithm. Then Section3 
gives an outline of the linear time merging algorithm 
along with an explanatory example. Section4 shows how 
the merging algorithm could be applied successively. 
Then, section5 shows how to build the OAT recursively 
using successive merging. Finally section6 concludes the 
paper. 

2 Preface-The Hu-Tucker Algorithm  

 The algorithm proceeds in three phases  
Phase1 : Combination 
This is where most of the work is done. Every node 
before combining is a square node also called external 
node. If we let qi denotes the weight of the node or the 
node itself then when two square  nodes qi,qj combine 
they form a circular node also called internal node with 
weight qi+qj occupying the position of the left child. 
Due to the alphabetic constraint, two nodes can only 
combine if they form a compatible pair. Two nodes in a 



sequence form a compatible pair if they are adjacent in 
the sequence or if all nodes between them are internal 
nodes. Among all compatible pairs in a weight sequence 
the one having the minimum weight is called the 
minimum compatible pair. 
To break ties, the Hu-Tucker algorithm uses the 
convention that the node on the left has a smaller weight. 
A pair of nodes (qj,qk) is a Local Minimum 
Compatible Pair (LMCP) if 
               qi  > qk    for all nodes qi compatible with qj 
               qj  ≤  ql  for all nodes ql compatible with qk 
The first phase of the algorithm keeps forming LMCPs 
until a tree is formed. 
Phase 2 : Assigning Levels 
     Uses the tree built in phase1 to find the level of each 
node. 
Phase 3 : Reconstruction 
Uses a stack algorithm to construct an alphabetic binary 
tree based on the node levels. 

Both phases 2,3 take time O(n) while phase1 
requires O(n logn) time [11].It was shown in [8] that 
phase1 can also be done in O(n) time for some special 
classes of weight sequences, as for example the 
increasing weight sequence q1 ≤ q2 ≤ … ≤ qn. 

3 Merging Optimal Alphabetic Trees 

This section gives a brief overview of the merging 
algorithm introduced in [4]. The problem statement of 
the algorithm is first presented along with the necessary 
terminology, then an explanatory example is given. 

Problem Statement 

The problem can be stated as follows. 
Given 2 sequences of LMCPs generated for 2 weight 
sequences of lengths n1,n2, it is required to find, in linear 
time, the corresponding sequence of LMCPs after 
concatenating the two weight sequences into one weight 
sequence of length n1+ n2. 

Terminology 

In what follows, we will call the sequence of LMCPs for 
an old tree, the old tree list. Similarly, we will call the 
sequence of LMCPs for the new tree, the new tree list. 
The set of nodes that needs to be examined to determine  
each new LMCP is called the working sequence. 

Old LMCPs  
These are entries of the old tree list.A general form of an 
old LMCP is two compatible nodes that constituted the 
local minimum compatible pair for its old tree. 
However, during the course of the algorithm we may 
face special kinds of old LMCPs that will be handled 
differently. 
Blocked LMCPs 

When an old LMCP is to be examined and 
found to have external nodes separating it from the 

current working sequence, we call it a blocked LMCP. 
Blocked LMCPs are valid LMCPs for the new tree, so 
they are not added to the working sequence and are 
moved directly to the new tree list. However, although 
all blocked LMCPs will be in ascending order, they will 
not necessarily appear in their right order in the new tree 
list, which will make the new tree list not sorted.  
Single Nodes 

When the two nodes of an old LMCP are 
examined in the working sequence and one of them 
combines to form the new LMCP, the old LMCP 
becomes a broken LMCP and  must be deleted from all 
further appearances in the old tree list since it is no 
longer a valid entry for the new tree. This will result in 
LMCPs with one deleted node and one valid node which 
we call a single node.  

Nodes in the working sequence 
The set of nodes to be examined in the working 
sequence are the nodes of the current old LMCP plus the 
nodes that became valid candidates for the new LMCP. 
Due to the processing of previous LMCPs, two kinds of 
nodes may result. 
New Nodes List 

At each step, when the working sequence is 
examined to determine the new LMCP, if the new 
LMCP is different from the old one, a new node will 
result. This new node will participate in further 
combinations and thus should be considered in the 
working sequence. Since, new nodes will be generated 
frequently, we will put them successively in a list called 
the new nodes list. Due to the rules of LMCP 
generation, new nodes will be generated in ascending 
order and are all compatible with each other. Thus, only 
the first two nodes of the list are added to the working 
sequence.  
Leftover Nodes 
 When an old LMCP is added to the working 
sequence, we do not examine the next one till one of its 
nodes is chosen in the new LMCP. If only one is chosen, 
then the other node remains in the working sequence and 
becomes a valid candidate for next LMCPs. We will call 
this node a leftover node.  
Since the companion of the leftover node formed a new 
node, the leftover node is compatible with all nodes in 
the new nodes list. A second leftover node cannot result 
till the first one combines. Thus, there is at most one 
leftover node in the working sequence for each old tree. 

