
Building Optimal Alphabetic Trees Recursively

Ahmed A. Belal1, Mohamed S. Selim2, Shymaa M. Arafat3

Department of Computer Science & Automatic Control, Faculty of Engineering, Alexandria University, Egypt.

2Department of Computer Science & Automatic Control, Faculty of Engineering, Alexandria University, Egypt.
Department of Computer Science, Faculty of Computer&Information Sciences, Ain Shams University, Egypt.

Abstract. Optimal alphabetic binary trees (OATs) have a wide variety of applications in computer science and information
systems. Algorithms for building such trees in O(n log n) time and O(n) space do exist. In this paper, we introduce a new
simpler method for solving the same problem. An earlier algorithm, for merging two optimal alphabetic binary trees into
one optimal alphabetic binary tree in linear time, is used to build the OAT recursively in a divide-and-conquer manner.
Although the resulting algorithm has the same order complexity as previously known algorithms, the new method
considerably outperforms the other implementations . The analysis in the paper justifies the improvement. The figure
below compares the new implementation with the Hu-Tucker O(nlogn) implementation.

building the OAT

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200n

ti
m

ei
n

se
cs

new method

old method

1 Introduction

Binary trees have received a considerable attention
in computer science research. Some tree building
algorithms assume an equally weighted node tree, in
which case an optimal tree means a balanced one.
However, when the nodes of the tree, both internal and
external, have different access frequencies, it becomes
natural to assign a different weight for each node. In this
case, an optimal tree is the one with minimal cost, where
the cost is the summation of the products of the node
weight by the node level over all nodes. Optimal binary
trees of this kind can be built in O(n2) time complexity
[11]. For the simpler case where only external nodes
have weights, the optimal tree can be found in time O(n
log n) . An example is the Huffman tree [9] which is
widely used in coding and information theory. A more
constrained kind is the binary alphabetic tree, also called
an insertion tree, where nodes must appear in their
original order in the final tree [6,7].

In the last few years more results on optimal binary
alphabetic trees (OAT) were reported in the literature.
The equivalence of the OAT to optimal binary search
trees was reported in [2]. The use of the 1-dimensional
O(n log n) algorithm for 2-dimensional information
retrieval was considered in [1,3]. The search for sub
O(nlogn) algorithms for the OAT problem was also
recently reported [10,12]. It was recently shown in [8]
that linear time algorithms for building optimal binary

alphabetic trees are possible for some special weight
sequences.

An O(n) time algorithm to merge two OATs with
n1,n2 nodes into an (n=n1+n2) nodes OAT is presented in
[4]. In this paper, we use this algorithm to build an OAT
for a given weight sequence in a divide-and-conqueer
manner.
 Section 2 is a preface that gives a brief
description of the Hu-Tucker algorithm. Then Section3
gives an outline of the linear time merging algorithm
along with an explanatory example. Section4 shows how
the merging algorithm could be applied successively.
Then, section5 shows how to build the OAT recursively
using successive merging. Finally section6 concludes the
paper.

2 Preface-The Hu-Tucker Algorithm

 The algorithm proceeds in three phases
Phase1 : Combination
This is where most of the work is done. Every node
before combining is a square node also called external
node. If we let qi denotes the weight of the node or the
node itself then when two square nodes qi,qj combine
they form a circular node also called internal node with
weight qi+qj occupying the position of the left child.
Due to the alphabetic constraint, two nodes can only
combine if they form a compatible pair. Two nodes in a

sequence form a compatible pair if they are adjacent in
the sequence or if all nodes between them are internal
nodes. Among all compatible pairs in a weight sequence
the one having the minimum weight is called the
minimum compatible pair.
To break ties, the Hu-Tucker algorithm uses the
convention that the node on the left has a smaller weight.
A pair of nodes (qj,qk) is a Local Minimum
Compatible Pair (LMCP) if
 qi > qk for all nodes qi compatible with qj
 qj ≤ ql for all nodes ql compatible with qk
The first phase of the algorithm keeps forming LMCPs
until a tree is formed.
Phase 2 : Assigning Levels
 Uses the tree built in phase1 to find the level of each
node.
Phase 3 : Reconstruction
Uses a stack algorithm to construct an alphabetic binary
tree based on the node levels.

Both phases 2,3 take time O(n) while phase1
requires O(n logn) time [11].It was shown in [8] that
phase1 can also be done in O(n) time for some special
classes of weight sequences, as for example the
increasing weight sequence q1 ≤ q2 ≤ … ≤ qn.

