The completion problem for N-matrices *

CLAUDIA MENDES and JUAN R. TORREGROSA
Dpto. de Matematica \Dpto. de Matemática Aplicada Universidade do Minho \Universidad Politécnica de Valencia
Campus de Gualtar, 4700320 Braga \backslash Camino de Vera, 46071-Valencia
PORTUGAL \backslash SPAIN

Abstract

An $n \times n$ matrix is called an N-matrix if all principal minors are negative. In this paper, we are interested in N -matrix completions problems, that is, when a partial N-matrix has an N-matrix completion. In general, a combinatorially or non-combinatorially symmetric partial N-matrix does not have an N matrix completion. Here, we prove that a combinatorially symmetric partial N-matrix has an N matrix completion if the graph of its specified entries is a 1 -chordal graph. We also prove that there exists an N-matrix completion for a partial N -matrix whose associated graph is an undirected cycle.

Key-Words: Partial matrix, completion, combinatorially symmetric, N-matrix, 1 -chordal graph, cycles.

1 Introduction

A partial matrix is a matrix in which some entries are specified and others are not. In this work we consider partial matrices where the diagonal entries are known. A completion of a partial matrix is the matrix resulting from a particular choice of values for the unspecified entries. A completion problem asks if we can obtain a completion of a partial matrix with some prescribed properties. A partial ma-

[^0]$\operatorname{trix} A=\left(a_{i j}\right)$ it said to be combinatorially symmetric when $a_{i j}$ is specified if and only if $a_{j i}$ is.
A natural way to described an $n \times n$ partial ma$\operatorname{trix} A=\left(a_{i j}\right)$ is via a graph $G_{A}=(V, E)$, where the set of vertices V is $\{1,2, \ldots, n\}$, and the edge or arc $\{i, j\},(i \neq j)$ is in set E if and only if position (i, j) is specified; as all main diagonal entries are specified, we omit loops. In general, a directed graph is associated with a non-combinatorially symmetric partial matrix and, when the partial matrix is combinatorially symmetric, an undirected graph can be used.
A path is a sequence of edges (arcs) $\left\{i_{1}, i_{2}\right\}$, $\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{k-1}, i_{k}\right\}$ in which the vertices are distinct. A cycle is a path with the first vertex equal to the last vertex. An undirected graph is chordal if it has no induced cycles of length 4 or more [2].

An $n \times n$ real matrix $A=\left(a_{i j}\right)$ is called N-matrix if all its principal minors are negative. The principal submatrix of A lying in rows and columns $\alpha, \alpha \subseteq$ $N=\{1,2, \ldots, n\}$, is denoted by $A[\alpha]$.
N-matrices arise in the theory of global univalence of functions [3], in multivariate analysis [6], and in linear complementary problems [5, 7]. In [8], the class of N-matrices were studied in connection with Lemke's algorithm for solving linear and convex quadratic programming problems.
In the following proposition we give some important properties for N-matrices.

Proposition 1.1 Let $A=\left(a_{i j}\right)$ be an N-matrix of size $n \times n$. Then

1. If P is a permutation matrix then $P A P^{T}$ is an N-matrix.
2. If D is a positive diagonal matrix then $D A$ and $A D$ are N-matrices.
3. If D is a digonal matrix then $D A D^{-1}$ is an N-matrix.
4. $a_{i j} \neq 0$ and $\operatorname{sign}\left(a_{i j}\right)=\operatorname{sign}\left(a_{j i}\right), \forall i, j \in$ $\{1,2, \ldots, n\}$.
5. $\forall \alpha \subset\{1,2, \ldots, n\}$, principal submatrix $A[\alpha]$ is an N-matrix.

From before properties, we can suppose, without lost of generality, that if A is an N-matrix of size $n \times n, A$ is an element of set:

$$
\begin{aligned}
S_{n}= & \left\{A=\left(a_{i j}\right): a_{i j} \neq 0\right. \text { and } \\
& \left.\operatorname{sign}\left(a_{i j}\right)=(-1)^{i+j+1}, \forall i, j\right\}
\end{aligned}
$$

On the other hand, the last property of the before proposition allows us to give the following definition.

