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Abstract: In this paper we extend our work, finding the norm of the Hilbert Matriz operator,

to the weighting sequence spaces d(w, p), with the weighting sequences w = (w,,) defind
either w, = 1/n“ or W,, = n'~«.
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1. Introduction

In [Lash 1,2,3], the author determined the
norms and lower bounds of the Hilbert, Copson
and averaging operators on the Lorentz sequence
space d(w, 1), with the weighting sequence (wy,)
defined either by w, = 1/n® by or W,, = n!™9,
where W), = wy + -+ + wy, (the second choice
arises as “naturally” as the first in the context
of Lorentz spaces). In the present paper, we
address the problem of finding the norm of the
Hilbert operator in the case p > 1. The problem
of lower bounds was considered in [JL].

We consider one version of the Hilbert oper-
ator (which we denote by H). The classical in-
equality of Hilbert describe the norm of this op-
erator on ¢, (where p > 1). Solutions to our
problem need to reproduce this inequality when
we take w, = 1, and the results of [Lash 1,2,3]
when we take p = 1. The norms of this opera-
tor on d(w,p) are determined by their action on
decreasing, non-negative sequences. In the case
p =1, the norms are already determined by the
elements e; + --- + e,. This is no longer true
when p > 1, and consequently the methods of
[Lash 2,3] no longer apply. Some estimations
for norms of operators on £,(w) have been given
in [AH] and [Benn 1,2]. These take the form of
equivalent expressions in terms of the weighting
sequences. However, they do not really help with
the specific problems considered here: typically,
they simply transfer the problem to evaluation
of other, equally difficult, upper bounds.

The most closely analogous problem for the
continuous case is to find the norms of the
corresponding operators on the weighted func-
tions spacesLy(w) (rather than Lorentz func-
tion spaces), restricted to decreasing functions.
There is an extensive literature on such opera-
tors(e,g. [AH], [AM], [HK], [Muck]). Our two
special choices of w are alternative analogues
of the weighting function 1/2%and the continu-
ous analogous of our problem have solutions that
are either known explicitly or follow easily from
known results. For the Hilbert operator H, the
bilinear method can be adapted to show that the
value from the continuous case is reproduced: for
either choice of w,
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2. Preliminaries

For a sequence z = (z,), we define |z| and
the relation # < y in the obvious way. We
denote by e; the sequence having 1 in place j
and 0 elsewhere. Let w = (w,) be a decreas-
ing, non-negative sequence with lim;,_,,, w, =0
and Y 77, wy, is divergent. The Lorentz sequence
space d(w,p) is then defined as follows. Given a
null sequence = = (z,), let (z}) be the decreas-
ing rearrangement of |z,|. Then d(w,p) is the
space of null sequences x with norm
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Now counsider the operator 1" defined by T'x =
y, where y; = 3% t; joj. We denote ||T'[|,, the
norm of 7" as an operator from d(w,p) to itself.
We assume throughout that ¢; ; > 0 for all ¢, 7,
which implies in each case that the norm is de-
termined by the action of 7' on non-negative se-
quences. In the next lemma, we establish con-
ditions, adequate for the operators considered
below, guaranteeing that ||T'||,,, is determined
by decreasing, non-negative sequences (more gen-
eral conditions are given in [Lash 1], Proposition
1.4.1).

Lemma 2.1. Suppose that T, given by the

matrix (t; j), maps d(w,p) into d(w,p). Write
— m .

Cm,j = 2 iw1 tij- Suppose that:

(i) ti; >0 for all i,5;
(i

) limj o t; ; = 0 for each i; and either
(iii) ¢;; decreases with j for each i, or
)

(iv) t;; decreases with ¢ for each j and ¢, ; de-

creases with j for each m.

Then [7(e)|up > [7(@)lup for all non-

negative elements z of d(w,p).

