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Abstract:- In this paper, {α, k}-group periodic matrices are introduced and analyzed. Using
different approach (as {1}-inverses, Moore-Penrose inverse, elementary matrices, left and right
inverses and singular value decomposition) we characterize this kind of matrices. Some results
presented are an extension of those known about group inverse and group periodic matrices.
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1 Introduction

It is well-known that a matrix A ∈ Cn×n is said
to be involutory if A−1 = A and periodic if Ak =
In, for some k ∈ N, where In denotes the n × n
identity matrix.

In 1998, group involutory matrices (that is,
square matrices which coincide with its group in-
verse) were introduced and characterized in [4].

In [2], the authors have introduced group pe-
riodic matrices and furthermore they gave some
characterizations of this kind of matrices.

In 2001, Drazin involutory matrices and Moore-
Penrose involutory matrices were introduced and
characterized in [8], together with another charac-
terization of group involutory matrices.

In this work, {α, k}-group periodic matrices will
be studied. This new kind of matrices is an exten-
sion of those presented in [2, 4, 8] and they permit
to say when a group inverse is a monomial term.
The motivation of this work arises from the fact
that the group inverse of a matrix A ∈ Cn×n is a
polinomial in A (see [1]).

Some neccesary and sufficient conditions are de-
veloped from different points of view. That is, we
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will characterize {α, k}-group periodic matrices in
terms of different representations of the group in-
verse of a square matrix.

Some obtained results about group inverse or
Drazin inverse can be applied to give the general
solution of singular control time-invariant systems
(see [5, 9]) or they can be used to give the solution
of a subclass of them as for instance: symmetric
singular control systems (see [3]).

2 {α, k}-Group Periodic Matrices

We recall that the group inverse of a square ma-
trix A ∈ Cn×n is the unique matrix X ∈ Cn×n

satisfying AXA = A, XAX = X and AX = XA
and it is denoted by A#. It is well-known that A#

there exists if and only if rank(A2) = rank(A) (see
[1]).

We start this section with the following defini-
tion which indicates when a group inverse matrix
coincides with a monomial term.

Definition 1 Let A ∈ Cn×n, k be an integrer
number, k ≥ 2, and α ∈ R. The matrix A is said
to be {α, k}-group periodic matrix if A# = αAk−1.



In order to ilustrate the definition we give the
following example.

Example 1 The group inverse of the matrix

A =

 1 −1 0
0 1 0
1 0 0


It is easy to see by induction that its powers are

Ak =

 1 −k 0
0 1 0
1 1− k 0

 , k ≥ 1.

Comparing the expressions for A# and Ak, we de-
duce that there not exist an integer k ≥ 2 and a
real α such that A is {α, k}-group periodic matrix.

Example 2 It is easy to see that the matrix

B =
[

0 −1
0 −i

]
∈ C2×2

is {1,3}-group involutory matrix.

Observe that if k = 2 and α = 1, this concept co-
incides with the particular case of group involutory
matrices studied in [4] and if α = 1 and k > 2, it
coincides with the group periodic matrices studied
in [2].

We will stand for G1(A) the set of all {1}-inverses
of A, that is matrices A− such that AA−A = A and
for A† the Moore-Penrose inverse of A (see [1]).
Moreover, QA = In − AA†, QA∗ = In − A∗(A∗)†,
NR is a right inverse of N and ML is a left inverse
of M . The remainder notation used in this paper
can be found in [4].

In the following result we present several equiv-
alent conditions to that given in the definition 1.

Theorem 1 Let A ∈ Cn×n, k ∈ N, k ≥ 2. Then
the following conditions are equivalent.

