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Abstract: -  Decision making consists in choosing, on the basis of various criteria, an appropriate subset of 
actions among a set of alternatives. The most research related to this field proceeds by aggregating all the 
criteria in a single objective function and rank alternatives according to this scalar measure. Unfortunately, 
this is often quite inadequate because it risks to alter the final decision. To discard this drawback, 
outranking based centralized methods have been proposed. However, they remain insufficient because they 
don't match with the logical distribution of criteria. That is why we propose a distributed approach which 
finds out the best compromise between all criteria by considering them as cooperative agents. The 
underlying foundations are detailed and illustrated via both an example and experimentation. 
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1  Introduction 

Specialists in multicriteria decision aid aim at 
giving the decision-maker some tools, in order to 
deal efficiently with decision problems where 
several-often contradictory- points of views must be 
taken into account. The first family of tools consists 
in aggregating the different points of view into a 
unique function which must subsequently be 
optimized. Unfortunately this is very quite 
inadequate, because the criteria generally are 
incommensurable. They measure different 
properties that cannot be related to each other 
directly and cannot be combined into a single 
function. Indeed such scheme reflects neither real 
optimization nor the expected result from all criteria 
points of view[3,13]. The second family aims firstly 
to build a relation, called an outranking relation, 
which represents the decision-maker's strongly 
established preferences and secondly to exploit the 
outranking relation in order to help the decision-
maker solve his problem[3,13]. Furthermore 
preference modeling and defining the set of 
decisions are indispensable and complex steps 
which have been at the center of some research. The 
third and most recent family proposes methods 
which alternate calculation steps and dialogue steps 
with the decision-maker in order to select 
appropriate and pertinent information on his 
preferences [13]. Despite the varieties of research in 

this field, the obtained results remain insufficient. 
We think that is may be due to the fact that all these 
methods are centralized. However, the notion of 
multicriteria decision problem is logically 
distributed. That is why we propose to explore 
distributed artificial intelligence and more 
specifically the multi agent systems that focus on 
cooperative and distributed problem solving 
techniques [2,4,5]. 
  The main objective of this paper is to introduce a 
Multi Agent model for dealing with multicriteria 
decision-aid, called Cooperative Agents based 
Multicriteria Decision-Aid ''CAMDA'' where each 
agent is responsible for a single criterion. Thus, the 
criteria are separately optimized without any 
''scalarization'' form. The entities, called Criterion 
Agents, cooperate and negotiate in order to find out 
a sub-set of solutions, compromise sub-set. 
  CAMDA is detailed in the second section, 
illustrated through an example in the third section 
and experimented in the fourth one. The last section 
contains concluding remarks and future work. 
 

2  The foundations of CAMDA model 
CAMDA consists of agents that cooperate to find 
out a compromise-set of solutions rather than Pareto 
optimal solutions because Pareto optimality alone is 



not always adequate for pin-pointing the final 
decision. The set of Pareto optimal choices is often 
very large and even after eliminating all the 
alternatives that are not Pareto optimal, the user is 
usually left with a large number of alternatives to 
choose from[3]. In the other hand, the compromise 
set consists of solutions obtained by means of 
cooperation and negotiation between all criteria. 
This set is limited, it's size is controlled by the user. 
Before detailing CAMDA, let us recall some useful 
definitions. 
 Definition1:  A multicriteria decision problem is a 
situation in which, having defined a set A of actions 
and a consistent family F of criteria on A, one 
wishes to: 
                            f1(x) 
                            f2(x) 
                                . 
   min x ∈ A F(x) =  ,                                  n≥2   
 
                                .           
               (MOP)             fn(x)  
 
Where A denotes the feasible set of design 
alternatives, or the design space[10]. 

  
Definition2: The vector F(�) is said to dominate 
another vector F(�), denoted F(�)< F(�), if and 
only if fi(�)� fi (�) for all i ∈ { 1,2,...n} and 
fj(�)<fj(�) for some j in { 1,2,...n}. A point U* ∈  A 
is said to be Pareto optimal or an efficient point for 
(MOP) if and only if there does not exist U ∈  
satisfying F(U)< F(U*). The vector F(U*) is then 
called non- dominated or non inferior. 

  
  The above definition qualifies Pareto optimality in 
the global sense[10,13]. The definition of local 
Pareto optimality is similar and can be found in [3]. 
 
