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Abstract: - In this paper, a neuro-fuzzy system identification using measured input and output data are carried 
out. A model-free learning from “examples” methodology is developed to train a neuro-fuzzy model of a small-
size helicopter. The helicopter model is obtained and tuned using training data gathered while a teacher operates 
the helicopter. Behavior-based model architecture is used, with each behavior implemented as a hybrid neuro-
fuzzy model. The neural network structure learns the parameters of the fuzzy membership functions and finally 
the fuzzy-based model works alone. The neuro-fuzzy architecture and the helicopter hardware system used to 
measure the sensors and command data are also described. The methodology has been successfully applied in the 
behavior-based model of a radio control model helicopter. The identified behavior model can be used in the 
position control also based on the neuro-fuzzy theory. 
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1   Introduction 
Recently, unmanned helicopters have been expected 
in the observation field namely for fire detection, 
rescuing and aerial photograph. For these 
monotonous or dangerous tasks, an autonomous flight 
control of the helicopter offers a major advantage 
over the airplane. With a suitable combination of 
sensors, the helicopter can move to a GPS waypoint 
and hover there for a long period of time, while an 
airplane must continue to fly in a pattern around the 
waypoint avoiding any obstacles that may be 
presented. However, the flight control of the 
helicopter involves some difficulties [1], and constant 
corrective control inputs are necessary to maintain a 
stable desired flight path. The use of an aerial robot in 

your work is motivated by challenges and 
opportunities associated with the autonomous control 
of an unmanned helicopter. 
 
Helicopter characteristics makes difficult to automate 
the helicopters behavior and control with the 
conventional theory. For example, the helicopter 
environmental sensibility and with the increasing 
system complexity, a completely and accurately 
mathematical model becomes more difficult. An 
additional problem, common to both model-based 
and model-free behavior and control approaches, is 
related with the system parameters that can be time-
varying. If these parameters are ignored the system 
behavior-based model or control may present 
inaccuracies and instabilities [2]. 



 
To control this system, it is not needed to explicitly 
model it. Through interaction with the system and 
observation of its movements, a human is able to 
learn his behavior and how to control it during its 
operation. In your approach, the helicopter behavior-
based model is generated using training data gathered 
while a human teacher controls the aerial vehicle. A 
basic assumption of your approach is that we have 
access to a human capable of controlling the system 
movements for which we want to produce a behavior-
based model. 
 
Several unmanned helicopters have been developed 
[3-4], or are under development throughout the 
world. However, a complete autonomous flight 
control system has not yet been realized. 
 
The goal of the research is to design an autonomous 
flight control system of a small-scale unmanned 
helicopter. The authors carry out the system 
identification experiments of the small-scale 
helicopter to derive the behavior-based model using a 
supervised neuro-fuzzy algorithm. It was developed 
an avionics box and a terrain data acquisition system 
to measure the input and output data of the helicopter 
dynamics. The identified behavior model will be used 
in the position control also based on the neuro-fuzzy 
theory for the autonomous flight. 
 
 
2   Behavior-Based Model 
The proposed behavior-based model architecture, 
converts this modeling problem into a set of coupled 
computing modules (behaviors). Each behavior is 
responsible for a specific task and they act in parallel 
to achieve a specific helicopter motion. Figure 1 
shows the behavior-based architecture adapted from 
our work. 
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Fig. 1 Behavior-Based Helicopter Model. 

 

To model the helicopter behavior, a neuro-fuzzy 
model with a hybrid learning algorithm is used [5]. 
This hybrid learning algorithm is composed by the 
Levenberg-Marquardt algorithm and with the Least 
Squares Estimate. In the described method, the neuro-
fuzzy system learns off-line with the training data set 
derived from the helicopter behavior. After the neuro-
fuzzy model is trained, his architecture is simplified 
reducing the number of rules. 
 
The altitude model use the collective command input 
to control the collective pitch angle of the main rotor 
blades and the thrust. 
 