Definition 1.1 A partial matrix is said to be a partial N-matrix if every completely specified principal submatrix is an N-matrix.

The goal of this paper is the following N-matrix completion problem:

Problem 1 Let A be a partial N-matrix.
(1.a) Is there an N-matrix completion A_{c} of A ?
(1.b) What conditions allow us to assure the existence of an N-matrix completion A_{c} of A ?

In section 2 we analyze the above problem (1.a) for combinatorially and non-combinatorially symmetric partial N-matrices. In section 3 and 4 we study some types of undirected graphs whose the associated partial matrices have N-completions.

2 N -matrix completion problem

Let $A=\left(a_{i j}\right)$ be a partial N-matrix of size $n \times n$. From property 4 of Proposition 1.1 the conditions
(i) Specified entries of A are nonzero,
(ii) $\operatorname{sign}\left(a_{i j}\right)=\operatorname{sign}\left(a_{j i}\right)$, when $a_{i j}$ and $a_{j i}$ are specified,
are necessary conditions in order to obtain an N matrix completion of A.

For matrices of size 2×2 conditions (i) and (ii) are also sufficient.

Proposition 2.1 Let A be a partial N-matrix of size 2×2. There exists an N-matrix completion A_{c} of A, if and only if A satisfies conditions (i) and (ii).

Unluckily, the above proposition is false for partial matrices of size $n \times n, n \geq 3$, both when the partial matrix is combinatorially symmetric and it is not, as the following examples show:
(a) The non-combinatorially symmetric partial N matrix

$$
A=\left[\begin{array}{rrr}
-1 & 2 & x_{13} \\
2 & -1 & 2 \\
3 & 2 & -1
\end{array}\right]
$$

satisfies conditions (i) and (ii), but does not have an N-matrix completion since
$\operatorname{det} A[\{1,3\}]<0 \Leftrightarrow 1-3 x_{13}<0 \Leftrightarrow x>1 / 3$, and

$$
\operatorname{det} A<0 \Leftrightarrow 7 x_{13}+19<0 \Leftrightarrow x<-19 / 7
$$

(b) The combinatorially symmetric partial N matrix

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & x_{13} & -3 \\
2 & -1 & 1 & x_{24} \\
x_{31} & 2 & -1 & 1 \\
-4 & x_{42} & 2 & -1
\end{array}\right]
$$

satisfies conditions (i) and (ii), but does not have an N-matrix completion since

$$
\begin{aligned}
\operatorname{det} A[\{2,3,4\}]<0 & \Leftrightarrow 3+x_{24} x_{42}+4 x_{24}+x_{42}<0 \\
& \Rightarrow x_{24}, x_{42}<0,
\end{aligned}
$$

but
$\operatorname{det} A[\{1,2,4\}]=13+x_{24} x_{42}-4 x_{24}-6 x_{42}>0$,
for $x_{24}, x_{42}<0$.

If we add another condition to before conditions (i) and (ii) we can define the following set:

$$
\begin{aligned}
P S_{n}= & \left\{A=\left(a_{i j}\right), n \times n\right. \text { partial matrix : } \\
& \text { for } a_{i j} \text { specified } \\
& \left.a_{i j} \neq 0 \text { and } \operatorname{sign}\left(a_{i j}\right)=(-1)^{i+j+1}, \forall i, j\right\}
\end{aligned}
$$

Proposition 2.2 Let A be a partial N-matrix of size 3×3 such that $A \in P S_{3}$. Then, there exists an N-matrix completion A_{c} of A.

Corollary 2.1 Let A be a combinatorially symmetric partial N-matrix of size 3×3. Then, there exists an N-matrix completion A_{c} of A.

Proposition 2.2 is not true for matrices of size $n \times n, n \geq 4$, as the following example shows.