2.1 The architecture of CAMDA model 
CAMDA benefits from the multi-agent 
techniques[2,4,5]that have opened a natural and 
efficient way to solve diverse problems in terms of 
cooperation, conflict and concurrence within a 
society of agents. Each agent is an autonomous 
entity that is asynchronously able to acquire 
information from its environment and/or from other 
agents, to reason on the basis of this information 
and to act consequently. Within the large domain of 
multi-agent systems, our model consists of 
cognitive agents whose number is often limited ( 
here equal to the total number of criteria). The 
multi-agent architecture consists of Criterion agents 
cooperating in order to select a sub-set of solutions 

corresponding to the best compromise from the 
global satisfaction points of view. However, this 
class is not sufficient: an Interface is necessary 
between this society of agents and the user 
essentially to detect that the problem is solved. 
Consequently, a second and last class, called 
Interface, was created. It contains a single 
individual (figure1).   
   Consider a Criterion agent Cri. It's static 
knowledge corresponds to the criterion to be 
optimized fi ( figure1),  the set of actions A and the 
cost of each action with regards to fi and its ideal 
action valuation denoted idi. Note that the ideal 
action corresponds to the best action according to fi. 
Its dynamic knowledge consists of its current 
satisfaction level denoted sli expressing the 
satisfactory utility level for fi, its current frequency 
denoted fCri expressing how much time the set of 
action A has been modified, and its anti-ideal 
solution valuation denoted aidi which corresponds 
to the worst action according to fi. Note that 
criterion acquaintances consist of the set of all the 
other Criterion agents denoted Aqi.  
  The Interface Agent has as acquaintances all the 
Criterion agents. Its static knowledge consists of the 
set of actions A, whereas its dynamic one consists of 
the Criterion frequencies and the final result. 
 

           
               Fig.1. Example of CAMDA architecture with 3 criteria  

 
2.2 The dynamic of CAMDA model 
It consists of two phases: dynamic Initialization and 
Cooperation.  
  At the first phase, the Interface agent creates n 
Criterion agents and associates to each one of them 
a criterion fi (figure1). Then, each Criterion Cri 
computes, on the one hand, the cost of each action x 
belonging to the set of actions, A, and on the other 
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hand, both its ideal idi and anti-ideal aidi costs as 
follows: 
aidi = Min(fi(x)) (for maximization), x∈  A 
idi = Max(fi(x)) (for maximization), x∈  A 
  In the second phase, each Criterion agent Cri 
dynamically computes its satisfaction level sli,       
sli = aidi + (idi  aidi)*ε 
ε is an adjustment parameter in ]0,1[ used to 
gradually increase sli (algorithm1. line5 ) and 
consequently to reduce the search space namely the 
set of actions Ai into A i  (algorithm1. line6). If A i is 
empty, i.e. the search space has been too much 
compressed, then Cri backtracks and tries to expand 
it by modifying sli as follows: 
sli = sli-((idi - sli)* ε./2)  
  This process is repeated until A i is not empty   
(algorithm1. lines8-10). Hence, each Criterion agent 
Cri extracts a sub-set A i from Ai. Each solution in 
A i has a cost greater than sli (in the case of 
maximization that we adopt here) or lower than sli 
(in the case of minimization). Then A i is sent to the 
others criteria Crj to be checked ( algorithm1. 
line11). 
  When receiving A i, each Criterion Crj selects from 
A i the sub-set of solutions A i/fj which cost fj is in 
[aidj, idj]  and then answers Cri by sending it A i/fj 
(algorithm1. line24). As the expected answers are 
received, Cri computes the intersection of the sub-
sets A i/fj j=1..| Aqi|  (algorithme1. line26). Once Cri 
has received all the answers, it activates the 
Adjustment process. Three cases may occur: 
  
� 0≠ card (In)>k, where k is a value 
predefined by the user and corresponds to the 
maximum size of the compromise set. 
In this case, the agent Cri chooses the agent Crj0 
having the maximal acceptance ratio corresponding 
to the size of A i/fj0 divided by fCrj0 and asks it to 
compress its current action set. The aim is to satisfy 
the condition "card(In)≤ k". When more than one 
agent has the same acceptance ratio, Cri chooses 
randomly one of them. While performing a 
''Reduce-sub-space'' message (algorithme1. lines 3-
11 ), Crj0 ignores all the future similar incoming 
messages. Similarly, whenever a Criterion agent Cri 
sends its reduced set of action A i to be checked, it 
performs neither ''Reduce-sub-space'' nor ''Expand-
sub-space'' (algorithme1. lines 3,12) message until 
it receives all the expected answers. 
 Note that ''sendMsg(receiver, sender, ''message)'' 
defines the message ''message'' transmitted by 
''sender'' to ''receiver''. 
 