2.1 Neuro-fuzzy architecture 
Figure 2 shows the six-layered architecture for the 
neural network based fuzzy inference model. This 
connectionist structure performs the fuzzy inference 
with some minor restrictions. For the altitude model 
there are 2 nodes in layer 1 representing the collective 
pitch and the throttle input commands and B.2  nodes 
in layer 2 corresponding to the number of linguistic 
terms used in the universes of discourses of the two 
input variables. In the layers 3 and 4 there are I  
nodes each one that corresponds to the number of 
inference rules. There are two nodes in layer 5 and 
only one node in layer 6 that corresponds to the 
output layer. 
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Fig. 2 Neuro-Fuzzy Architecture. 

 
The first layer, the input layer, consists in the input of 
the data values derived from the two input variables. 
The layer 2 contains the membership functions 



associated to each universe of discourse. Each 
membership functions correspond to a linguistic term.  
The antecedent and consequent parts of each 
inference rule is represented in the layer 3 and 4, 
respectively. The number of nodes in this layers is the 
same as the number of rules in the fuzzy inference 
system. 
 
The output of each node in the layer 3, ( )ni xT  is 
given by the following equation: 
 

( )nni
n

i xLXT
2

1=
∏=  (1) 

 
where the firing strength of thi  rule is obtained by 
taking the product of the membership functions, 

niLX , in the antecedent parts. 
 
To increase the degrees of freedom in the learning 
stage it is used a membership function with a varying 
shape where the corresponding parameters of the 
position of the function in the universe of discourse, 

nic , of the membership function shape, nil , and his 
left and right bandwidths, nieq  and nidr , are tuned 
using the Levenberg-Marquardt algorithm [6]. With 
this type of membership function definition the shape 
of the functions can be asymmetric with respect to his 
center. 
 
The output of each node in the layer 4, iC  is given by 
the following equation: 
 

( )iiiiiii kxqxpTfTC ++== 21 .... , (2) 
 
where if  corresponds to the first order Sugeno 
model [7]. The parameters { } Iikqp iii ,,1,,, ⋅⋅⋅=  are 
tuned using the Least Square Estimate algorithm. 
 
In the layer 5 are two different summation nodes. The 
first node, 1S , sums the activation of each rule and is 
given by (3). The other node, sums the activation of 
each antecedent part given by (4). 
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The output layer, layer 6, consists in a division of the 
signal provided by the nodes in the antecedent layer 
(5). 
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This network architecture is functionally equivalent 
to a type-3 fuzzy inference system (Takagi and 
Sugeno fuzzy if-then rules). 
 
The initial identification structure of the neuro-fuzzy 
model is obtained using the an iterative grid partition 
method that define the number of membership 
functions for the universe of discourse of the input 
variables [8]. This method also defines the position of 
each function in the input space, the type of function 
(triangular, bell-shape, …, etc.), and the left and right 
bandwidths. 
 
2.2 Learning algorithms 
In the learning stage of the neuro-fuzzy model it is 
applied a hybrid algorithm based on the Levenberg-
Marquardt and Least Square estimate algorithms. The 
antecedent parameters, { }nininini dreqlc ,,, , are 
tuned by the Levenberg-Marquardt algorithm while 
the consequent parameters, { }iii kqp ,, , are tuned 
by the Least Square estimate algorithm. 
 
The least square estimate of the set of consequent 
parameters used the recursive formulas widely 
adopted in the literature [9] and make the algorithm 
more efficient. 
 
Table 1 summarizes the activities in each pass of the 
hybrid-learning algorithm. Each epoch of the hybrid 
learning procedure is composed of a forward pass and 
a backward pass. 
 

 Forward Pass Backward Pass 
Antecedent 
Parameters Fixed Levenberg-

Marquardt 
Consequent 
Parameters 

Least Squares 
Estimate Fixed 

Table 1. Passes in the Hybrid Learning Procedure. 
 
 
 



3   Helicopter Hardware System 
This work was realized with the Kyosho Concept 60, 
a relatively inexpensive RC helicopter, as the 
platform for the unmanned flying vehicle (figure 3). 
The Concept 60 was powered by an O.S. 91 size 
nitro-methane fueled two stroke engine. The Concept 
60 has a main rotor diameter of 1.80 meters. 
 
It has four control inputs: rudder, lateral cyclic, 
longitudinal cyclic and collective. In the Concept 60 
helicopter, throttle and the collective pitch are mixed 
into a single collective control. The first three inputs 
controlled yaw, roll and pitch of the helicopter while 
the single collective command controls the main rotor 
collective pitch and the throttle to vary engine RPM. 
 