3 Merging Optimal Alphabetic Trees

This section gives a brief overview of the merging
algorithm introduced in [4]. The problem statement of
the algorithm is first presented along with the necessary
terminology, then an explanatory example is given.

Problem Statement

The problem can be stated as follows.
Given 2 sequences of LMCPs generated for 2 weight
sequences of lengths n1,n2, it is required to find, in linear
time, the corresponding sequence of LMCPs after
concatenating the two weight sequences into one weight
sequence of length n1+ n2.

Terminology

In what follows, we will call the sequence of LMCPs for
an old tree, the old tree list. Similarly, we will call the
sequence of LMCPs for the new tree, the new tree list.
The set of nodes that needs to be examined to determine
each new LMCP is called the working sequence.

Old LMCPs
These are entries of the old tree list.A general form of an
old LMCP is two compatible nodes that constituted the
local minimum compatible pair for its old tree.
However, during the course of the algorithm we may
face special kinds of old LMCPs that will be handled
differently.
Blocked LMCPs

When an old LMCP is to be examined and
found to have external nodes separating it from the

current working sequence, we call it a blocked LMCP.
Blocked LMCPs are valid LMCPs for the new tree, so
they are not added to the working sequence and are
moved directly to the new tree list. However, although
all blocked LMCPs will be in ascending order, they will
not necessarily appear in their right order in the new tree
list, which will make the new tree list not sorted.
Single Nodes

When the two nodes of an old LMCP are
examined in the working sequence and one of them
combines to form the new LMCP, the old LMCP
becomes a broken LMCP and must be deleted from all
further appearances in the old tree list since it is no
longer a valid entry for the new tree. This will result in
LMCPs with one deleted node and one valid node which
we call a single node.

Nodes in the working sequence
The set of nodes to be examined in the working
sequence are the nodes of the current old LMCP plus the
nodes that became valid candidates for the new LMCP.
Due to the processing of previous LMCPs, two kinds of
nodes may result.
New Nodes List

At each step, when the working sequence is
examined to determine the new LMCP, if the new
LMCP is different from the old one, a new node will
result. This new node will participate in further
combinations and thus should be considered in the
working sequence. Since, new nodes will be generated
frequently, we will put them successively in a list called
the new nodes list. Due to the rules of LMCP
generation, new nodes will be generated in ascending
order and are all compatible with each other. Thus, only
the first two nodes of the list are added to the working
sequence.
Leftover Nodes
 When an old LMCP is added to the working
sequence, we do not examine the next one till one of its
nodes is chosen in the new LMCP. If only one is chosen,
then the other node remains in the working sequence and
becomes a valid candidate for next LMCPs. We will call
this node a leftover node.
Since the companion of the leftover node formed a new
node, the leftover node is compatible with all nodes in
the new nodes list. A second leftover node cannot result
till the first one combines. Thus, there is at most one
leftover node in the working sequence for each old tree.

Algorithm Outline

The idea is to emulate the effect of rebuilding the
optimal n-node tree using the Hu-Tucker algorithm
[7,11] and making use of the information already
obtained during the process of building the two previous
trees.

The processing starts when the two boundary nodes,
the rightmost node of the left tree and the leftmost node
of the right tree, appear in their corresponding LMCP
lists. As long as these two nodes are external, nodes
from one tree cannot combine with nodes from the other

tree . Thus, old LMCPs formed in both trees before those
two boundary nodes appear remain valid LMCPs for the
new tree.

When the new LMCP list is completely formed,
these entries that were originally valid LMCPs for the
old trees, although sorted amongst themselves , will
cause the new list of LMCPs to be unsorted. A final
merging phase is required to merge 3 lists, the list of
valid LMCPs from each old tree, and the list of newly
formed LMCPs .
The following example will demonstrate the process.

Example

Fig. 1 is an example of two 6 nodes OATs to be merged;
the weight sequences and the old tree lists are shown.

 A B C D E F

 7 9 14 21 1 10

 old weight sequence for 1st tree

 old tree list for 1st tree

 G H I J K L

 4 12 5 8 16 6

 old weight sequence for 2nd tree

 old tree list for 2nd tree

Fig. 1. two OATs to be merged

The old LMCP (I,J) is copied since it was formed before
the node G combined. The pairs (E,F) and (G,H)
constitute the first working sequence, and (E,F) is the
chosen LMCP. The next one from the 1st tree is looked
up (A,B) and found to be blocked, and so is (AB,C).
Then the nodes forming the LMCP (D,EF) are brought
to the working sequence . (EF,G) is the new LMCP, D,H
become the first leftover nodes and EFG is the first node
in the new nodes list. After that, ABC is a single node
brought from the 1st tree, and (K,L) are brought from the
2nd tree list. Also, since K is external the minimum
internal compatible node, I J, is brought to the working
sequence. (K,L) is chosen as the new LMCP, and the
process continues in the same manner till the root is
formed at the last step; different working sequences, the

new nodes list, and the new tree list are shown in Fig. 2.
Blocked entries from the left tree are marked by (L), and
from the right tree by (R).

