

Cooperative Agents based Multicriteria Decision Aid

Ins Ben Jaafar & Khaled Ghdira
Department of computer science

High Institute of management
41, rue de la libert, 2000 cit Bouchoucha.

TUNISIE

Abstract: - Decision making consists in choosing, on the basis of various criteria, an appropriate subset of
actions among a set of alternatives. The most research related to this field proceeds by aggregating all the
criteria in a single objective function and rank alternatives according to this scalar measure. Unfortunately,
this is often quite inadequate because it risks to alter the final decision. To discard this drawback,
outranking based centralized methods have been proposed. However, they remain insufficient because they
don't match with the logical distribution of criteria. That is why we propose a distributed approach which
finds out the best compromise between all criteria by considering them as cooperative agents. The
underlying foundations are detailed and illustrated via both an example and experimentation.

Key-Words: - Multicriteria optimization, decision making, cooperative agents, multi-agent systems.

1 Introduction

Specialists in multicriteria decision aid aim at
giving the decision-maker some tools, in order to
deal efficiently with decision problems where
several-often contradictory- points of views must be
taken into account. The first family of tools consists
in aggregating the different points of view into a
unique function which must subsequently be
optimized. Unfortunately this is very quite
inadequate, because the criteria generally are
incommensurable. They measure different
properties that cannot be related to each other
directly and cannot be combined into a single
function. Indeed such scheme reflects neither real
optimization nor the expected result from all criteria
points of view[3,13]. The second family aims firstly
to build a relation, called an outranking relation,
which represents the decision-maker's strongly
established preferences and secondly to exploit the
outranking relation in order to help the decision-
maker solve his problem[3,13]. Furthermore
preference modeling and defining the set of
decisions are indispensable and complex steps
which have been at the center of some research. The
third and most recent family proposes methods
which alternate calculation steps and dialogue steps
with the decision-maker in order to select
appropriate and pertinent information on his
preferences [13]. Despite the varieties of research in

this field, the obtained results remain insufficient.
We think that is may be due to the fact that all these
methods are centralized. However, the notion of
multicriteria decision problem is logically
distributed. That is why we propose to explore
distributed artificial intelligence and more
specifically the multi agent systems that focus on
cooperative and distributed problem solving
techniques [2,4,5].
 The main objective of this paper is to introduce a
Multi Agent model for dealing with multicriteria
decision-aid, called Cooperative Agents based
Multicriteria Decision-Aid ''CAMDA'' where each
agent is responsible for a single criterion. Thus, the
criteria are separately optimized without any
''scalarization'' form. The entities, called Criterion
Agents, cooperate and negotiate in order to find out
a sub-set of solutions, compromise sub-set.
 CAMDA is detailed in the second section,
illustrated through an example in the third section
and experimented in the fourth one. The last section
contains concluding remarks and future work.

2 The foundations of CAMDA model
CAMDA consists of agents that cooperate to find
out a compromise-set of solutions rather than Pareto
optimal solutions because Pareto optimality alone is

not always adequate for pin-pointing the final
decision. The set of Pareto optimal choices is often
very large and even after eliminating all the
alternatives that are not Pareto optimal, the user is
usually left with a large number of alternatives to
choose from[3]. In the other hand, the compromise
set consists of solutions obtained by means of
cooperation and negotiation between all criteria.
This set is limited, it's size is controlled by the user.
Before detailing CAMDA, let us recall some useful
definitions.
 Definition1: A multicriteria decision problem is a
situation in which, having defined a set A of actions
and a consistent family F of criteria on A, one
wishes to:
 f1(x)
 f2(x)
 .
 min x ∈ A F(x) = , n≥2

 .
 (MOP) fn(x)

Where A denotes the feasible set of design
alternatives, or the design space[10].