Example 1

Consider the partial matrix

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & -11 & x_{14} \\
2 & -1 & 1 & -200 \\
-0.1 & 10 & -1 & 1 \\
1 & -10 & 1.01 & -1
\end{array}\right]
$$

It is not difficult to verify that A is a partial N matrix and $A \in P S_{4}$. However, A has no N-matrix completion because
$\operatorname{det} A[\{1,2,4\}]=1801-19 x_{14}<0 \Leftrightarrow x_{14}>94.79$, and
$\operatorname{det} A[\{1,3,4\}]=-9.89+0.899 x_{14}<0 \Leftrightarrow x_{14}<11$.
From this example, we can establish de following result:

Proposition 2.3 For every $n \geq 4$, there is an $n \times n$ partial N-matrix, belong to $P S_{n}$, that has no N matrix completion.

Proof: We denote by \bar{I} the partial matrix, of size $(n-4) \times(n-4)$, with all entries unspecified except the entries of the main diagonal that are equal to -1 . The partial matrix

$$
B=\left[\begin{array}{cc}
A & X \\
Y & \bar{I}
\end{array}\right]
$$

where X, Y are completely unspecified matrices and A is the matrix of the before example, is a partial N-matrix in $P S_{n}$ that does not have N-matrix completion.

3 Chordal graphs

In order to get started, we recall some very rich clique structure of chordal graphs. See [2] for further information. A clique in an undirected graph G is simply a complete (all possible edges) induced subgraph. We also use clique to refer to a complete graph and use K_{p} to indicate a clique on p vertices. A useful view of chordal graphs is that they have a tree-like structure in which their maximal cliques play the role of vertices.

If G_{1} is the clique K_{q} and G_{2} is any chordal graph containing the clique $K_{p}, p<q$, then the clique sum (see [2]) of G_{1} and G_{2} along K_{p} is also chordal. The cliques that are used (to build chordal graphs) are the maximal cliques (see [2]) of the resulting chordal graph and the cliques along which the summing takes place are the so-called minimal vertex separators of the resulting chordal graph. If the maximum number of vertices in a minimal vertex separator is p, then the chordal graph is called p-chordal. In this section we are interested in 1-chordal graphs.

Proposition 3.1 Let $A=\left(a_{i j}\right)$ be a partial N matrix of size $n \times n$, the graph of whose specified entries is 1-chordal with two maximal cliques, one of them with two vertex. Then there exists an N matrix completion of A.

Proof: We may assume, without loss of generality,
that A has the following form:

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & \cdots & x_{1 n} \\
a_{21} & -1 & \cdots & (-1)^{n+1} a_{2 n} \\
x_{31} & a_{32} & \cdots & (-1)^{n+2} a_{3 n} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & (-1)^{n+1} a_{n 2} & \cdots & -1
\end{array}\right],
$$

that can be partitioned as follows:

$$
A=\left[\begin{array}{ccc}
-1 & 1 & X \\
a_{21} & -1 & \bar{a}_{23}^{T} \\
Y & \bar{a}_{32} & A_{33}
\end{array}\right]
$$

It is easy to see that we obtain an N-matrix completion of A by replacing the unspecified entries in the following way:

$$
\begin{array}{ll}
x_{1 j}=-a_{2 j}, & j \in\{3,4, \ldots, n\} \\
x_{i 1}=-a_{i 2}, & i \in\{3,4, \ldots, n\}
\end{array}
$$

Proposition 3.2 Let A be a partial N-matrix of size $n \times n$, the graph of whose specified entries is 1chordal with two maximal cliques. Then there exists an N-matrix completion of A.

Proof: We may assume, without loss of generality, that A has the following form:

$$
A=\left[\begin{array}{ccc}
A_{11} & a_{12} & X \\
a_{21}^{T} & -1 & a_{23}^{T} \\
Y & a_{32} & A_{33}
\end{array}\right] .
$$

Consider the completion,

$$
A_{c}=\left[\begin{array}{ccc}
A_{11} & a_{12} & -a_{12} a_{23}^{T} \\
a_{21}^{T} & -1 & a_{23}^{T} \\
-a_{32} a_{21}^{T} & a_{32} & A_{33}
\end{array}\right] .
$$

