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Abstract: - The performance of file sharing peer-to-peer systems depends to a large degree on the speed of lookup operation. A
number of proposed solutions rely on distributed hashing techniques. Traditionally nodes are assigned fixed length identifiers
which does not allow the hash table to expand or shrink with the increase or decrease in the node count. With the fixed length
identifiers, the performance deteriorates when the number of nodes reaches a high value. On the other hand, the overhead of
maintaining per-node state (i.e., information of all adjacent nodes) can be unnecessarily large if the number of nodes is small.
We propose a way to combine the distributed and dynamic nature of the system in a way that allows large and unpredictable
changes in both the number and the distribution of nodes while providing scalability and good performance. Our approach
is based on dynamic distributed hashing techniques; node identifier length varies with the number of nodes in the system.
Hence, the system can adapt to the changing conditions and maintain good performance. We also describe the operations of the
proposed adaptive system and verify its performance through simulations.
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1 Introduction

Peer-to-Peer (P2P) networks have recently gained a lot of
interest and are a target of numerous research. They are
instrumental in deployment of a number of large-scale dis-
tributed applications such as file sharing, distributed com-
puting and collaborative environments. The requirements for
P2P networks include good performance, self-organization,
good scalability and robustness. There are additional require-
ments depending on the focused application. One of the
major criteria for end-system multicast is the performance
penalty compared to network layer multicast [10]. The file-
sharing overlay performance evaluation is based on the path
length measured by the number of nodes traversed to reach
a node possessing the requested file. Path length determines
the speed of lookup operation performed to retrieve the file.
The cost in both overlay types is related to the per-node
state [19].

The speed of a lookup operation in file sharing overlays
depends on the method for determining the location of a re-
quested object and on the routing used to reach that location.
In Gnutella [1] flooding is used to search for the object. Nap-
ster [2] uses a central server that stores location of the avail-
able objects. Content addressable overlays [16, 18, 17, 20, 6]
determine objects location by applying a hash function to the
object’s key, e.g. file name. They model the overlay network
as a Distributed Hash Table (DHT). A typical design maps
both nodes and objects to a common address space. The as-
sociation between a node and an object is based on the nu-

merical relation between node’s and object’s hash identifiers
(addresses).

DHT-based systems are designed to handle changes in
the number of nodes by applying the idea of consistent hash-
ing [9]. The dynamic aspect of the system refers, however,
not only to the number of nodes, but also to the size of the
hash table. Having a fixed length identifier assigned to each
node, limits the number of nodes in the system because the
table cannot expand. In Chord [18], for example, the number
of nodes must be small enough to make the probability of
two nodes hashing to the same address negligible.

Most systems assume that the nodes are distributed
evenly in the hash table. This may not always be the case.
An uneven node distribution limits the number of nodes in
the system even more since it increases the probability of col-
lision. In systems such as CAN, where collisions do not take
place, an uneven node distribution degrades the performance
of a lookup process. The length of a path leading through
a densely populated region is longer. The problem has been
recognized mostly due to the potential load imbalance that
it can cause [15, 3]. The mechanisms developed to address
uneven node distribution include the idea of virtual peers in
Chord and assigning each peer several zones. Such a solu-
tion increases the per-node state considerably for all nodes in
the overlay.

The focus of our study is to propose a way to combine
the distributed and dynamic nature of the system in a way
that allows large and unpredictable changes in both the num-
ber and the distribution of nodes.We apply dynamic hash-
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ing techniques that allow the length of the identifier to vary.
As the number of nodes increases, their identifiers become
longer allowing the hash table to expand. The contraction
takes place when the number of nodes decreases. The sys-
tem benefits from having such adaptivity not only by being
able to accommodate a wide range of the number of nodes
without collisions but also by experiencing much slower per-
formance degradation as the number of nodes increases.