Definition2: The vector F(�) is said to dominate
another vector F(�), denoted F(�)< F(�), if and
only if fi(�)� fi (�) for all i ∈ { 1,2,...n} and
fj(�)<fj(�) for some j in { 1,2,...n}. A point U* ∈ A
is said to be Pareto optimal or an efficient point for
(MOP) if and only if there does not exist U ∈
satisfying F(U)< F(U*). The vector F(U*) is then
called non- dominated or non inferior.

 The above definition qualifies Pareto optimality in
the global sense[10,13]. The definition of local
Pareto optimality is similar and can be found in [3].

2.1 The architecture of CAMDA model
CAMDA benefits from the multi-agent
techniques[2,4,5]that have opened a natural and
efficient way to solve diverse problems in terms of
cooperation, conflict and concurrence within a
society of agents. Each agent is an autonomous
entity that is asynchronously able to acquire
information from its environment and/or from other
agents, to reason on the basis of this information
and to act consequently. Within the large domain of
multi-agent systems, our model consists of
cognitive agents whose number is often limited (
here equal to the total number of criteria). The
multi-agent architecture consists of Criterion agents
cooperating in order to select a sub-set of solutions

corresponding to the best compromise from the
global satisfaction points of view. However, this
class is not sufficient: an Interface is necessary
between this society of agents and the user
essentially to detect that the problem is solved.
Consequently, a second and last class, called
Interface, was created. It contains a single
individual (figure1).
 Consider a Criterion agent Cri. It's static
knowledge corresponds to the criterion to be
optimized fi (figure1), the set of actions A and the
cost of each action with regards to fi and its ideal
action valuation denoted idi. Note that the ideal
action corresponds to the best action according to fi.
Its dynamic knowledge consists of its current
satisfaction level denoted sli expressing the
satisfactory utility level for fi, its current frequency
denoted fCri expressing how much time the set of
action A has been modified, and its anti-ideal
solution valuation denoted aidi which corresponds
to the worst action according to fi. Note that
criterion acquaintances consist of the set of all the
other Criterion agents denoted Aqi.
 The Interface Agent has as acquaintances all the
Criterion agents. Its static knowledge consists of the
set of actions A, whereas its dynamic one consists of
the Criterion frequencies and the final result.

 Fig.1. Example of CAMDA architecture with 3 criteria

2.2 The dynamic of CAMDA model
It consists of two phases: dynamic Initialization and
Cooperation.
 At the first phase, the Interface agent creates n
Criterion agents and associates to each one of them
a criterion fi (figure1). Then, each Criterion Cri
computes, on the one hand, the cost of each action x
belonging to the set of actions, A, and on the other

 the set of Actions A compromise-set

 f1 f3 f 2

 Interactions

Criterion 1 Criterion 2

Criterion 3

User

Interface

hand, both its ideal idi and anti-ideal aidi costs as
follows:
aidi = Min(fi(x)) (for maximization), x∈ A
idi = Max(fi(x)) (for maximization), x∈ A
 In the second phase, each Criterion agent Cri
dynamically computes its satisfaction level sli,
sli = aidi + (idi aidi)*ε
ε is an adjustment parameter in]0,1[used to
gradually increase sli (algorithm1. line5) and
consequently to reduce the search space namely the
set of actions Ai into A i (algorithm1. line6). If A i is
empty, i.e. the search space has been too much
compressed, then Cri backtracks and tries to expand
it by modifying sli as follows:
sli = sli-((idi - sli)* ε./2)
 This process is repeated until A i is not empty
(algorithm1. lines8-10). Hence, each Criterion agent
Cri extracts a sub-set A i from Ai. Each solution in
A i has a cost greater than sli (in the case of
maximization that we adopt here) or lower than sli
(in the case of minimization). Then A i is sent to the
others criteria Crj to be checked (algorithm1.
line11).
 When receiving A i, each Criterion Crj selects from
A i the sub-set of solutions A i/fj which cost fj is in
[aidj, idj] and then answers Cri by sending it A i/fj
(algorithm1. line24). As the expected answers are
received, Cri computes the intersection of the sub-
sets A i/fj j=1..| Aqi| (algorithme1. line26). Once Cri
has received all the answers, it activates the
Adjustment process. Three cases may occur:

� 0≠ card (In)>k, where k is a value
predefined by the user and corresponds to the
maximum size of the compromise set.
In this case, the agent Cri chooses the agent Crj0
having the maximal acceptance ratio corresponding
to the size of A i/fj0 divided by fCrj0 and asks it to
compress its current action set. The aim is to satisfy
the condition "card(In)≤ k". When more than one
agent has the same acceptance ratio, Cri chooses
randomly one of them. While performing a
''Reduce-sub-space'' message (algorithme1. lines 3-
11), Crj0 ignores all the future similar incoming
messages. Similarly, whenever a Criterion agent Cri
sends its reduced set of action A i to be checked, it
performs neither ''Reduce-sub-space'' nor ''Expand-
sub-space'' (algorithme1. lines 3,12) message until
it receives all the expected answers.
 Note that ''sendMsg(receiver, sender, ''message)''
defines the message ''message'' transmitted by
''sender'' to ''receiver''.

� 0≠ card (In) ≤k
Given that, the process has reached a sufficiently
good compromise namely the best equilibrium state
relative to the predefined k value. Thus, Cri
communicates the final result to the Interface that
informs the user and interrupts the search process.

� 0= card (In)
Given that, the agent Cri chooses the agent Crj0
having the maximal refusal ratio corresponding to
the size of (A i - A i/fj0) divided by fCrj0 and asks it
to expand its current sub-space. When more than
one agent have the same refusal ratio, Cri chooses
randomly one of them. While performing a
''Expand-sub-space'' message, (algorithm1. lines12-
19), Crj0 ignores all the future similar incoming
messages. Whenever a criterion Crj is requested to
modify its current set of action A i, it increments its
modification frequency fCrj and communicates it to
the other acquaintances.

 Note that the less is k , the best is the quality of the
compromise-set.

3. Illustrative example
Consider a consumer who wants to buy a television
set and, after a first selection, retains eight models
and then evaluates them by tacking into account the
price, quality of picture (PQ), quality of sound (SQ)
and maintenance contract (MC) (V.G.= good, G.=
good, A.= average, N.G. = not good). (V.G was
somewhat arbitrarily replaced by 2, G. by 1, A. by
and N. G by -1) [13] .

 The data are represented by the table1 where we
have modified the prices by changing signs, thereby
getting a maximization problem.

Model - Price P. Q S.Q MC
T1 -1300 V.G/2 V.G/2 A/0
T2 -1200 V.G/2 V.G/2 G/1
T3 -1150 V.G/2 G/1 G/1
T4 -1000 G/1 G/1 N.G/-1
T5 -950 G/1 G/1 A/0
T6 -950 A/0 G/1 N.G/-1
T7 -900 G/1 A/0 N.G/-1
T8 -900 A/0 A/0 A/0

 Table1: Data example

 Algorithm 1: Behavior of Criterion agent Cri

 The dominance relation introduced in the
definition2 can be represented by the accompanying
graph of figure2:

Fig. 2. The dominance relation

 Note that if there is an indifference threshold of 50
on the prices, one could be tamped to say that T2
dominates T3.
 The efficient actions are T2, T3, T5, T7 and T8.
 The compromise-set of actions generated by the
CAMDA is presented through the different steps of
table2. We take as numerical values ε=20% and
K=5.

 aidi idi sli i

Cr1 -
1300

-900 -
1220

{T2, T3, T4, T5, T6, T7, T8}

Cr2 0 2 0.4 {T1, T2, T3, T4, T5, T7}
Cr3 0 2 0.4 {T1, T2, T3, T4, T5, T6}
Cr4 -1 1 -0.6 {T1, T2, T3, T5, T8}
In -- -- -- { T2, T3, T5}