We are going to see that A_{c} is an N-matrix. Let α and β be the subsets of $N=\{1,2, \ldots, n\}$ such that
$A_{c}[\alpha]=\left[\begin{array}{cc}A_{11} & a_{12} \\ a_{21}^{T} & -1\end{array}\right]$, and $A_{c}[\beta]=\left[\begin{array}{cc}-1 & a_{23}^{T} \\ a_{32} & A_{33}\end{array}\right]$,
and assume $|\alpha|=k$ (thus k is the index of the overlapping entry). Let $\gamma \subseteq N$. Then there are two cases to consider:
(a) $k \in \gamma$, then

$$
\operatorname{det} A_{c}[\gamma]=(-1) \operatorname{det} A_{c}[\gamma \cap \alpha] \cdot \operatorname{det} A_{c}[\gamma \cap \beta]<0
$$

(b) $k \notin \gamma$. We consider

$$
\gamma=\{1,2, \ldots, k-1, k+1, \ldots, n\} .
$$

For another γ we proceed in analogous way. By applying Jacobi's identity,

$$
\operatorname{det} A_{c}[\gamma]=\operatorname{det} A_{c}^{-1}[\{k\}] \cdot \operatorname{det} A_{c} .
$$

By case (a), $\operatorname{det} A_{c}<0$, and we prove that $\operatorname{det} A_{c}^{-1}[\{k\}]$ is positive.

We can extend this result in the following way:

Theorem 3.1 Let G be an undirected connected 1-chordal graph. Then any partial N-matrix, the graph of whose specified entries is G, has an N matrix completion.

Proof:The proof is by induction on the number p, of maximal cliques in G. The case of p-maximal cliques is reduced to that of $(p-1)$-cliques by choosing a clique (the pth-clique) to be one that has only one vertex in common with any other maximal clique (the existence of such cliques follows from the way chordal graphs are built, see [2]). Then completing the subgraph induced by the remaining ($p-1$)-cliques reduces the problem to the case of two maximal cliques. The case of a 1-chordal graph with two maximal cliques is handled in the before proposition.

4 Paths and cycles

In this section we are going to prove the existence of an N-completion for a partial N-matrix, combinatorially symmetric whose associated graph is a path or a cycle.

Proposition 4.1 Let $A=\left(a_{i j}\right)$ be an $n \times n$ combinatorially symmetric partial N-matrix, such that its associated graph is a path. Then, there exists an N-matrix completion.

Proof: We can suppose, without loss of generality, that matrix A has the following form:

$$
A=\left[\begin{array}{cccccc}
-1 & 1 & x_{13} & \cdots & x_{1 n-1} & x_{1 n} \\
a_{21} & -1 & 1 & \cdots & x_{2 n-1} & x_{2 n} \\
x_{31} & a_{32} & -1 & \cdots & x_{3 n-1} & x_{3 n} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
x_{n-11} & x_{n-12} & x_{n-13} & \cdots & -1 & 1 \\
x_{n 1} & x_{n 2} & x_{n 3} & \cdots & a_{n n-1} & -1
\end{array}\right]
$$

with $a_{i+1 i}>0, i=1,2, \ldots, n-1$.
It is easy to see that we obtain an N-matrix completion by replacing the unspecified entries in the following way:

$$
\begin{array}{ll}
x_{i j}=(-1)^{i+j+1}, & i \in\{1,2, \ldots, n\}, \\
& j \geq i+1 \\
x_{j+2 j}=-a_{j+1 j} a_{j+2 j+1}, & j \in\{1,2, \ldots, n-2\} \\
x_{i j}=-c_{i-1 j} a_{i i-1}, & j \in\{1,2, \ldots, n-2\} \\
& i>j+2
\end{array}
$$

Lemma 4.1 Let A be a combinatorially symmetric, partial N-matrix of size 4×4, such that $A \in$ $P S_{4}$ and its associated graph is a cycle. Then, there exists an N-matrix completion.

