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Abstract: In the paper we shall investigate an approximation of a solution of the Schrödinger
equation: (−∆ + q(x) − λ)u(x) = f(x) in an unbounded region Ω ⊂ Rn for λ belonging to
absolute continuous spectrum of an operator −∆ + q, where potential q is of short or long
range type or oscillating one. Two steps are considered. In the first step Ω is replaced by
a finite region and generalized Sommerfeld condition is applied. In the second step the Galerkin
method is used. The error estimates are given showing explicit dependence on radius of a finite region.
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1 Introduction
In the paper we shall investigate an approxima-
tion of a solution of the Schrödinger equation:

(−∆ + q(x)− λ)u(x) = f(x) (1)

in an unbounded region Ω ⊂ Rn with zero Dirich-
let, Robin or Neumann boundary condition on
∂Ω or in the whole space Ω = Rn. We assume
that ∂Ω is bounded and sufficiently smooth. We
also assume that the potential q is such that
−∆ + q admits a unique self-adjoint realisation
in L2(Ω), which we denote by H, with the do-
main D(H) ⊂ {u ∈ H2 : Bu = 0}, where
operator B defines boundary condition on ∂Ω:
Bu = u or Bu = ∂u

∂ν + du = 0 (the case d = 0 is
also included). The point λ belongs to absolute
continuous spectrum of operator H [12]. The
paper generalizes results obtained by Kako [8]
and other authors dealing with Helmholtz prob-
lem [5,7]. In his paper Kako considered ”short
range” and ”long range” perturbations of the
Laplacian. The approximation is based on the
so called ”limiting absorption principle” stating
that the scattered waves u± (known as outgoing
and incoming waves) satisfy radiation condition:
D±

λ u± ≡ ∂u±

∂r (x)∓ i
√

λu±(x) + n−1
2r u±(x) → 0 in

some sense as radius r → ∞. Kako introduced
an analytical approximation in the finite region
BR = {x : |x | < R}:

(−∆ + q(x)− λ)u±R(x) = f(x) in BR,

D±
λ u±R = 0 on SR = {x : |x | = R}.

Then he proved [8] that ∃(Rn → ∞) such that
‖e±Rn

‖L2(SRn ) → 0, where e±R is the error between
exact and approximate solutions e±R ≡ u± − u±R,
and in a very special case of ”short range” per-
turbations for q(x) = O(|x |)−1−δ and δ > (n −
1)/2 on some fixed, bounded region B ⊂ BR :
sup
B

Rε
n|e±Rn

| → 0 for some ε > 0. He investi-

gated further approximation by sequence of so-
lutions of discrete problems obtained by means
of the Bubnov-Galerkin method. There are three
main aims of this paper:

• we would like to extend these results for
more types of potentials. In the paper we
consider also oscillating potentials, however
the used method can be applied to other
types of potentials under some additional
conditions (see [10]),

• we want to obtain estimates for the differ-
ence e±R on the whole domain of analytical
approximation (not only on some fixed sub-
region),

• we want to know how the error explicitly
depends on radius R.

In order to reach our aims we do not assume any
special form of the potential, but we use the ”lim-
iting absorption principle” as our main assump-
tion. Our estimates will be expressed in weighted
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L2 norm because the exact solution of (1) belongs
to this kind of space.

2 Preliminaries
By L2,s we denote the space:

L2,s(Ω) := {u :
∫
Ω
(1 + |x |)2s|u(x) |2dx < ∞}

with the norm:

‖ u ‖0,s= (
∫
Ω
(1 + |x |)2s|u(x) |2dx)1/2

for any s ∈ R. We use also typical notation for
Sobolev space and its norm (like ‖·‖1,Ω or sim-
ply ‖·‖1 for space H1(Ω); for space H0 = L2 we
sometimes omit the subscript ”0”). By B(X, Y )
we denote space of linear, bounded operators
from a Banach space X into a Banach space Y .
The ”limiting absorption principle” is our main
assumption:
(LAP) There exist s1, s2, σ ∈ R, such that a
function:

(0, 1) 3 ε −→ R(λ± iε) := (H − λ∓ iε)−1,

R(λ ± iε) ∈ B(L2,s1(Ω), L2,s2(Ω)) has a limit at
point ε = 0. For any f ∈ L2,s1(Ω) the functions:

u± = R±(λ)f := lim
ε→0

R(λ± iε)f

verify the differential equation (1). Moreover
there exist R0 > 0 and functions k±λ : ER0 → C
such that, the following generalized Sommerfeld
condition holds:

D±
λ u± ≡ ∂u±

∂r
− k±λ (x)u± ∈ L2,σ(ER0),

where ER0 = {x : |x | > R0}. Finally ∃K > 0
such that:

‖u± ‖0,s2 + ‖D±
λ u± ‖0,σ ≤ K‖f ‖0,s1

The next assumption is connected with proper-
ties of function kλ typical for any (LAP).
(K) ∃ c1, c2 > 0 such that

1. k+
λ = k−λ

2. ±Im k±λ (x) ≥ c1

3. |k±λ (x) | ≤ c2

The last assumption is related to the properties
of the potential and practically does not give ad-
ditional constraint on class of potential as typi-
cally (LAP) holds under similar conditions.
(Q) (a) ∀R > 0 ∀ε > 0 ∃c > 0 ∀ϕ ∈ H1(BR)∫

BR

q|ϕ |2 ≤ ε

∫
BR

|∇ϕ |2 + c(ε, R)
∫

BR

|ϕ |2

(b) ∀R > 0 ∃c > 0 ∀ϕ ∈ H1(BR)

‖qϕ‖0 ≤ c‖ϕ‖1.

(c) ∃R0 > 0 ∀R > R0 ∃c > 0

‖q‖L∞(BR−1,R+1)
≤ c,

where Br,R = {x : r < |x | < R}.
The assumpton (Q)(a) is satisfied for example
under following conditions:
q ∈ Lp + L∞, where p > n/2 for n ≥ 4 and p =
2 for n ≤ 3. Also Stummel functions satisfy
(Q)(a) [12]. Condition (Q)(b) assures that mul-
tiplication operator (by potential) is bounded in
Sobolev space, while (Q)(c) means that the po-
tential is locally bounded in some sense. To il-
lustrate our considerations we will assume, that
potential q is one of the following type:
(SR) ”short range”: |q(x) | ≤ c(1 + |x |)−1−δs

(LR) ”long range”: |q(x) | ≤ c(1 + |x |)−δl and

| ∂q
∂r (x) | ≤ c(1 + |x |)−1−δl

(OSC) ”oscillating”: |q(x) |≤c,

| ∂q
∂r (x) |≤c(1 + |x |)−1 and for some a > 0

| ∂2q
∂r2 (x) + aq(x) | ≤ c(1 + |x |)−1−δo .

Then the limiting absorption principle is valid in
the space B(L2,s, L2,−s) for some s > 1/2 (s de-
pends on δ) [6,9,11]. The radiation condition is
satisfied with the following functions kλ:
(SR) and (LR) k±λ = ±i

√
λ− n−1

2r

(OSC) k±λ = ±i
√

λ− wq(x) − n−1
2r + w∂rq

4(λ−wq)

where w = 4λ
4λ−a .

At the end of this section we formulate simple
lemma.

Lemma 1 ∀f ∈ L2,s(Ω) ∃(rn →∞) such that,

r2s+1
n

∫
Srn

|f |2dSrn → 0.
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3 Analytical approximation
The analytical approximation problem is defined
as follows:

Find u ∈ H2(ΩR) (ΩR = Ω ∩BR) such that:

(−∆ + q(x)− λ)u±R(x) = f(x) in ΩR, (2)

Bu±R(x) = 0 on ∂Ω,

D±
λ u±R = 0 on SR.

It can be shown that (2) has unique solution un-
der conditions (LAP), (K) and (Q) [8,10]. Let
e±R = u±−u±R be the error between original solu-
tion of (1) and analytical approximation of (2).

Theorem 1 Let the assumption (LAP), (K)
and (Q) be satisfied. Then ∃(Rn →∞)

Rσ+1/2
n ‖e±Rn

‖L2(SRn ) → 0.

Proof. The error eR(x) verifies the following
equations (we omit the subscript ±):
(−∆ + q − λ)eR = 0 in ΩR

BeR = 0 on ∂Ω
DλeR = Dλu on SR.
Multiplying the first equation by eR, integrat-
ing it and taking imaginary part, from (K) and
Schwartz’s inequality we get:

‖eR ‖L2(SR) ≤ c‖Dλu‖L2(SR). (3)

Hence the result is an obvious consequence of
the assumption (LAP) and Lemma 1.