  

� 0≠ card (In) ≤k 
Given that, the process has reached a sufficiently 
good compromise namely the best equilibrium state 
relative to the predefined k value. Thus, Cri 
communicates the final result to the Interface that 
informs the user and interrupts the search process. 
  
� 0= card (In)  
Given that, the agent Cri chooses the agent Crj0 
having the maximal refusal ratio corresponding to 
the size of (A i - A i/fj0) divided by fCrj0 and asks it 
to expand its current sub-space. When more than 
one agent have the same refusal ratio, Cri chooses 
randomly one of them. While performing a 
''Expand-sub-space'' message, (algorithm1. lines12-
19), Crj0 ignores all the future similar incoming 
messages. Whenever a criterion Crj is requested to 
modify its current set of action A i, it increments its 
modification frequency fCrj and communicates it to 
the other acquaintances. 
  
  Note that the less is k , the best is the quality of the 
compromise-set. 
 

3. Illustrative example 
Consider a consumer who wants to buy a television 
set and, after a first selection, retains eight models 
and then evaluates them by tacking into account the 
price, quality of picture (PQ), quality of sound (SQ) 
and maintenance contract (MC) (V.G.= good, G.= 
good, A.= average, N.G. = not good). (V.G was 
somewhat arbitrarily replaced by 2, G. by 1, A. by 
and N. G by -1) [ 13] . 
 
  The data are represented by the table1 where we 
have modified the prices by changing signs, thereby 
getting a maximization problem. 
 
 

Model - Price P. Q S.Q MC 
T1 -1300 V.G/2 V.G/2 A/0 
T2 -1200 V.G/2 V.G/2 G/1 
T3 -1150 V.G/2 G/1 G/1 
T4 -1000 G/1 G/1 N.G/-1 
T5 -950 G/1 G/1 A/0 
T6 -950 A/0 G/1 N.G/-1 
T7 -900 G/1 A/0 N.G/-1 
T8 -900 A/0 A/0 A/0 

                                         Table1: Data example 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Algorithm 1: Behavior of Criterion agent Cri 

 
  The dominance relation introduced in the 
definition2 can be represented by the accompanying 
graph of figure2: 
 
 
                  
 
 
 
 
 
 

 
Fig. 2. The dominance relation 

 
  Note that if there is an indifference threshold of 50 
on the prices, one could be tamped to say that T2 
dominates T3. 
  The efficient actions are T2, T3, T5, T7 and T8.  
  The compromise-set of actions generated by the 
CAMDA is presented through the different steps of 
table2. We take as numerical values ε=20% and  
K=5. 

 aidi idi sli i 

Cr1 -
1300 

-900 -
1220 

{T2, T3, T4, T5, T6, T7, T8} 

Cr2 0 2 0.4 {T1, T2, T3, T4, T5, T7} 
Cr3 0 2 0.4 {T1, T2, T3, T4, T5, T6} 
Cr4 -1 1 -0.6 {T1, T2, T3, T5, T8} 
In -- -- -- { T2, T3, T5} 

               Table2: Different steps of CAMDA dynamic 

 

  For simplification, the interactions between the 
different Criterion agents have been omitted namely 
successive solutions checking. For each agent we 
have presented only the set of actions A i satisfying 
its level sli and the global intersection (In). Thus, 
each Criterion agent Cri extracts a sub-set A i from 
Ai. Then A i is sent to the other criteria Crj to be 
checked and this via the message ''request-
checking-solutions (A i )''. When receiving A 1 for 
example, each Criterion Crj selects from A 1 the 
sub-set of solutions A 1/fj which cost fj is in [aidj, 
idj]. So, Cr2 determines A 1/f2={T2, T3, T4, T5, T7} 
and send it to Cr1 agent via the message ''answer-
checking-solutions(A i/f2)''. Similarly for the other 
criteria agents, the following sub-set of solutions 
A 1/f3={T2, T3, T4, T5, T7}, A 1/f4={T2, T3, T5, T8} 
are sent to Cr1. As the expected answers are 
received, Cr1 computes the intersection (In) of the 
sub-sets A 1/fj  j=1..|Aqi|. The size of the intersection 
set (In) is lower than K, so the decision process 
stops and the compromise-set of actions{T2, T3, T5} 
is obtained. 
 