Algorithm Outline 

The idea is to emulate the effect of rebuilding the 
optimal n-node tree using the Hu-Tucker algorithm 
[7,11] and making use of the information already 
obtained during the process of building the two previous 
trees.  

The processing starts when the two boundary nodes, 
the rightmost node of the left tree and the leftmost node 
of the right tree, appear in their corresponding LMCP 
lists. As long as these two nodes are external, nodes 
from one tree cannot combine with nodes from the other 



tree . Thus, old LMCPs formed in both trees before those 
two boundary nodes appear remain valid LMCPs for the 
new tree.  

When the new LMCP list is completely formed, 
these entries that were originally valid LMCPs for the 
old trees, although sorted amongst themselves , will 
cause the new list of LMCPs to be unsorted. A final 
merging phase is required to merge 3 lists, the list of 
valid LMCPs from each old tree, and the list of newly 
formed LMCPs . 
The following example will demonstrate the process. 

Example 

Fig. 1 is an example of two 6 nodes OATs to be merged; 
the weight sequences and the old tree lists are shown. 

 
            A        B       C        D       E        F                    
 
             7        9       14      21       1       10                   
 
               old weight sequence for 1st tree                         
 
 
 
 
 
 
 
                            old tree list for 1st tree  
               
             G        H        I         J         K       L 
 
             4        12       5         8       16        6 
 
               old weight sequence for 2nd tree 
 
 
 
 
 
 
 
                             old tree list for 2nd tree 

Fig. 1.  two OATs to be merged 

The old LMCP (I,J) is copied since it was formed before 
the node G combined. The pairs (E,F) and (G,H) 
constitute the first working sequence, and (E,F) is the 
chosen LMCP. The next one from the 1st tree is looked 
up (A,B) and found to be blocked, and so is (AB,C). 
Then  the nodes forming the LMCP (D,EF) are brought 
to the working sequence . (EF,G) is the new LMCP, D,H 
become the first leftover nodes and EFG is the first node 
in the new nodes list. After that, ABC is a single node 
brought from the 1st tree, and (K,L) are brought from the 
2nd tree list. Also, since K is external the minimum 
internal compatible node, I J, is brought to the working 
sequence. (K,L) is chosen as the new LMCP, and the 
process continues in the same manner till the root is 
formed at the last step; different working sequences, the 

new nodes list, and the new tree list are shown in Fig. 2. 
Blocked entries from the left tree are marked by (L), and 
from the right tree by (R).  

 
           E           F            G          H 
   
            1         10           4         12 
  
  A , B    are blocked 
 AB , C   are blocked 
  
        D        EF        G          H 
 
        21        11        4         12 
 
 
         ABC    D     EFG     H       IJ      K       L 
 
           30     21      15        12     13      16      6 
 
       ABC      D    EFG      H        IJ   
 
         30       21      15        12      13 
 
        ABC    D       EFG     HIJ      KL 
 
           30      21      15        25        22 
 
        ABC      HIJ     DEFG   KL 
 
          30         25        36        22 
 
       ABC    DEFG   HIJKL 
    
          30        36         47 
 
         HIJKL   ABCDEFG 
 
             47            66 
 
     working sequences     
 
 
 
 
 
 
 
 
 
 
 
 
               new nodes list                             new tree list 

Fig. 2.  different working sequences and final lists 

4 Successive Merging 

In this section we show how the merging algorithm can 
be applied successively.  

(D,EF)32 

(ABC,DEF)62 

(E,F) 11 

(A,B)16 
(AB,C)30 

(GH,IJ)29 

(GHIJ,KL)51 

(I,J) 13 

(G,H)16 
(K,L)22 

(HIJ,KL) 47 

(ABC,DEFG) 66 

(EF,G) 15 

(H,IJ) 25 

(D,EFG) 36 

(ABCDEFG,HIJKL)113 

(AB,C)30    (L) 

(EF,G)15 

(I,J)13         (R) 

(E,F)11 

(A,B)16       (L) 

(K,L) 22 

(HIJ,KL) 47 

(ABC,DEFG) 66 

(H,IJ) 25 

(D,EFG) 36 

(ABCDEFG,HIJKL)113



Problem statement 

 In order to be able to apply the previous 
merging algorithm successively, the new tree list 
produced at each stage must contain  all the information 
needed by the algorithm, that is the same information 
contained in the old tree list as a result of running   the 
original Hu-Tucker algorithm. However, the merging  
algorithm as described in [4], cannot get the left and 
right borders of each node correctly. This is because 
some LMCPs are out of order; their borders, and the 
borders of other LMCPs as well depend on their right 
position in the new tree list. 
 To illustrate the problem, consider as an example the 
following weight sequence of the left tree at an 
intermediate step of the merging algorithm; for 
simplicity, borders are assigned to the LMCP pair 
instead of each node.  
 