We address a number of issues that arise when such a
solution is applied in a distributed system. These include de-
ciding when the identifier length should be changed, what
the range of the change should be and who makes the deci-
sion. We describe modifications that have to be made to the
per-node state, as well as to the routing process. Nodes have
to be able to route message not only without knowing the
total number of nodes in the system, but also without know-
ing the exact length of nodes’ identifiers. We evaluate how
the additional dynamic characteristics of the system affects
its performance. We address also the issue of uneven node
distribution by allowing the length of the identifiers to vary
throughout the table.

The remainder of the paper is organized as follows. We
give a short summary of two DHT-based systems and dy-
namic hashing in Section 2. We describe how dynamic hash-
ing can be applied to CAN in Section 3. Section 4 contains
performance evaluation. In Sections 5 and 6 we present some
simulation results and offer some conclusions.

2 Related Work

Although we are addressing the general dynamic nature of
P2P overlay networks, we briefly summarize CAN in this
section and use this system to illustrate our concept. We also
provide some background information on dynamic hashing.

2.1 Distributed Lookup Systems

The address space in CAN is represented by a virtual � -
dimensional Cartesian space. A node is mapped randomly
onto a point and assigned a zone in the vicinity. An ob-
ject’s address is obtained by applying a hash function to the
object’s key. The hash function yields � coordinates in the
virtual space. A node whose zone contains object’s address
stores the object.

Each node is aware only of the nodes whose zones are
adjacent to its own. Thus, the size of the routing table is
bounded by ������� . Routing is performed along a straight line
connecting a node and the destination. The number of hops
traversed to reach the destination is bounded by �������	 
 � ,
where



is the number of nodes.

The virtual space is always partitioned into a number of
zones equal to the number of nodes. When a new node joins
the system, it “collides” with one of the existing peer. Thus,

the number of zones has to be increased by splitting the “col-
lision” zone in half. When a node leaves the system, the
empty bucket is absorbed by one of the neighbors. Clearly,
there is no upper bound on the number of nodes. However,
as the number of nodes increases and their zone volumes
become smaller, the performance deteriorates. Traveling a
short distance in the virtual space may require traversing a
large number of nodes.

The path length depends not only on the number of nodes
but also on the number of dimensions, which determines the
degree of connectivity among nodes. It is recommended to
use a high number of dimensions if the number of nodes is
also high. However, it is impossible to choose an optimal
dimensionality if the number of nodes varies over time.

The possibility of uneven node distribution is addressed
by adding a new node to the largest zone in the neighborhood
of the randomly selected point. If we imagine the height of
a zone in a 2-d system to be inversely proportional to its
volume, we can say that the request rolls toward the low-
elevation large-volume zone. However, the request can eas-
ily get trapped in a local minimum. Hence, this solution can
smooth the node distribution only locally.

2.2 Distributed Dynamic Hashing

A number of techniques have been proposed for implement-
ing dynamic hashing [12, 5]. We briefly summarize two ap-
proaches: directory-based [7] and directory-less [13]. We
assume that each node (bucket) in a hash table can hold one
object.

In Extendible Hashing [7] a distinction is made between
the entries in a table (directory) and the buckets. The scheme
uses pointers to provide a level of indirection that allows
fewer buckets than directory entries to exist. If � bits are
used for addressing, a bucket with more than one pointer can
be addressed with a number of bits smaller than � . When
a collision occurs in such a bucket, a new bucket is created
and the pointers are “split” between these two buckets. A
collision in a bucket with one pointer is handled by doubling
the size of the directory, i.e., by adding one more bit to the
directory address space.

In Linear Hashing [13] the entries in the table are the
buckets. The table size is increased by splitting one entry at
a time when a collision occurs. Splitting an entry is realized
by appending a new entry to the table. The new entry has the
same address as the split one with a ’1’ prepended to it. The
identifier of an old entry is also extended by prepending � to
it. The entries are split in a round-robin fashion. Hence, the
entry that is split is not necessarily the one involved in the
collision.

Two features make the directory scheme more suitable
for our purpose. It allows entries with various lengths of the
identifiers to co-exist in the system, and the collision are re-
solved by splitting the bucket involved in the collision with-
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out a need for a temporary solution to accommodate the new
item.