Proof: We may assume that A has the following form:

$$
A=\left[\begin{array}{cccc}
-1 & 1 & x_{13} & a_{14} \\
a_{21} & -1 & 1 & x_{24} \\
x_{31} & a_{32} & -1 & 1 \\
a_{41} & x_{42} & a_{43} & -1
\end{array}\right]
$$

where $a_{21}, a_{32}, a_{43}, a_{14}, a_{41}$ are positive.
We consider the following partial N-matrix in $P S_{4}$

$$
\bar{A}=\left[\begin{array}{rrrr}
-1 & 1 & x_{13} & a_{14} \\
a_{21} & -1 & 1 & x_{24} \\
-a_{32} & a_{32} & -1 & 1 \\
a_{41} & -a_{41} & a_{43} & -1
\end{array}\right]
$$

and we prove that there exist values for x_{13} and x_{24} such that \bar{A}_{c} is an N-matrix. Therefore, there exists an N-matrix completion A_{c} of A.

We can extend this result for matrices of size $n \times$ $n, n \geq 4$.

Theorem 4.1 Let A be a combinatorially symmetric, partial N-matrix of size $n \times n$, such that $A \in$ $P S_{n}$ and its associated graph is a cycle. Then, there exists an N-matrix completion.

Proof: We may assume that A has the following form:
$A=\left[\begin{array}{ccccc}-1 & 1 & \cdots & x_{1 n-1} & (-1)^{n} a_{1 n} \\ a_{21} & -1 & \cdots & x_{2 n-1} & x_{2 n} \\ \vdots & \vdots & & \vdots & \vdots \\ x_{n-11} & x_{n-12} & \cdots & -1 & 1 \\ (-1)^{n} a_{n 1} & x_{n 2} & \cdots & a_{n n-1} & -1\end{array}\right]$,
where $a_{1 n}, a_{n 1}>0$ and $a_{i i-1}>0, i=2,3, \ldots, n$.
The proof is by induction on n. For $n=4$ see Lemma 4.1. Now, let A be an $n \times n$ matrix. Consider the following partial N-matrix in $P S_{n}$:
$\bar{A}=\left[\begin{array}{cccc|c}-1 & 1 & \cdots & (-1)^{n-1} a_{1 n} & x_{1 n} \\ a_{21} & -1 & \cdots & x_{2 n-1} & x_{2 n} \\ \vdots & \vdots & & \vdots & \vdots \\ (-1)^{n-1} a_{n 1} & x_{n-12} & \cdots & -1 & 1 \\ \hline x_{n 1} & x_{n 2} & \cdots & a_{n n-1} & -1\end{array}\right]$.
$\bar{A}[\{1,2, \ldots, n-1\}]$ is a partial N-matrix in $P S_{n-1}$ such that its associated graph is an $(n-1)$-cycle. By induction hypothesis there exists an N-matrix completion $\bar{A}[\{1,2, \ldots, n-1\}]_{c}$. Let \hat{A} be the partial N-matrix obtained by replacing in \bar{A} the completion $\bar{A}[\{1,2, \ldots, n-1\}]_{c}$.

By applying Proposition 3.1 to matrix \hat{A} we obtain an N-matrix completion A_{c} of A.

References

[1] A. Berman, R.J. Plemmons, Nonnegative matrices in the Mathematical Sciences, SIAM, 1994.
[2] J.R.S. Blair, B. Peyton, An introduction to chordal graphs an clique trees, The IMA volumes in Mathematics and its Applications, vol. 56, Springer, New York, 1993, pp. 1-31.
[3] K. Inada, The production matrix and Stolpmer-Samuelson condition, Econometrica, 39: 219-239 (1971).
[4] J.S. Maybee, Some aspects of the theory of PNmatrices, SIAM J. Appl. Math., 312: 397-410, (1976).
[5] S.R. Mohan, R. Sridhar, On characterizing Nmatrices using Linear Complementarity, Linear Algebra and its Applications, 160: 231-245, (1992).
[6] S.R. Paranjape, Simple proofs for the infinite divisibility of multivariate gamma distributions, Sankhya Ser. A, 40: 393-398, (1978).
[7] T. Parthasarathy, G. Ravindran, N-matrices, Linear Algebra and its Applications, 139: 89102, (1990).
[8] R. Saigal, On the class of complementary cones and Lemke's algorithm, SIAM J. Appl. Math., 23: 46-60, (1972).

[^0]: ${ }^{*}$ Research supported by Spanish DGI grant number BFM2001-0081-C03-02