Proof. Let y = T'(x) and z = T'(x*). As before,
write X; = x1 + -+ + z;, etc. First, assume con-
dition (iii). By Abel summation (which is valid
because of condition (ii)), we have
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and similarly for z; with X* replacing X;. Since
X;j < X7 for all j, we have y; < z; for all ¢, which
implies that ||y||w,p < ||2]|wp- Now assume (iv).
Then y; and z; decrease with ¢, and
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and similarly for Z,,. Hence Y,, < Z,, for all
m. By the majorization principle (also known
as Karamata’s inequality) (e.g. [BB, 1.30]), this
implies that >/, ¢¥ < Y, 2P for all m, and
hence by Abel summation that [|y|lyp < [|2]|wp-
O

Under the condition of Lemma 2.1, it will be
sufficient to consider the action of 1" on decreas-
ing, non-negative sequences in d(w,p). Evalua-
tions in [Lash 1, 3] are based on the property,
specially for p = 1, that |7y, is determined
by the elements ¢; + - - - + e,,. These statements
fail when p > 1 (with or without weights). The
next example shows, in the setting of Hardy’s
inequality, this is not true when p > 1. Our
objective is to determine ||T'||,, for the Hilbert
operator. The “bilinear” method. The contin-
uous analogues of the problem considered here
can all be solved in a straightforward way by
this method (cf. [HLP], sections 9.2 and 9.3).
Here we describe a slightly generalized form of
the method for the discrete case.

Lemma 2.2. Let p > 1 and p* = p/(p — 1).
Let A be the operator with matrix (a; ), where
a;j > 0 for alli,j. Suppose that (s;), (¢;) are two
sequences of strictly positive numbers such that
for some K7, Ks:
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sy ity P < Ky forall,
j=1

o0
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Then for all non-negative sequences = € £,« and
y € Ly,

(0.0) (0.0)

1/p* ;-1
>3 wiaigy; < KKyl
i=1j=1

hence || A, < K1/7 K)/?.

Proof. We have x;a; jy; = ¢; jd; j, where

.. 1/p* 1/pp* —1/pp*
Cij = Ti G;l5 S tj ,
_ 1/p _—1/pp*,1/pp*
diyj == yj ai,j Si tj .

By Holder’s inequality (applied to the double
sum),
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The last statement follows by the duality of £,
and £,-. O

In many cases, this is applied with s; = ¢; =
j. We shall be particularly concerned with two
choices of w, defined respectively by w,, = 1/n®
(where 0 < o <'1) and by W,, = n!~@
(for 0 < a < 1). Note that the second definition
gives
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Several of our estimations will be expressed in
terms of the zeta function. It will be helpful to
recall that {(1+«) = 1/a+r(a) for @ > 0, where
1/2 <r(a) <1 and r(a) — v (Euler’s constant)
as a — 0.

Example. Let A be the averaging operator, de-
fined by y = Az, where y,, = %(:131 + -ty
By Hardy’s inequality, ||All, = p* (= p/(p —1)).
Let Then ||z,||)) = n, while

JA@lE = n+n?Y =

(The above inequality holds by integral estima-
tions.)

3. The Hilbert operator

We consider the Hilbert operator H, with ma-
trix h;; = 1/(i + j). This satisfies conditions
(i),(ii) and (iii) of Lemma 2.1. Hilbert’s classi-
cal inequality states that ||H||, = =/ sin(n/p) for
p > 1. For the Lorentz space d(w, 1), with either
of our choices of w, it was shown in [Lash 2] that

|H||w,1 = 7/sinamr. The analogous operator in
the continuous case is defined by

wp - [7 4,

By the Theorem 319 of [HLP], with

/P

K@) = ety
one can show that when w(z) = 1/x2%, we have
|H ||z, w) < m/sin[(1 — a)r/p]. As we show be-
low, this is the exact value, even when we restrict
to decreasing functions. Numerous studies have
been made of more general weighting functions
in the continuous case (e.g. [AH], [AM]). For the
discrete case, we will show that the above value
is correct with either of our choices of w. Our
method is a recognizable adaptation of that of
[HLP], though some exact care is needed to en-
sure that it applies to the case W,, = n!=®. Let
0 < a < 1. As with most studies of the Hilbert
operator, we use the well-known integral
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Write

Note that y, > 1/n®.