 E F G H

 1 10 4 12

 A , B are blocked
 AB , C are blocked

 D EF G H

 21 11 4 12

 ABC D EFG H IJ K L

 30 21 15 12 13 16 6

 ABC D EFG H IJ

 30 21 15 12 13

 ABC D EFG HIJ KL

 30 21 15 25 22

 ABC HIJ DEFG KL

 30 25 36 22

 ABC DEFG HIJKL

 30 36 47

 HIJKL ABCDEFG

 47 66

 working sequences

 new nodes list new tree list

Fig. 2. different working sequences and final lists

4 Successive Merging

In this section we show how the merging algorithm can
be applied successively.

(D,EF)32

(ABC,DEF)62

(E,F) 11

(A,B)16
(AB,C)30

(GH,IJ)29

(GHIJ,KL)51

(I,J) 13

(G,H)16
(K,L)22

(HIJ,KL) 47

(ABC,DEFG) 66

(EF,G) 15

(H,IJ) 25

(D,EFG) 36

(ABCDEFG,HIJKL)113

(AB,C)30 (L)

(EF,G)15

(I,J)13 (R)

(E,F)11

(A,B)16 (L)

(K,L) 22

(HIJ,KL) 47

(ABC,DEFG) 66

(H,IJ) 25

(D,EFG) 36

(ABCDEFG,HIJKL)113

Problem statement

 In order to be able to apply the previous
merging algorithm successively, the new tree list
produced at each stage must contain all the information
needed by the algorithm, that is the same information
contained in the old tree list as a result of running the
original Hu-Tucker algorithm. However, the merging
algorithm as described in [4], cannot get the left and
right borders of each node correctly. This is because
some LMCPs are out of order; their borders, and the
borders of other LMCPs as well depend on their right
position in the new tree list.
 To illustrate the problem, consider as an example the
following weight sequence of the left tree at an
intermediate step of the merging algorithm; for
simplicity, borders are assigned to the LMCP pair
instead of each node.

 ... A ….. x y ….... B ………. C D E

 Nodes C,D,E are assumed internal.
 Let the old tree list contain the following two entries.

.

.

.

(B, *)
(x,y)

.

.

.

 (x,y) is a blocked LMCP, so it will be copied to the
new tree list with borders (A,B) (A,(x,y),B)
Then B will be added to the working sequence
B will combine with say C forming the entry (B,C)
Then (D,E) will combine after that
The new tree list will contain the following entries (with
other entries of course), where (x,y) is out of order.

(D,E)
(B,C)
(x,y)

There are 3 possibilities for the sorted order, each will
result in different borders

 ... A ….. x y ….... B ………. C D E

 (A,(D,E),-) (A,(D,E),-) (A,(x,y),-)
 (A,(B,C),-) (A,(x,y),-) (y,(D,E),-)
 (A,(x,y),B) (y,(B,C),-) (y,(B,C),-)

Thus, there is no way of knowing the borders of these
LMCPs before we sort the list.

Solution

The only way to adjust the borders and make the new
tree list valid for successive use, is to maintain the
sorted order of the new tree list at each step. This can be
done by keeping blocked LMCPs in separate lists (or
keeping pointers to them in their original place in the old
tree lists) and insert them in the right order; at each step,
the selected LMCP is compared with the smallest
blocked LMCP and the smaller of them is inserted.
 When each LMCP is inserted exactly in its right
order, it is much easier to adjust the borders of each
node. This depends on the fact that only borders of
nodes compatible with the working sequence may
change, borders of blocked LMCPs will not change
unless they became compatible when they are in the
right order (like the last two possibilities for (x,y)
position in the preceding example), otherwise they are
copied with their old borders.
 To adjust the borders of compatible nodes, we
maintain two linked lists, of external nodes to the left
and right of the working area that did not combine yet.
For example, in the merging algorithm, the left borders
list will start with all external nodes in the left tree, and
the right borders list contains those of the right tree.
 Whenever an external node combines (blocked
or not blocked), it is deleted from its corresponding
borders list (deletion is done in a constant time by
maintaining a pointer from each external node to its
representing node in the borders list). At any step, the
borders of the working area are the heads of the two
lists, then the borders of any node inside the working
area can be adjusted in constant time.