Now we give variational formulation of our
problem. Further on we assume that Robin con-
dition on ∂Ω is imposed. Dirichlet and Neu-
mann conditions can be treated in the same way.
Firstly we define a space:

VR =

{
{u ∈ H1(ΩR) : u = 0 |∂Ω} if Bu = u
H1(ΩR) otherwise

and bilinear forms aR, bR : VR × VR → C:

a±R(u, v) =
∫

ΩR

(∇u∇v + c0uv) +
∫

∂Ω

duv −
∫

SR

kλuv

where the constant c0 is taken in such a way
that the form a±R in VR-elliptic i.e. |aR(u, u) | ≥
m‖u‖1

2 for some m > 0 (for a choice of c0 see
[10]).

bR(u, v) =
∫
ΩR

(q − λ− c0)uv

The form bR in virtue of (Q) is bounded in VR.
Then the functions u±, u±R, e±R satisfy the follow-
ing equations respectively:

a±R(u±, v)+bR(u±, v) = (f, v)+
∫

SR

D±
λ u±v (4)

a±R(u±R, v) + bR(u±R, v) = (f, v) (5)

a±R(e±R, v) + bR(e±R, v) =
∫

SR

D±
λ u±v (6)

for any v ∈ VR.
Our main theorem can be formulated as follows:

Theorem 2 Let the assumptions (LAP), (K)
and (Q) be satisfied with (LAP) holding in the
space B(L2,s, L2,−s) (s > 0). If f ∈ L2,s then the
following estimate is valid:

‖e±R ‖0,−s ≤ (c1 +
c2

Rσ
)‖D±

λ u‖L2(SR)

for some constants c1, c2 > 0 and R > R0 > 0.

Proof (sketch). Let us begin with the well known
formula (we consider the + case):

‖e+
R ‖0,−s = sup

g∈C∞0

|(e+
R, g) |

‖g‖0,s

Using (LAP) we can assume, that g = (−∆+q−
λ)u−. Integrating by parts we get from (4,5,6)

‖e+
R ‖0,−s = sup

g

|(e+
R, (−∆ + q − λ)u−)) |

‖g‖0,s
=

= sup
g

|
∫
SR

D+
λ u+u− −

∫
SR

e+
RD−

λ u− |
‖g‖0,s

≤

≤ sup
g

‖D+
λ u+ ‖SR

‖u− ‖SR

‖g‖0,s
+

+sup
g

‖e+
R ‖SR

‖D−
λ u− ‖SR

‖g‖0,s

From previous theorem it follows that

‖e+
R ‖SR

≤ c‖D+
λ u+ ‖SR

sup
g

(
‖u− ‖SR

‖g‖0,s
+

+
‖D−

λ u− ‖SR

‖g‖0,s
)

Taking imaginary part in (4) for v = u− we get:

‖u− ‖SR

2 ≤ c(‖D−
λ u− ‖SR

‖u− ‖SR
+ |(g, u−) |)
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which gives ‖u− ‖SR
≤ c(‖D−

λ u− ‖SR
+ ‖g‖0,s).

In this manner we obtain:

‖eR ‖0,−s ≤ c‖D−
λ u+ ‖SR

·

· sup
g

‖D−
λ u− ‖SR

+ ‖g‖0,s

‖g‖0,s

where constant c does not depend on R. From
trace theorem it can be concluded that (see [10]):

‖D−
λ u− ‖SR

≤ c‖u− ‖2,BR−1/2,R+1/2

where again constant c is independent of R. From
a priori estimates [10] for some T > 1/2 (inde-
pendent of R) we have:

‖D−
λ u− ‖SR

≤ c(‖g‖0,BR−T,R+T
+‖u− ‖0,BR−T,R+T

)

In order to estimate the norm ‖u− ‖0,BR−T,R+T

we will integrate (3) with respect to r over
(R− T,R + T ). Hence from (LAP) we obtain:

‖u− ‖0,BR−T,R+T

2 ≤ (c1 +
c2

R2σ
)‖g‖0,s

2

This implies the desired result.

It should be stressed that all the constants can
be calculated explicitly. As a consequence of the
theorem we can easily get the following corollar-
ies:

Corollary 1 For the oscillating potential
∃(Rn →∞) :

R2s−3/4
n ‖e±Rn

‖0,−s → 0.

Corollary 2 For the potential q with compact
support the following inequality holds:

‖e±R ‖0,−s ≤
c

R2
.

Proof. This is consequence of theorem 2 and well
known inequality [8]:

|D±
λ u± | ≤ c

(1 + R)(n+3)/2
.