Distributed versions of both dynamic hashing schemes
have been proposed in [14, 4, 8]. Since the centralized struc-
ture does not exist in the distributed system, the table is split
among multiple nodes. A two-level structure is used to lo-
cate the objects. An object is hashed into an entry contain-
ing a pointer to the actual bucket. In EH* [8] the directory
is collapsed into several cache tables to eliminate multiple
pointers pointing to the same entry. Each server is responsi-
ble for storing one cache entry and each server maintains a
replica of the directory containing pointers to buckets. Since
it is expensive to keep all replicas consistent, the information
can be inaccurate and addressing errors can occur. Another
approach is to have each node maintain only a small part of
the directory and keep it up-to-date. Such approach has been
adopted in some DHT-based P2P systems.

3 Dynamic Dimensionality

In the rest of the paper, for the convenience of presentation
we focus on applying dynamic distributed hashing to CAN
to address the dynamic aspect of the system. We examine
the “addressing” scheme in terms of the length of the node
identifiers and point out how it can be enhanced. Then we
discuss how this enhancement affects the operations of the
system and its performance.

3.1 Dynamic Hashing in CAN

A node in CAN is assigned to a single zone in a � -
dimensional space. Hence, its identifier consists of � coor-
dinates. More precisely, there is a range for each coordinate
specifying a width of the zone along a given dimension. This
range is represented by a binary string. A string consisting
of a single bit � corresponds to the maximum width along a
given dimension. When a zone is split between two nodes,
the node that gets the lower half appends a � to the binary
string for a dimension along which the split takes place, the
other node appends a � .

The current scheme allows adding nodes indefinitely.
The number of entries in the hash table is unlimited, but the
volume of the corresponding space is fixed. As the number of
zones increases and their volumes become smaller, the per-
formance worsens. Traveling a short distance in the virtual
space may require a large number of hops. In order to control
the path length and to improve the lookup time, we extended
dynamic hashing onto the number of dimensions. Our ap-
proach permits dynamic changes of the volume by varying
the dimensionality of the system.

When the partition of space becomes too fine, we in-
crease the volume of the space by adding another dimension.
The identifier of each node is extended by adding another

binary string. An increase in dimensionality results in the
higher node connectivity by increasing the number of neigh-
bors. Recall that routing table size is bounded by ������� . Con-
sequently, the path increases slower with the increase in the
number of nodes.

3.2 Node Density

We now proceed to answer the following two questions:
when a new dimension should be added and who makes that
decision. The number of nodes in the system is a good indi-
cator on how fine the partitioning of space is. Therefore, a
threshold on the number of nodes is used to control the di-
mensionality. Let


��
denote the threshold. Then, when the

number of nodes reaches

���

, the dimensionality is increased
from � to ����� .

Since the system is fully distributed a decision on dimen-
sionality adjustment has to be made in a distributed manner.
Each node computes an estimate of the total number of nodes
by calculating first a local node density, i.e., the number of
nodes per unit of volume. The calculation is based on the
knowledge of the system a node already has: knowledge of
its neighborhood. Then the total number of nodes is equal to
the local node density multiplied by the volume of the whole
space.

Note that if the distribution of nodes is uniform, all nodes
will have similar estimates and the system will quickly con-
verge to higher dimensionality. Otherwise, an increase in the
number of dimensions will be only local, affecting a small
volume of space. Therefore, the number of dimensions may
vary throughout the space. Dimensionality may be higher in
the more dense areas. This property is very useful in im-
proving the performance of the system with uneven node
distribution. It allows us to increase the connectivity only lo-
cally without imposing an unnecessary overhead in the whole
space.

node i node i

Figure 1: Calculating density in multiple dimensionality case

Since nodes of various dimensionalities may exist in the
system at the same time, the first step in assessing node den-
sity is the equalization of the number of dimensions through-
out the neighborhood. If node � has �
	 dimensions, it projects
any zone in its neighborhood with higher dimensionality into
��	 dimensions, and extends any zone with lower number of
dimensions into ��	 -dimensional space. A zone is extended
by assuming that it covers the whole range in each of the
additional dimensions. Figure 1 presents an example.
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An even distribution of nodes throughout the space is op-
timal for the path length. Hence, we want to maintain this
property by keeping the number of nodes along each dimen-
sion roughly the same. When a new dimension is added, the
subsequent zone splits are performed only along that new di-
mension in order to decrease the difference between number
of nodes along “old” and “new” dimensions. The threshold
 �

can be interpreted as a threshold on the number of nodes
along a single dimension.