4  Experiments 
 
4.1 Experiment design 
The experiments are based on randomly generated 
binary CSMOPs (Constraint Satisfaction and 
Multicriteria Optimization Problems)[1]. Constraint 
Satisfaction and Multicriteria Optimization Problem 
CSMOP is inspired from Constraint Satisfaction 
Problems ''CSP'' [6,7,8,11] that only focus on 
constraint satisfaction. It's a formalism that consists 
of variables associated with their domains, 
constraints involving subsets of variables and a set 
of c functions where each function is a performance 
criterion mapping every solution to a numerical 
value. The generation is guided by classical CSP 
parameters[9,12]: number of variables (n), domain 
size (d), constraint density p (a number between 0 
and 100% indicating the ratio between the number 
of the problem effective constraints to the number 
of all possible constraints, i.e., a complete constraint 
graph), constraint tightness q (a number between 0 
and 100% indicating the ratio between the number 
of couples of values forbidden (not allowed) by the 
constraint to the size of the domain cross product) 
and the number of performance criterion (ncr). 
  
  As numerical values, we use n = 10, d = 6, p (resp. 
q) varying from 50% to 65% (resp. 35% to 50%)by 
steps of 5% to both keep the solutions number 
reasonable and to guarantee consistent problems. 
The adjustment parameter ε varies in 

While not equilibrium state do 
1. if mailBox not empty then m� ������ ��	 
2.   case m 
3.     reduce-sub-space (In) :    
4.       aidi � ��
�����-anti-ideal-cost (In) 
5.       sli  � aidi  +  (idi - aidi ) * ε 
6.       A i � ���������
-set (In, sli ) 
7.       fCri � fCri + 1 
8.       while ( i is empty) do 
9.            sli  � sli  ((idi -sli) * ε/2) 
10. i � ���������
-set (In, sli ) 
11.       sendMsg (Aqi, Cri, "request-checking- i)") 
12. expand-sub-space : 
13.         sli  � sli  ((idi -sli) * ε/2) 
14.         i  � ���������
-set ( Ai , sli) 
15.         fCri � fCri + 1  
16.         while ( i is empty) do 
17.              sli  � sli  ((idi -sli) * ε/2) 
18. i  � ���������
-set ( Ai , sli) 
19.       sendMsg (Aqi, Cri, "request-checking- i)") 
20. request-checking-solutions( i): 
21. i / fj0 � ∅  
22.  for each solution xi ∈  i  do 
23.    if  fj(xi) ∈  [slj , idj ] then i / fj � i / fj  ∪  {xi} 
24.  sendMsg (Cri, Crj , "answer-checking- i / fj )") 
25.            answers -checking-solutions( i / fj): 
26.           In � In  ∩ i / fj 
27.           count-answers 
28.            if nbr-answers  =  Aqi then Adjustment (In) 

                . T2                                 .  T3    

 T1  .                         . T4 
 

                              T8 .                  . T5 
 

      T7 .                                             T6 .     



{10%,20%,30%,40%,50%} whereas ncr in {4,6,8}. 
Regarding k, it is set to 10%k0 where k0 is equal to 
the initial size of the set actions A. 
  
4.2 Evaluation parameters 
CAMDA is assessed through two families of 
measures : efficiency and quality. In terms of 
efficiency, we measure the run time requested to 
reach an equilibrium state. Concerning the quality, 
it is quantified as follows: 
Suppose that the compromise-set is denoted by Cs 

∀  xi ∈  Cs, di =Σj=1..c |idj  fj(xi)|/idj, where idj is the 
ideal cost and fj(xi) is the cost of xi according to the 
Criterion j. 
Let us define the quality by d such that                  
d= infi=1..| Cs| (di). 
So, the lower is d, the better is the quality. This 
procedure is used just to assess our model and to 
yield objectively best solutions. 
Thus, we have generated 240 examples 
corresponding each one to the configuration (p, q, 
ncr, ε ). Due to the non deterministic character of 
our model, we have performed each example 10 
times and then we have taken the average for all 
parameters. 
 
4.3 Experimental results 
Run time versus both tightness and Criterion 
number (figure3) 
As the tightness decreases, the run time increases. 
This phenomenon can be explained by the fact that 
the number of solutions grows at low tightness and 
then the decision process spends too much effort to 
reach the equilibrium state.  
For example, for (p=0.6,q=0.35 and ncr=4) the 
solution number is equal to 198 whereas it is equal 
to 15 for (p=0.6,q=0.5 and ncr =4) . 
 