   ...  A   …..   x   ....    y  …....   B    ……….  C     D     E      
 

 
 Nodes C,D,E are assumed internal. 
 Let the old tree list contain the following two entries.  
 

. 

. 

. 

(B, * ) 
(x,y) 

. 

. 

. 
 
 (x,y) is a blocked  LMCP, so it will be copied to the 
new tree list with borders ( A,B)       (A,(x,y),B) 
Then B will be added to the working sequence 
B will combine with say C forming the entry    (B,C) 
Then  (D,E) will combine after that 
The new tree list will contain the following entries (with 
other entries of course), where (x,y) is out of order. 
 

(D,E) 
(B,C) 
(x,y) 

 
There are 3 possibilities for the sorted order, each will 
result in different borders 
 
   ...  A   …..   x   ....    y  …....   B    ……….  C     D     E      

 
 

    (A,(D,E),-)                (A,(D,E),-)                 (A,(x,y),-)  
   (A,(B,C),-)                  (A,(x,y),-)                  (y,(D,E),-) 
   (A,(x,y),B)                 (y,(B,C),-)                  (y,(B,C),-)  
 
Thus, there is no way of knowing the borders of these 
LMCPs  before we sort the list. 

Solution  

The only way to adjust the borders and make the new 
tree list valid for successive use, is to maintain the 
sorted order of the new tree list at each step. This can be 
done by keeping blocked LMCPs in separate lists (or 
keeping pointers to them in their original place in the old 
tree lists) and insert them in the right order; at each step, 
the selected LMCP is compared with the smallest 
blocked LMCP and the smaller of them is inserted. 
 When each LMCP is inserted exactly in its right 
order, it is much easier to adjust the borders of each 
node. This depends on the fact that only borders of 
nodes compatible with the working sequence may 
change, borders of blocked LMCPs will not change 
unless they became compatible when they are in the 
right order (like the last two possibilities for (x,y) 
position in the preceding example), otherwise they are 
copied with their old borders.  
 To adjust the borders of compatible nodes, we 
maintain two linked lists, of external nodes to the left 
and right of the working area that did not combine yet. 
For example, in  the merging algorithm, the left borders 
list will start with all external nodes in the left tree, and 
the right borders list contains those of the right tree. 
 Whenever an external node combines (blocked 
or not blocked), it is deleted from its corresponding 
borders list (deletion is done in a constant time by 
maintaining a pointer from each external node to its 
representing node in the borders list). At any step, the 
borders of the working area are the heads of the two 
lists, then the borders of any node inside the working 
area can be adjusted in constant time. 

Example 

Here, we repeat the merging example in section 5 and 
show how the borders of each node can be adjusted. 
We start with the two borders lists as follows 
Left borders list:   F�E�D�C�B� A 
Right borders list: G�H�I�J�K�L  
Thus, the left and right borders are F,G. 
 At first (I,J) is kept then when (E,F) is chosen, 
they are compared and (E,F) is found smaller and is 
inserted in the new tree list; E,F are deleted from the left 
borders list. (I,J) remains kept in the old tree list (not 
added to the new tree list), (A,B) and (AB,C) are kept 
too since they are blocked. Then when (E,FG) is chosen, 
it is compared to both (I,J) and (A,B); i.e.  the smallest 
blocked LMCP from each side. (I,J) is the smaller so it is 
inserted with its old borders since it is still incompatible; 
I,J are deleted from the right borders list. 
The rest of the steps follow the same procedure; the 
chosen LMCP with its borders, and the corresponding 
left and right borders lists for each step of the algorithm 
are shown in Table 1. 

 
 Chosen LMCP pair Left borders 

list 
Right  borders list 

(D,(E,F),G) D�C�B� A G�H�I�J�K�L  
(H,(I,J),K) D�C�B� A G�H� K�L  
(D,(EF,G),H) D�C�B� A H� K�L  



(-,(A,B),C) D�C  H� K�L  
(H,(K,L),D) D�C  H 
(D,(H,IJ),-) D�C  - 
(-,(AB,C),D) D - 
(-,(D,EFG),-) - - 
(-,(HIJ,KL),-) - - 
(-,(ABC,DEFG),-) - - 
(-,(ABCDEFG,HIJKL),-) - - 

Table 1. : the chosen LMCP, and the left and right linked lists 
at each step 

5 Building the optimal alphabetic tree 

In this section, we use the merging algorithm described 
above to build an optimal alphabetic  tree in a recursive 
way that is expected to have less runtime, although it has 
the same order complexity. The tree is constructed by 
repeated merging; a procedure similar to that of the 
merge-sort algorithm. 