3.3 Routing

Multiple dimensionalities of the space affect a number of
system operations. The detailed description of this effect can
be found in [11]. Here we describe only the changes to rout-
ing procedure. Routing follows a straight line through the
Euclidean space and the next hop is selected based on dis-
tance between a node and the destination. A node chooses
the neighbor which is the closest to the destination. as the
next hop. Having variable dimensionality throughout the
space poses the question how the distance should be calcu-
lated, i.e., what dimensionality should be assumed.

One approach to the problem is to use the maximum
number of dimensions

�������
by extending the zones with di-

mensionality lower than
�����	�

. We show that we can reduce
the computational cost of selecting the next hop by using lo-
cal dimensionality, i.e., the dimensionality of a neighbor.

Assume that the neighbor node’s dimensionality � is
lower than

� �����
. We use � coordinates of point 
 ,

��
����
	�����������
 � � , to calculate the distance and compare it
with the distance based on

� �����
coordinates. Let �

be the point in the node’s zone which is closest to 

in � -dimensional space. The distance between � and 

is then:

� ��� ��� 
 � � � ������� � ��� � � 
 � � � . When dimen-
sionality is extended to

�����	�
, we use all coordinates

of point 
 : ��
 � ��
 � ���������
 � ����������
	� �"!�# � . Now the point
��� � ��� � ����������� � ��
 �%$ � ����������
	� �"!&# � belongs to the zone and it is
the closest point to 
 in that zone. Hence, the distance is the
same in both dimensionalities.

4 Performance Comparison

In order to evaluate the performance of the dynamic system,
we compare it against the performance of the static system
with the same number of nodes. We assume that a central
mechanism is used to keep track of the number of nodes and
control dimensionality. Hence, the results presented here are
based on the asymptotic behavior of the dynamic system.

The path length is bounded in the following way. We first
find a bound on the path length that can be traveled in each
of the dimensions and then add these component. The path
length bound in the static system under the assumption of
even distribution is given by:

')( � 
 � ���+* ,--. �/
	�01� � �	 
 � � * 	 � �	 
 (1)

where



is the number of nodes and � is the number of di-
mensions.

The path length bound for a dynamic system is given by:

' � � 
 � 
 � �+* ,--. ��� � 
 � � � � 
 �� �32 


 �4�5�687 �� 9 � (2)

where

��

is the threshold on the number of nodes and � � 
 �
is the corresponding number of dimensions:

� � 
 �+*;:=<�>@? 5�A 
CB (3)

Figure 2 presents the comparison of the path length
bounds for static and dynamic system with threshold


 � *
� � . The number of dimensions �D*FE in the static system
is assumed optimal for a � � � � nodes. The dynamic system
uses smaller number of dimensions for


HG � � � � . There-
fore, path length is potentially longer than path length in the
static system but the size of the routing table maintained by
each node is smaller.
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Figure 2: Performance comparison for
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Since the selected threshold

��

is equal to �	 � � � � , both
system have the same path length bound for


 * � � � � . Be-
yond that point the path length bound for a dynamic system
is smaller since the dimensionality keeps increasing. The ta-
ble size in the dynamic system increases with the number of
nodes but only linearly.

4.1 Routing Table Size

There are two main differences between the static and the
dynamic system with respect to the routing table size. In the
static system the routing table size does not depend on the
number of nodes and is determined by dimensionality. In
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Figure 3: Comparison between static and dynamic system

the dynamic system the number of neighbors changes with
the number of nodes and is affected by the dimensionality
of the node’s neighbors. Consider a d-dimensional node,
which has neighbors with higher dimensionality. The num-
ber of neighbors of d-dimensional node is higher than in-
dicated by its dimensionality. On the other hand, a lower-
dimensionality neighbor generally does not have the oppo-
site effect on the number of neighbors.The dynamic system
has nodes with various dimensionalities present in the sys-
tem since the change of dimensionality occurs gradually. We
conclude that the average routing size table is higher than
indicated by the average dimensionality.