Run time versus both density and Criterion number 
(figure4)  
As the density increases, the run time decreases. In 
fact, the more the density is, the less the solutions 
number is and then the equilibrium state is quickly 
reached. For example, for ( p=0.5, q=0.5, nc =4) the 
solution number is equal to 40 whereas it is equal to 
10 for(p=0.6, q=0.5, ncr =4). Notice that for a given 
couple (p,q), the maximal run time often increases 
with the Criterion number. Figure 4 presents an 
almost linear tendency whereas figure 3 gives 
heterogeneous results. These ones may be explained 
by the inter-Criteria conflict effect. 
 
 
 

       Fig.3. Run time versus both tightness and Criterion number 

 

      Fig.4. Run time versus both density and Criterion number 

 
Which adjustment parameter for which inter-
Criteria conflict?  
As before mentioned, the inter-Criteria conflict 
seems to be important in the decision phase. That is 
why we perform the following experiments. In fact 
the aim is to affect  the right adjustment parameter ε 
to the right inter-Criteria conflict parameter.  
  Let us call this later conflict rate τ and define it by 
the conflictive criterion number divided by the total 
number of criteria.  
So, let us vary τ in{0.2, 0.4, 0.6, 0.8} and ε in 
{10%, 20%, 30%, 40%}. Table3 reports the sum of 
all Criterion frequencies denoted F, (F=Σi=1..ncr fCri), 
whereas the table4 reports the sum of all Criterion 
backtracks denoted B, (B=Σi=1.. ncr backtracks). 
      

ε↓   τ→ 0.2 0.4 0.6 0.8 
10% 43 11.4 10 12 
20% 18 10 10 19 
30% 10 16.2 27 32 
40% 15.75 31.8 41 24 

                      Table3. The sum of all criterion frequencies F 

    
ε↓   τ→ 0.2 0.4 0.6 0.8 
10% 20 0.4 0 1 
20% 2.4 0 0 9 
30% 00 6.2 17 20 
40% 05.75 21.8 30 17 

                      Table4. The sum of all criterion backtracks B 
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  Note that F and B reflect the optimization effort. 
So, the greater they are and the worst the run time 
is. Consequently, we select, from Table 3 and 4, for 
each τ the best ε, i.e., the ε that provides the 
minimal values of B, F and d. 
 
-Slightly inter-criteria conflict 
When τ =0.2, the Criteria are slightly conflictive. 
Table 3 and 4 shows that F and B decreases as ε 
increases. This can be explained by the fact that 
when ε=10% or 20%, the intersection is too dense 
and must be compressed until it satisfies the 
condition "card(In)≤ k" which increases F and B. 
So, it is more appropriate to choose ε=30% or 40%. 
Concerning d, the experimental results show that it 
doesn't change. 
 
-Highly inter-criteria conflict 
When τ takes value in {0.4,0.6,0.8}, the Criteria are 
more conflictive then before. Table 3 and 4 shows 
that F and B decrease as ε decreases. This can be 
explained by the fact that when ε =10% or 20% the 
solutions corresponding to the different criteria are 
located in dispersed regions as the criteria are very 
conflictive. Consequently, one had better choose 
little ε values, otherwise the intersection may be 
empty which requires more frequencies and 
backtracks to both reach an nonempty intersection 
and the equilibrium state. Concerning d, the 
experimental results also show that it is almost the 
same. 
  
These results show that the adjustment should be 
small when the criteria are conflictive, otherwise it 
should be large. Moreover, other experimental 
results performed show that the quality, i.e. d is as 
worst as τ increases. 
 

5  Conclusion and future work 
In this paper, we have developed an agent based 
model for dealing with multicriteria decision-aid. In 
this model each agent is responsible for a single 
criterion. Thus the criteria are separately optimized 
without any ''scalarization'' form by considering 
them as cooperative agents trying to reach their best 
equilibrium state which corresponds to the best 
compromise-set. The effectiveness of the model is 
demonstrated in the domain of Constraint 
Satisfaction and Optimization Problems and 
discussed on randomly generated examples. The 
experiments have shown, on the one hand, that as 
the tightness (density) decreases the optimization 
effort increases, and on the other hand, that the run 
time often increases with the criterion number. 

Moreover, they have provided that the quality gets 
worse as the inter-criteria conflict increases. 
  As far as our future work is concerned, other 
experiments will be performed. In addition, we shall 
extend our model to the dynamic aspect that 
concerns a restriction (a criterion is removed from 
the MOP) and/or a relaxation (a new criterion is 
imposed). 
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