 Table2: Different steps of CAMDA dynamic

 For simplification, the interactions between the
different Criterion agents have been omitted namely
successive solutions checking. For each agent we
have presented only the set of actions A i satisfying
its level sli and the global intersection (In). Thus,
each Criterion agent Cri extracts a sub-set A i from
Ai. Then A i is sent to the other criteria Crj to be
checked and this via the message ''request-
checking-solutions (A i)''. When receiving A 1 for
example, each Criterion Crj selects from A 1 the
sub-set of solutions A 1/fj which cost fj is in [aidj,
idj]. So, Cr2 determines A 1/f2={T2, T3, T4, T5, T7}
and send it to Cr1 agent via the message ''answer-
checking-solutions(A i/f2)''. Similarly for the other
criteria agents, the following sub-set of solutions
A 1/f3={T2, T3, T4, T5, T7}, A 1/f4={T2, T3, T5, T8}
are sent to Cr1. As the expected answers are
received, Cr1 computes the intersection (In) of the
sub-sets A 1/fj j=1..|Aqi|. The size of the intersection
set (In) is lower than K, so the decision process
stops and the compromise-set of actions{T2, T3, T5}
is obtained.

4 Experiments

4.1 Experiment design
The experiments are based on randomly generated
binary CSMOPs (Constraint Satisfaction and
Multicriteria Optimization Problems)[1]. Constraint
Satisfaction and Multicriteria Optimization Problem
CSMOP is inspired from Constraint Satisfaction
Problems ''CSP'' [6,7,8,11] that only focus on
constraint satisfaction. It's a formalism that consists
of variables associated with their domains,
constraints involving subsets of variables and a set
of c functions where each function is a performance
criterion mapping every solution to a numerical
value. The generation is guided by classical CSP
parameters[9,12]: number of variables (n), domain
size (d), constraint density p (a number between 0
and 100% indicating the ratio between the number
of the problem effective constraints to the number
of all possible constraints, i.e., a complete constraint
graph), constraint tightness q (a number between 0
and 100% indicating the ratio between the number
of couples of values forbidden (not allowed) by the
constraint to the size of the domain cross product)
and the number of performance criterion (ncr).

 As numerical values, we use n = 10, d = 6, p (resp.
q) varying from 50% to 65% (resp. 35% to 50%)by
steps of 5% to both keep the solutions number
reasonable and to guarantee consistent problems.
The adjustment parameter ε varies in

While not equilibrium state do
1. if mailBox not empty then m� ������ ��	
2. case m
3. reduce-sub-space (In) :
4. aidi � ��
�����-anti-ideal-cost (In)
5. sli � aidi + (idi - aidi) * ε
6. A i � �
��������

-set (In, sli)
7. fCri � fCri + 1
8. while (i is empty) do
9. sli � sli ((idi -sli) * ε/2)
10. i � �
��������

-set (In, sli)
11. sendMsg (Aqi, Cri, "request-checking- i)")
12. expand-sub-space :
13. sli � sli ((idi -sli) * ε/2)
14. i � �
��������

-set (Ai , sli)
15. fCri � fCri + 1
16. while (i is empty) do
17. sli � sli ((idi -sli) * ε/2)
18. i � �
��������

-set (Ai , sli)
19. sendMsg (Aqi, Cri, "request-checking- i)")
20. request-checking-solutions(i):
21. i / fj0 � ∅
22. for each solution xi ∈ i do
23. if fj(xi) ∈ [slj , idj] then i / fj � i / fj ∪ {xi}
24. sendMsg (Cri, Crj , "answer-checking- i / fj)")
25. answers -checking-solutions(i / fj):
26. In � In ∩ i / fj
27. count-answers
28. if nbr-answers =  Aqi then Adjustment (In)

 . T2 . T3

 T1 . . T4

 T8 . . T5

 T7 . T6 .

{10%,20%,30%,40%,50%} whereas ncr in {4,6,8}.
Regarding k, it is set to 10%k0 where k0 is equal to
the initial size of the set actions A.