Lemma 3.1.
each j > 1,

With this notation, we have for
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Proof. Clearly,
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The statement follows, by the integral quoted
above. Now let 0 < o < 1. Write u, = y, and
vp = (1 — a)uy. In our previous terminology, v
is our “second choice of w”. Clearly, an opera-
tor will have the same norm on d(v,p) and on
d(u,p). Note that by Holder’s inequality for in-
tegrals, u;, <y, for r > 1. Theorem 3.2. Let

H be the operator with matrix h; ; = 1/(i + j),



and let p > 1. Let 0 < @ < 1, and let w, = 1/n®
and u, = [ t~%dt(or W,, = n{1=®). Then

sin[(1 — a)m/p]’

Also, if w,, = n®, where 0 < a < p — 1, then

1]

w,p — ||H||up =

™

1l = sin[(1 4+ a)n/p

Proof. (i) Write M = «/sin[(1 — a)n/p]. Let
wp, =n"% where 1 —p < a <1. Now ||[H||y,p =
|B||p, where B has matrix b; j = (5/4)*/? /(i +7).
In Lemma 2.2, take s; = t; = 4, and let K1, Ko
be defined as before. Then

b Mpip L (z‘)“‘“’“’
iij,L- t] = — | = .
t+7 \J
By Lemma 3.1, it follows that K1 < M. Simi-
larly, Ko < M. Now let 0 < a < 1, and let u,w
be as stated. We show in fact that || H ||,y <
M. It then follows that ||H|,, < M, since
|lz]lw,p < ||#]lup for all . Note that ||H |y up =
B||p, where now

r .
b’i;j = ,L_i_](]aul)l/p

Take s; = u{l/a and t; = j. Then

bij(si/t;)'/? = Z._i_j(jaui)(a*l)/ap_

By Lemma 3.1,
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Since i1 < u;/a, we have i(@=1)/p < uz(lfa)/‘lp7
and hence K1 < M. Also,
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Note that £ > 1, so as remarked above, we have
u! < y;. By Lemma 3.1 again,
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where M' = 7/ sin atw. Now

«a 1 l-«a
at=—+—=1- :
p p p
so that M’ = M, and hence K, < M. The
statement follows.

(ii) To show that equality holds, we must show
that there is a decreasing sequence z such that
|Hz||wp/||z||wp is arbitrarily close to M (and
similarly with u replacing w). For the moment,
consider w. Take r = (1 —«)/p, so that a+1rp =
1. Fix N, and let

[ 1/ forj <N,
TiT10  forj>n.

Then Z;-";lexg = Zjvzl % Let y = H(x).
Then for all 7,

Yoo N
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(with K as before). Also,
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so (again using the integral quoted above)

Now

M 1 1
By the elementary inequality
(a — z)P > aP — paP~ 'z, we have

yr >

MP  pMPL 1 1
4P l’r(p—l) :

a i—r) N

Since w; = 1/i* and a + rp = 1, we obtain

MP 1 1
P> ]\41’1( >
Wil = TP e N

Now

AR | N 1 N'
Z-HS/ o dt=——
= o t r



Hence
o0 N N 1
> wiy? > wiyh > MPY - — pMPT e,
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This proves the statement for w. Since
wy < uy < cwy for a constant ¢, a slight mod-
ification of the above reasoning gives the same
conclusion for u. O

Note. In the continuous case, the second half
of the proof must be modified slightly to ensure
convergence of the integral at 0. This is best
achieved by taking « + rp = 1 4+ ¢ and defining
f(z)tobel/z" forz >1and 1 for 0 <z < 1.
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