The second corollary is particularly useful in
practical cases. Theorem 2 makes it also possible
to obtain estimates for resolvent operators:

Lemma 2 Let the assumptions of theorem 2 be
fulfilled. Then for sufficiently large R the follow-
ing estimate is valid:

‖(H±
R − λ)−1 ‖B(L2,s,V −s

R ) ≤ (c1 +
c2

R2σ
).

where H±
R = −∆ + q with domain D(H±

R = {u ∈
H2(ΩR) : Bu = 0, D±

λ u = 0} and V s
R denotes the

space VR with the norm:

‖u‖1,s =
√∫

ΩR

(|u |2 +
∑

i

| ∂u
∂xi

|2)(1 + |x |)2s.

Proof. Estimate for resolvent in the space
B(L2,s, L2,−s) can be proved from estimates for
D±

λ u± obtained in the proof of Theorem 2. In
order to get such inequality in the B(L2,s, V −s

R )
additional a priori estimates are needed:

‖uR ‖1,−s ≤ c(‖uR ‖0,−s + ‖f ‖0).

We omit this proof (see [10]).

Corollary 3 Under the assumptions of theorem
2 the following estimate holds:

‖e±R ‖1,−s ≤ (c1 +
c2

Rσ
)‖D±

λ u‖L2(SR)

for some constants c1, c2 > 0 and R > R0 > 0.

Proof. This is consequence of previous lemma
and theorem 2.

4 Discrete approximation
In this section we apply the Galerkin method to
the analytical approximation problem. Further
on we treat the + case only and omit this sub-
script. We use the following assumption:
(P) Let (Vh) be a set of closed subspace of VR,
such that the aR-projection Ph : VR → Vh de-
fined by the formula:

aR(Phu, vh) = aR(u, vh) ∀vh ∈ Vh

tends strongly to identity as h → 0, i.e.

∀u ∈ VR lim
h→0

‖u− Phu‖1 = 0.

The condition is satisfied, for example, when Vh

is a set of piecewise linear continuous functions
on uniformly regular triangulations of ΩR - as in
finite element method (FEM). It is obvious that
[4]:

1. ‖Ph ‖ ≤ C

2. inf
vh∈Vh

‖u− vh ‖1 ≤ ‖u− Phu‖1 and

‖u− Phu‖1 ≤ c inf
vh∈Vh

‖u− vh ‖1
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The discrete approximation leads then to the
problem:

Find uR,h ∈ Vh such that ∀vh ∈ Vh holds:

aR(uR,h, vh) + bR(uR,h, vh) = (f, vh) (7)

Then it can be shown that the following theorem
is true [10]:

Theorem 3 Let the asumptions (LAP),(Q),(K)
and (P) be fulfilled and uR be the solution of an-
alytical approximation problem. Then for suf-
ficiently small h variational problem (7) has a
unique solution uR,h and the following estimate
is valid:

inf
vh∈Vh

‖uR − vh ‖1 ≤ ‖uR − uR,h ‖1 ≤

≤ c(R) inf
vh∈Vh

‖uR − vh ‖1

In this theorem constant c depends on radius R.
In the rest of this section we shall give a similar
theorem but with constant c independent of R.
For the sake of convenience we reformulate our
problem in such a way that the solution could
be estimated in the norm without the weight.
Putting uR = χwR, where χ is a positive C2-
function such that:

χ(x) =

{
1 for |x | ≤ R0

(1 + |x |)s for |x | ≥ R0 + 1

the analytical approximation problem takes the
following form:

(−∆+q(x)−λ−∆χ

χ
)wR−

2∇χ · ∇wR

χ
=

f

χ
≡ g,

DλwR ≡
∂wR

∂r
− (kλ −

s

1 + |x |
)wR = 0 on SR,

BwR = 0 on ∂Ω (8)

It is obvious that ∃c1, c2 > 0 (independent of R)
such that:

c1‖wR ‖1 ≤ ‖uR ‖1,−s ≤ c2‖wR ‖1

Let us define accordingly two bilinear forms
aR,bR : VR × VR → C:

aR(w, v) =
∫
ΩR

(∇w∇v − ∆χ

χ
wv − 2∇χ · ∇w

χ
v)

+
∫
ΩR

c0wv −
∫

SR

kλwv +
∫

∂Ω
dwv

b(w, v) =
∫
ΩR

(q − λ− c0)wv

with appropiate choice of c0. Then both forms
are bounded and form aR is coercive.
Analytical approximation problem can be formu-
lated as follows:

Find wR ∈ VR such that ∀v ∈ VR

aR(wR, v) + bR(wR, v) =
∫
ΩR

gv (9)