Problem Definition 

 It is required to find the optimal alphabetic tree 
for a given set of weights. Here, we propose a different 
implementation method based on the merging algorithm 
of the previous section. Applying phases 2,3 of the Hu-
Tucker algorithm to the LMCP list is a linear time 
process that is similar for all implementation methods. 
Thus, we are going to limit the discussion, whether in 
the analysis or in the comparison between different 
methods, to finding the LMCP list for the tree. Hence the 
problem can be defined as follows 
Given a weight sequence of n nodes, it is required to find 
the LMCP list for the optimal alphabetic tree of that 
weight sequence.  
For simplicity of recursion, n is assumed to be a power 
of 2; a condition that can be easily waived without loss 
of generality. 

Algorithm 

The steps of the algorithm can be summarized as follows 
The set of weights is divided into subsets of length 2, 
where the LMCP list contains a single entry, the existing 
pair of nodes with the node with smaller index on the 
left (i.e. an LMCP entry reserves the relative order 
between its two nodes). 
The n/2 sublists are then grouped into n/4 pairs, where 
each pair contains two adjacent sublists. The two LMCP 
lists of each group are merged, using the prescribed 
merging algorithm, giving the LMCP list for the subtree 
of the 4 nodes in the group. 
The process is repeated, at each step the existing n/k 
sublists each containing k nodes are merged into n/2k 
sublists each containing 2k nodes. In the last step, two 
trees are merged, each of length n/2, to get the final tree. 
 Fig.3 shows a pseudo code of the algorithm, 
where it is defined in a recursive manner. An optimal 

tree of length n is obtained by finding the optimal tree of 
its left and right parts, each of length n/2, recursively 
using the same algorithm, then merging them. 

 Construct (1,n) 

{ a procedure to construct an OAT of the weight 
sequence in the array'tree', the two parameters are the 
indices of the beginning and  the end of the array, the 
procedure returns an LMCP list} 

  Begin 
        If (n > 2)  Then 
       Construct(1, n/2) 
       Construct(n/2+1,n) 
       Merge(1,n/2,n/2+1,n) 
{ a procedure for merging two sublists, the parameters 
represent the indices of the beginning and the end in the 
array tree} 
           Else 
    LMCP pair = (tree[1],tree[2]) 

  End 
Fig. 3: pseudo code of the algorithm 

Complexity Analysis 

 For the space complexity, the total length of 
LMCP lists at each step of the algorithm never exceeds 
n. Thus the algorithm has a linear space complexity. 
 As for the time complexity of the algorithm 
T(n), it can be described by the following recurrence 
relation   
T(n) = O(n) + 2 T(n/2) 
T(n) = O(n log n) 
 The algorithm has the same order complexity as 
the well known method for constructing the Hu-Tucker 
tree. However, it is expected to have a smaller constant 
factor for its simplicity and since the constant of 
linearity for the merging algorithm is small, while the 
known implementation is rather complex and involves 
the use of many data structures [5]. Specifically, there 
are two  factors that favor the new algorithm. 
 
 The first is that the new algorithm has more 
locality of reference. The same set of data (memory 
locations) is processed by each merging task, then other 
sets are added gradually at higher levels. On the other 
hand, the old implementation processes different sets of 
data to find the LMCP and adjust the priority queues. 
Add to this, the fact that the merged data is stored in 
arrays (contiguous memory locations), while the 
dynamic data structures in the other implementations 
store the data in scattered memory locations. 
 The second factor is due to copied LMCPs in 
our algorithm and which involves almost no processing. 
The rules of compatibility imposed on alphabetic trees, 
cause many of the old LMCPs to be blocked and thus 
valid for the new tree. For example, it is a rare situation 



when an LMCP formed at the extreme left of the first 
tree will be broken due to the merging process. 

Experimental Results 

Sample runs were made to compare runtimes of the 
proposed algorithm with that of the known 
implementation. The resulting curves for the average 
and worst case runtimes are shown in Figs. 4 , 5 
respectively, where the proposed method has a 
considerably smaller runtime.  
Also, sample runs showed that the number of copied 
LMCPs exceeds half the entries in the old tree list (by 
copied LMCPs we mean blocked LMCPs from both 
trees in a merging step, and LMCPs before the two 
boundary nodes appear in the old tree lists; i.e. those 
LMCPs that are not brought to the working sequence), 
Fig.6. 
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   Fig. 4.  average runtime for both methods    
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    Fig. 5. : worst case runtime for both methods 
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       Fig. 6: number of copied LMCPs in a merging step 

 All programs were implemented with Borland 
C++ programming language, and the random sequences 
were generated using the language built-in random 
number generator. 

6 Conclusion 

           An algorithm for merging two optimal alphabetic 
trees  in linear time is used to develop a faster technique  
to build optimal alphabetic trees. The new algorithm 
runs in time  O(n log n) but with a smaller constant than 
existing implementations. 
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