4.2 Evaluation parameters
CAMDA is assessed through two families of
measures : efficiency and quality. In terms of
efficiency, we measure the run time requested to
reach an equilibrium state. Concerning the quality,
it is quantified as follows:
Suppose that the compromise-set is denoted by Cs

∀ xi ∈ Cs, di =Σj=1..c |idj fj(xi)|/idj, where idj is the
ideal cost and fj(xi) is the cost of xi according to the
Criterion j.
Let us define the quality by d such that
d= infi=1..| Cs| (di).
So, the lower is d, the better is the quality. This
procedure is used just to assess our model and to
yield objectively best solutions.
Thus, we have generated 240 examples
corresponding each one to the configuration (p, q,
ncr, ε). Due to the non deterministic character of
our model, we have performed each example 10
times and then we have taken the average for all
parameters.

4.3 Experimental results
Run time versus both tightness and Criterion
number (figure3)
As the tightness decreases, the run time increases.
This phenomenon can be explained by the fact that
the number of solutions grows at low tightness and
then the decision process spends too much effort to
reach the equilibrium state.
For example, for (p=0.6,q=0.35 and ncr=4) the
solution number is equal to 198 whereas it is equal
to 15 for (p=0.6,q=0.5 and ncr =4) .

Run time versus both density and Criterion number
(figure4)
As the density increases, the run time decreases. In
fact, the more the density is, the less the solutions
number is and then the equilibrium state is quickly
reached. For example, for (p=0.5, q=0.5, nc =4) the
solution number is equal to 40 whereas it is equal to
10 for(p=0.6, q=0.5, ncr =4). Notice that for a given
couple (p,q), the maximal run time often increases
with the Criterion number. Figure 4 presents an
almost linear tendency whereas figure 3 gives
heterogeneous results. These ones may be explained
by the inter-Criteria conflict effect.

 Fig.3. Run time versus both tightness and Criterion number

 Fig.4. Run time versus both density and Criterion number

Which adjustment parameter for which inter-
Criteria conflict?
As before mentioned, the inter-Criteria conflict
seems to be important in the decision phase. That is
why we perform the following experiments. In fact
the aim is to affect the right adjustment parameter ε
to the right inter-Criteria conflict parameter.
 Let us call this later conflict rate τ and define it by
the conflictive criterion number divided by the total
number of criteria.
So, let us vary τ in{0.2, 0.4, 0.6, 0.8} and ε in
{10%, 20%, 30%, 40%}. Table3 reports the sum of
all Criterion frequencies denoted F, (F=Σi=1..ncr fCri),
whereas the table4 reports the sum of all Criterion
backtracks denoted B, (B=Σi=1.. ncr backtracks).

ε↓ τ→ 0.2 0.4 0.6 0.8
10% 43 11.4 10 12
20% 18 10 10 19
30% 10 16.2 27 32
40% 15.75 31.8 41 24

 Table3. The sum of all criterion frequencies F

ε↓ τ→ 0.2 0.4 0.6 0.8
10% 20 0.4 0 1
20% 2.4 0 0 9
30% 00 6.2 17 20
40% 05.75 21.8 30 17

 Table4. The sum of all criterion backtracks B

�.�
�.��

�.�
�.��

�

�

�

�

������

�������

�������

�������

�������

run time

q

ncr

�

�

�

�.�
�.��

�.�
�.��

�

�

�

�

������

������

������

������

������

������

	�����

������

run time

p

ncr

�

�

�

 Note that F and B reflect the optimization effort.
So, the greater they are and the worst the run time
is. Consequently, we select, from Table 3 and 4, for
each τ the best ε, i.e., the ε that provides the
minimal values of B, F and d.