(a) A is a {α, k}-group periodic matrix,

(b) αAk−1 = A−AA−, where A− ∈ G1(A) satis-
fies AA− = A−A,

(c) αAk−1 = AAA, where

A =(A† + W1QA + QA∗W2),

and W1,W2 ∈ Cn×n satisfy

AA† + AW1QA = A†A + QA∗W2A,

(d) αAk−1 = A− + X − A−AXAA−, where X
satisfies

A−AA− + A−AX −A−AXAA−

+XAA− + XAX =

= XAXAA− + A−AXAX

−A−AXAXAA− + A− + X,

and

AA−+AX(I−AA−) = A−A+(I−A−A)XA,

(e) if W = (Q1P1A1)k−1Q1 then[
A−1

1 X
Y Y A1X

]
= α

[
WP1 W1P2

ZQ1P1 ZQ1P2

]
,

where X, Y satisfy

QP

[
I A1X
O O

]
=

[
I O

Y A1 O

]
QP,

and

Z =
{

Z1 if k is odd
Z2 if k is even

Z1 =
(k−1)/2∏

i=1
Q2PAQ1PA

Z2 =

[
(k−2)/2∏

i=1
Q2PAQ1PA

]
Q2PA

where PA = P1A1,

(f) αAk−1 = N−1
R M−1

L , where MM−1
L = N−1

R N ,

(g) if X, Y satisfy

U1U
∗
1 + U1ΣXU∗2 = V1V

∗
1 + V2Y ΣV ∗1 ,

then

α(U1ΣV ∗1 )k−1 = [V1Σ−1 + V2Y ][U∗1 + ΣXU∗2 ]

(h) the series X+(I−XA)X+(I−XA)2X+· · ·
converges to the matrix αAk−1, if conditions
(a), (b), (c) and (d) of theorem 6 of [4] hold.



Sketch of the proof: Since the complete prove
is so long, we only present a sketch of it.

Different representations of a group inverse are
used to prove the equivalences (a)-(g). Further-
more, to establish the equivalence between the con-
ditions (a) and (e) it is neccesary to show (by in-
duction) that(

QP

[
I A1X
O O

])k−1

QP =

[
(Q1PA)k−1Q1P1 (Q1PA)k−1Q1P2

ZQ1P1 ZQ1P2

]
,

where PA = P1A1.

In the same way, to establish the equivalence
between the conditions (a) and (g) it is neccesary
to show (by induction) the following relation(

U

[
Σ O
O O

]
V ∗

)k−1

= (U1ΣV ∗1 )k−1.

This complete the proof.

3 Some applications

Firstly, we give an application related to solution
of singular systems.

Consider an autonomous singular system

Ex (k + 1) = Ax (k) .

If there exist λ ∈ C, such that det(λE −A) 6= 0,
then the system has a solution using the matri-
ces Ê = (λE −A)−1 E and Â = (λE −A)−1 A.
The solution of this system can be easly computed
when Ê is an {α, k0}-group periodic matrix, and
this solution is given by

x (k) = αkÊ(k0−1)kÂkx (0) , k ≥ 1.

Note that, a direct property of an {α, k}-group
periodic matrix is that, E = αEk+1. So, if consider{
Ek

}∞
k=0

, with E an {α, k}-group periodic matrix,
we only have a finite number of different powers in
the sequence. This fact can be used to calculate
the above solution.

On the other hand, the finite Markov chains are
one of the most interesting applications of the gen-
eralized inverses. In this theory the stochastic ma-
trices play an important role. We remain that a
stochastic matrix is a matrix

P = [pij ]
n
i,j=1

such that 0 ≤ pij ≤ 1 and

n∑
i=1

pij = 1, j = 1, 2, . . . , n.

It is well-known that if P is a stochastic matrix
and if A = I − P , then ind(A) = 1, see [6]. This
fact does that the group inverse can be used in
some problems involving stochastic matrices.

Furthemore, in the study of Markov chain, fre-
quently appears the matrix I −AA#, because this
matrix is the result of different limiting processes.
For instance, see [6],

lim
n→∞

I + P + · · ·+ Pn−1

n
= I −AA#

where P is a stochastic matrix and A = I − P.

If our matrices are {α, k}-group periodic matri-
ces, it is clear that above calculation can be re-
duced.

We clarify these comments with one example.

Example 3 If the stochastic matrix P is given by

P =

 0.5 0 0
0.5 1 0
0 0 1


then

A = I − P =

 0.5 0 0
−0.5 0 0

0 0 0

 .

Note that, the matrix A is a {4,2}-group periodic
matrix, since A# = 4A. Then,

lim
n→∞

I + P + · · ·+ Pn−1

n
= I − 4A2

=

 0 0 0
1 1 0
0 0 1

 .



4 Conclusions

In this work, we introduced {α, k}-group peri-
odic matrices as an extension of those given in
[2] and [4]. We have found neccesary and suffi-
cient conditions which characterize these new kind
of matrices. Different factorizations of the group
inverse (involving {1}-inverses, Moore-Penrose in-
verse, elementary matrices, left and right inverses
and singular value decomposition) have been used
to give characterizations of the {α, k}-group peri-
odic matrices.
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