Let us also define an operator AR := −(∆w +
∆χ
χ w + 2∇χ·∇w

χ ) + c0w with the domain:

D(AR) = {w ∈ H2(ΩR) : Bw = 0,Dλw = 0}

Instead of (P) we introduce the following as-
sumption (typical for FEM [4]):
(ES)

∀u ∈ D(AR) inf
vh
‖u− vh ‖1 ≤ ch‖ARu‖0

If conditions (LAP) and (K) are satisfied, then
(ES) implies analogous inequality for dual oper-
ator A∗R:

∀u ∈ D(A∗R) inf
vh
‖u− vh ‖1 ≤ ch‖A∗Ru‖0.

The discrete approximation can be rewritten as
follows:

Find wR,h ∈ V h such that ∀vh ∈ Vh:

aR(wR,h, vh) + bR(wR,h, vh) =
∫
ΩR

vv (10)

Existence and uniqueness of solution of (10) eas-
ily follows from (8,9) and previous considera-
tions.

Theorem 4 Let the asumptions (LAP),(Q),(K)
and (ES) be satisfied with (LAP) holding in
B(L2,s, L2,−s), (s > 0) . Let wR,h and u be the
solutions of discrete approximation and original
respectively. Then for sufficiently small h the fol-
lowing inequality holds:

‖w − wR,h ‖1 ≤
1

c3 − c4hR2s
(c1 inf

vh
‖w − vh ‖1+

c2(1 + hR2s)‖Dλu‖SR
)

where w = u
χ and constants c1, c2, c3, c4 are inde-

pendent of R.
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Proof (sketch). Let us notice that ∀v ∈ VR the
function w satisfies:

aR(w, v) + bR(w, v) = (g, v) + (Dλw, v)L2(SR)

Then from coercivness of aR, (Q) and theorem 2,
after some manipulations we can get:

c1‖w − wR,h ‖1
2 ≤ c2[(‖w − vh ‖1 + ‖Dλw‖0,SR

)·

·‖w − wR,h ‖1 + ‖Dλw‖0,SR
‖w − vh ‖1+

+(1 + R−2σ)‖Dλu‖0,SR

2 + ‖w − wR,h ‖0]

The last term can be estimated by Aubin-
Nietzche trick and corollary 3 as follows (for de-
tails see [10]):

‖w − wR,h ‖0 ≤ c(‖Dλu‖0,SR
+ ‖w − wR,h ‖1)Fω

where Fω = sup
φ∈L2

inf
vh

‖ωR,h − vh ‖1

‖φ‖0
and ωR,h is a

solution of a dual problem i.e. ∀v ∈ VR

aR(v, ωR,h) + bR(v, ωR,h) = (φ, v).

Now making use of resolvent estimates (lemma
2) and assumption (ES) we can get: Fω ≤
ch(1 + R−2σ)R2s ≤ chR2s. Hence for sufficiently
small h we get:

(c1 − c2hR2s)‖w − wR,h ‖1
2 ≤ c3(‖w − vh ‖1+

+‖Dλu‖0,SR
)‖w − wR,h ‖1+

+c4‖Dλu‖0,SR
‖w − vh ‖1+

+c5(1 + h2R2s)‖Dλu‖0,SR

2.

After solving this inequality we get the result.

5 Conclusions
In the paper some estimates for approximation of
the scattered waves of Schrödinger equations by
means of generalized Sommerfeld condition have
been proven. It should be stressed that presented
methodology allows for obtaining analoguous re-
sults for much wider class of potentials under
similar conditions [10]. In particular it concerns
exploding potential as ”limiting absorption prin-
ciple” also holds for such potentials [2,3]. In or-
der to deal with this the assumptions (K2) and
(Q)(c) should be modified in such a way, that
the constants are replaced by functions depend-
ing on radius. Then all theorems remain valid
with more complex expressions in the estimates.
For practical reasons it may be convenient to in-
troduce the function ρ of C2 class such that:

ρ(x) =
∫ r

R0

kλ(tω)dt for |x | ≥ R0,

ρ(x) ≡ 1 on SR0 and |ρ | > c > 0,

where spherical coordinates are used in the inte-
gral. Then ∂ρ

∂r = −kλρ for |x | > R0. Putting
vR = ρuR we get DλuR = ∂vR

r∂r . This proce-
dure can be applied for sufficiently smooth kλ

and eliminates integral over SR, which simplifies
numerical realisation.
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