-Slightly inter-criteria conflict
When τ =0.2, the Criteria are slightly conflictive.
Table 3 and 4 shows that F and B decreases as ε
increases. This can be explained by the fact that
when ε=10% or 20%, the intersection is too dense
and must be compressed until it satisfies the
condition "card(In)≤ k" which increases F and B.
So, it is more appropriate to choose ε=30% or 40%.
Concerning d, the experimental results show that it
doesn't change.

-Highly inter-criteria conflict
When τ takes value in {0.4,0.6,0.8}, the Criteria are
more conflictive then before. Table 3 and 4 shows
that F and B decrease as ε decreases. This can be
explained by the fact that when ε =10% or 20% the
solutions corresponding to the different criteria are
located in dispersed regions as the criteria are very
conflictive. Consequently, one had better choose
little ε values, otherwise the intersection may be
empty which requires more frequencies and
backtracks to both reach an nonempty intersection
and the equilibrium state. Concerning d, the
experimental results also show that it is almost the
same.

These results show that the adjustment should be
small when the criteria are conflictive, otherwise it
should be large. Moreover, other experimental
results performed show that the quality, i.e. d is as
worst as τ increases.

5 Conclusion and future work
In this paper, we have developed an agent based
model for dealing with multicriteria decision-aid. In
this model each agent is responsible for a single
criterion. Thus the criteria are separately optimized
without any ''scalarization'' form by considering
them as cooperative agents trying to reach their best
equilibrium state which corresponds to the best
compromise-set. The effectiveness of the model is
demonstrated in the domain of Constraint
Satisfaction and Optimization Problems and
discussed on randomly generated examples. The
experiments have shown, on the one hand, that as
the tightness (density) decreases the optimization
effort increases, and on the other hand, that the run
time often increases with the criterion number.

Moreover, they have provided that the quality gets
worse as the inter-criteria conflict increases.
 As far as our future work is concerned, other
experiments will be performed. In addition, we shall
extend our model to the dynamic aspect that
concerns a restriction (a criterion is removed from
the MOP) and/or a relaxation (a new criterion is
imposed).

References:
[1] I.BenJaafar and K.Ghedira, Ajustement

Multicritre Distribu, In Proceedings of
JFIADSMA'00, 2000, p 71-84.

[2] S.H.Clearwater, B.A.Huberman and T.Hogg,
Cooperative problem Solving, In Huberman,
B., editor, Computation: The Micro and the
View, 1992, p 33-70.

[3] I.Dasand J.E.Dennis, Normal boundary
intersection, In WCSMO-2, Proceedings of
the Second World Congress of Structural and
Multidisciplinary Optimization, 1997, p 49-
54.

[4] T. Hogg and P.C. Williams, Solving the really
hard problems with cooperative search, In
hirsh, H. et al., editors, AAAI Spring
symposium on IA and NP-Hard Problems,
1993, p 78-84.

[5] B.A.Huberman, The performance of
cooperative process, Phisica D, 1990, p38-47.

[6] P.Jgou, Contribution tude des problmes
de satisfaction de contraintes: algorithmes de
propagation et de rsolution, propagation des
contraintes dans les rseaux dynamiques,
PHD-Thesis, 1991.

[7] A.Mackworth, Consistency in networks of
relations, Artificial Intelligence, vol.(8), 1977,
p 99-118.

[8] U.Montanari, Networks of Constraints:
fundamental properties and applications to
picture processing, Information Sciences ,
vol.(7), 1974.

[9] D.Sabin and G. Freuder, Contradicting
conventional wisdom in Constraint
Satisfaction, In proceeding of ECAI-94,
1994, p 125-129.

[10] R.B. Statnikov and J.B. Matusov, Multicriteria
Optimisation and Engineering, Chapman and
Hall, New York, 1995.

[11] E.Tsang, Foundations of Constraint
Satisfaction, Academic Press, 1993.

[12] E.Tsang and C.Voudouris, Constraint
Satisfaction in Discrete Optimisation, Unicom
Siminar, 1998.

[13] P.Vincke, Multicriteria Decision -Aid, JHON
WILEY & SONS,1989.