5 Simulation Results

We conducted a number of simulations to verify the perfor-
mance of the dynamic system. We examine how the perfor-
mance changes with the number of nodes and how it com-
pares to the performance of the static system.

5.1 Path Length and Routing Table Size

In the first set of tests, each node in the dynamic system eval-
uates the density based on the volume of its own zone and
uses


 � * � � as the threshold. Within the given range of
the node count ( ����� � � ), the dynamic system starts with
1 dimension and reaches dimensionality 5. Therefore, we
have included static systems with dimensionality 2, 3, 4 and
5 in the test. 1-dimensional system performance deteriorates
very quickly and thus was excluded. Figure 3(a) presents
the comparison between the average path lengths obtained in
both types of systems. The average path length is calculated
over a set of paths obtained by selecting a random destination
for each node in the system.

We observe that as the number of nodes increases, the
path length in the dynamic system outperforms static systems
with consecutive dimensionalities. First, the path length be-
comes shorter than in the 2-dimensional (2-d) system, then
it overtakes the 3-d system. The difference between the path
length in the dynamic system and in the 4-d system decreases
past the intersection point with the 3-d path length and we
expect the dynamic system to overtake the 4-d system for a
higher number of nodes. When the number of nodes reaches
6400 the dynamic system has mostly nodes with dimension-
ality 4 but the average path length is longer than that in the
4-d system. This is the price we pay for the dynamic sys-
tem’s ability to adapt. When the threshold


 �
is equal to 10,

we consider dimensionality � to be optimal for the number
of nodes � ����� 
 G � ��� . Hence, the performance of the dy-
namic system with respect to the path length is slightly below
optimal.

Figure 3(b) presents the comparison of the average per-
node state in the same settings. The average number of
neighbors increases with the number of nodes for both sys-
tems. It increases also with dimensionality in the dynamic
system. For the largest examined number of nodes (6400), it
is close to the number of neighbors in the 4-d system, and the
majority of nodes in the dynamic system have dimensional-
ity 4.

6 Conclusions and Future Work

We have presented how CAN can benefit from the idea of
dynamic dimensionality. By allowing the dimensionality to
vary with the number of nodes and throughout the space, the
system can adapt to dynamical changes in the set of nodes.
The size of the routing table maintained by each node is in-
creased compared to the system with static dimensionality
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but the performance measured by the path length is consid-
erably improved. The technique used to maintain dynamic
dimensionality is derived from dynamic hashing. It adapts
the length of identifiers of both data items and nodes, allow-
ing to control the access time.

To support the claim of broad applicability of dynamic
hashing to general distributed lookup systems, we briefly de-
scribe how Chord’s performance can be improved using dy-
namic hashing. Assume that � -bit identifiers are used. Once
the collision is encountered, the length of identifiers is dou-
bles by appending another � bits. In the geometric interpre-
tation, we create another ring and attach it to the the existing
node, say � , participating in the collision. This node belongs
now to two rings. The routing is done using � most signifi-
cant bits of the identifier. If item’s successor, node � , does not
have the item, it passes the request onto the second ring for a
similar routing procedure, this time using a second group of
� bits. Note that the secondary ring is 2-dimensional since
node � is potentially responsible for a set of data items. These
data items are now partitioned among nodes on the secondary
ring. The identifiers of nodes on the secondary ring have the
first � bits such that node � is their successor. The second
group of � bits can have an arbitrary value. New nodes,
whose successor is node � , are added to the secondary ring.
The procedure of extending the identifier can be continued
by adding more rings at different levels (dimensions). The
details of maintaining the connection between rings as well
as performance improvement that can be obtained are a sub-
ject of future work.
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