Example

Here, we repeat the merging example in section 5 and
show how the borders of each node can be adjusted.
We start with the two borders lists as follows
Left borders list: F�E�D�C�B� A
Right borders list: G�H�I�J�K�L
Thus, the left and right borders are F,G.
 At first (I,J) is kept then when (E,F) is chosen,
they are compared and (E,F) is found smaller and is
inserted in the new tree list; E,F are deleted from the left
borders list. (I,J) remains kept in the old tree list (not
added to the new tree list), (A,B) and (AB,C) are kept
too since they are blocked. Then when (E,FG) is chosen,
it is compared to both (I,J) and (A,B); i.e. the smallest
blocked LMCP from each side. (I,J) is the smaller so it is
inserted with its old borders since it is still incompatible;
I,J are deleted from the right borders list.
The rest of the steps follow the same procedure; the
chosen LMCP with its borders, and the corresponding
left and right borders lists for each step of the algorithm
are shown in Table 1.

 Chosen LMCP pair Left borders

list
Right borders list

(D,(E,F),G) D�C�B� A G�H�I�J�K�L
(H,(I,J),K) D�C�B� A G�H� K�L
(D,(EF,G),H) D�C�B� A H� K�L

(-,(A,B),C) D�C H� K�L
(H,(K,L),D) D�C H
(D,(H,IJ),-) D�C -
(-,(AB,C),D) D -
(-,(D,EFG),-) - -
(-,(HIJ,KL),-) - -
(-,(ABC,DEFG),-) - -
(-,(ABCDEFG,HIJKL),-) - -

Table 1. : the chosen LMCP, and the left and right linked lists
at each step

5 Building the optimal alphabetic tree

In this section, we use the merging algorithm described
above to build an optimal alphabetic tree in a recursive
way that is expected to have less runtime, although it has
the same order complexity. The tree is constructed by
repeated merging; a procedure similar to that of the
merge-sort algorithm.

Problem Definition

 It is required to find the optimal alphabetic tree
for a given set of weights. Here, we propose a different
implementation method based on the merging algorithm
of the previous section. Applying phases 2,3 of the Hu-
Tucker algorithm to the LMCP list is a linear time
process that is similar for all implementation methods.
Thus, we are going to limit the discussion, whether in
the analysis or in the comparison between different
methods, to finding the LMCP list for the tree. Hence the
problem can be defined as follows
Given a weight sequence of n nodes, it is required to find
the LMCP list for the optimal alphabetic tree of that
weight sequence.
For simplicity of recursion, n is assumed to be a power
of 2; a condition that can be easily waived without loss
of generality.

Algorithm

The steps of the algorithm can be summarized as follows
The set of weights is divided into subsets of length 2,
where the LMCP list contains a single entry, the existing
pair of nodes with the node with smaller index on the
left (i.e. an LMCP entry reserves the relative order
between its two nodes).
The n/2 sublists are then grouped into n/4 pairs, where
each pair contains two adjacent sublists. The two LMCP
lists of each group are merged, using the prescribed
merging algorithm, giving the LMCP list for the subtree
of the 4 nodes in the group.
The process is repeated, at each step the existing n/k
sublists each containing k nodes are merged into n/2k
sublists each containing 2k nodes. In the last step, two
trees are merged, each of length n/2, to get the final tree.
 Fig.3 shows a pseudo code of the algorithm,
where it is defined in a recursive manner. An optimal

tree of length n is obtained by finding the optimal tree of
its left and right parts, each of length n/2, recursively
using the same algorithm, then merging them.

 Construct (1,n)

{ a procedure to construct an OAT of the weight
sequence in the array'tree', the two parameters are the
indices of the beginning and the end of the array, the
procedure returns an LMCP list}

 Begin
 If (n > 2) Then
 Construct(1, n/2)
 Construct(n/2+1,n)
 Merge(1,n/2,n/2+1,n)
{ a procedure for merging two sublists, the parameters
represent the indices of the beginning and the end in the
array tree}
 Else
 LMCP pair = (tree[1],tree[2])

 End
Fig. 3: pseudo code of the algorithm

Complexity Analysis

 For the space complexity, the total length of
LMCP lists at each step of the algorithm never exceeds
n. Thus the algorithm has a linear space complexity.
 As for the time complexity of the algorithm
T(n), it can be described by the following recurrence
relation
T(n) = O(n) + 2 T(n/2)
T(n) = O(n log n)
 The algorithm has the same order complexity as
the well known method for constructing the Hu-Tucker
tree. However, it is expected to have a smaller constant
factor for its simplicity and since the constant of
linearity for the merging algorithm is small, while the
known implementation is rather complex and involves
the use of many data structures [5]. Specifically, there
are two factors that favor the new algorithm.

 The first is that the new algorithm has more
locality of reference. The same set of data (memory
locations) is processed by each merging task, then other
sets are added gradually at higher levels. On the other
hand, the old implementation processes different sets of
data to find the LMCP and adjust the priority queues.
Add to this, the fact that the merged data is stored in
arrays (contiguous memory locations), while the
dynamic data structures in the other implementations
store the data in scattered memory locations.
 The second factor is due to copied LMCPs in
our algorithm and which involves almost no processing.
The rules of compatibility imposed on alphabetic trees,
cause many of the old LMCPs to be blocked and thus
valid for the new tree. For example, it is a rare situation

when an LMCP formed at the extreme left of the first
tree will be broken due to the merging process.

Experimental Results

Sample runs were made to compare runtimes of the
proposed algorithm with that of the known
implementation. The resulting curves for the average
and worst case runtimes are shown in Figs. 4 , 5
respectively, where the proposed method has a
considerably smaller runtime.
Also, sample runs showed that the number of copied
LMCPs exceeds half the entries in the old tree list (by
copied LMCPs we mean blocked LMCPs from both
trees in a merging step, and LMCPs before the two
boundary nodes appear in the old tree lists; i.e. those
LMCPs that are not brought to the working sequence),
Fig.6.

building the OAT

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200n

time

new method

old method

 Fig. 4. average runtime for both methods

building the OAT

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200n

ti
m

e

new method

old method

 Fig. 5. : worst case runtime for both methods

Number of copied LMCP s

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000n

average

min

max

n/ 2

 Fig. 6: number of copied LMCPs in a merging step

 All programs were implemented with Borland
C++ programming language, and the random sequences
were generated using the language built-in random
number generator.

6 Conclusion

 An algorithm for merging two optimal alphabetic
trees in linear time is used to develop a faster technique
to build optimal alphabetic trees. The new algorithm
runs in time O(n log n) but with a smaller constant than
existing implementations.

References

[1] Ahmed M.A., Belal A.A. and Ahmed K.M., "Optimal
insertion in two-dimensional arrays", International Journal
of Information Sciences, 99(1/2) : 1-20, June 1997.

[2] Andersson A., "A note on searching in a binary search
tree", Software-Practice and Experience, 21(10) : 1125-
1128, 1991.

[3] Belal A.A., Ahmed M.A., Arafat S.M., "Limiting the
search for 2-dimensional optimal alphabetic trees", Fourth
International Joint Conference on Information Sciences,
North Carolina-USA, October 1998.

[4] Belal A.A., Mohamed S. Selim, Arafat S.M., “Merging
optimal alphabetic trees in linear time”, First International
Conference on Intelligent computing and Information
Systems, Cairo-Egypt, June 2002.

[5] Davis S.T., "Hu-Tucker algorithm for building optimal
alphabetic binary search trees", Rochester Institute of
Technology CS Dept., A master thesis, Dec. 1998.

[6] Garcia A.M. and Wachs M.L., "A new algorithm for
minimum cost binary trees", SIAM Journal on Computing,
6(4): 622-642, 1977.

[7] Hu T.C. and Tucker A.C., "Optimal computer search trees
and variable-length alphabetic codes", SIAM Journal on
Applied Mathematics, 21(4): 514-532, 1971.

[8] Hu T.C., Morgenthaler J.D., "Optimum alphabetic binary
trees", Combinatorics and Computer Science, 8th Franco-
Japanese and 4th Franco-Chinese Conference, Vol. 1120 of
Lecture Notes in Computer Science, Springer-Verlag, 1996,
pp.234-243.

[9] Huffman D.A., "A method for the construction of
minimum redundancy codes", Proceedings of the IRE, 40:
1098-1101, 1952.

[10] Klawe M.M. and Mumey B., "Upper and lower bounds
on constructing alphabetic binary trees", Proceedings of the
4th Annual ACM-SIAM Symposium on Discrete Algorithms,
page 185-193, 1993.

[11] Knuth D.E., "The Art of Computer Programming, Volume
3: Sorting and Searching", Addison-Wesley, Reading, MA,
1973.

[12] Przytycka T.M. and Larmore L.L., "The optimal
alphabetic tree problem revisited", Journal of Algorithms,
28(1): 1-20, June 1997.