 
Fig. 3 Concept 60 helicopter. 

 
For telemetered control of the helicopter, it is used a 
set of sensors to measure twelve state variables: 
•  gyroscopes and accelerometers for roll, pitch and 

yaw velocities (
.
φ ,

.
θ ,

.
ψ ); and rectilinear accelerations 

(
..
X ,

..
Y ,

..
Z ). 

•  Global Positioning System (GPS) for horizontal 

position (X, Y); and rectilinear velocities (
.
X ,

.
Y ,

.
Z ). 

•  sonar for the altitude (Z). 
 
The GPS measures positions once every second. 
However, the sampling period of our control system 
is 140 milliseconds, so more frequently sampled 
position data is needed. As a result, the GPS output 
data was interpolated by integrating twice the sensor 
acceleration data to obtain position data every 70 
milliseconds. 
 
3.1 Avionics box 
An avionics box that transmits the measured state 
variables of the helicopter to a ground station was 
designed. Figure 4 shows the on-board hardware 
inside the avionics box. 
 
 

 
Fig. 4 Inside the avionics box. 

 
It is equipped with a two-axial accelerometer board, a 
wireless board and a main board with a Microchip 
18F458 microcontroller that receives the data from all 
sensors and sends them to the ground station via 
wireless link. The microcontroller run at 40MHz and 
communicates with the wireless board at 19200 baud 
serial link. The GPS, the three gyroscopes and the 
sonar are located outside the avionic box. The 
accelerometers and the gyroscopes form the inertial 
measurement unit (IMU) of the unmanned aerial 
vehicle. 
 
3.2 Ground station 
To model the helicopter behavior using examples it is 
needed to know the helicopter commands that 
corresponds to the measured helicopter state 
variables. Therefore, in the ground station was 
developed a terrain data acquisition system that 
receives the command data from the hand-held radio 
controller and transmits for a personal computer 
(PC). Figures 5 show the terrain data acquisition 
system. Figure 6 show the hand-held radio controller. 
 
The terrain system is based on a 16F877 
microcontroller running at 20MHz that reads radio 
controller commands and sends to a PC via serial link 
also at 19200 baud. In the ground station there also 
exist a wireless board that receives the data from the 
avionics box and sends them to the PC at same 
communication velocity described above. 
 



 
Fig. 5 Terrain data acquisition system. 

 

 
Fig. 6 Helicopter radio controller. 

 
Finally it is possible to obtain an example used to 
learning the neuro-fuzzy model of the helicopter. 
 
3.3 Vibration isolation 
Electronic circuits and sensors can be affected by 
harmful vibration from the engine and rotors. In 
particular, the IMU, GPS and the sonar altimeter are 
likely to produce faulty readings with inadequate 
vibration isolation. 
 
The avionics box is supported by four elastomeric 
shock absorbers at its corners, which can be seen in 
figure 7 pointed by arrows. 
 

 
Fig. 7 Avionics box. 

 

As the GPS is mounted beneath the helicopter engine 
it needs separate protection from harmful vibration. 
By using short pieces of rubber to connect the GPS to 
the helicopter, it should be effectively decoupled 
from the engine and main rotor vibrations. 
 
 
4   Experimental Results 
Experimental results were obtained and stored in a 
PC using the developed avionic box and the terrain 
data acquisition system. Figure 8 shows the avionic 
box and the GPS mounted in the helicopter and the 
ground station with the PC to receive the measured 
data. The different examples correspond to helicopter 
movements between different altitudes. 
 

 
Fig. 8 Helicopter data acquisition system. 

 
Each training data vector used in the learning process 
as four elements: three inputs and one output. One of 
those input elements is the previous helicopter height. 
Since a variation in the collective command changes 
the helicopter height then it is necessary to know the 
previous height to determine the current one. The 
training data vector is represented in (6). 
 

{ }.,,, 1 kktcp ww −δδ  (6) 
 
The first vector element, cpδ , corresponds to the 
main rotor collective pitch, tδ  and 1−kw  are the 
throttle and the previous helicopter height, 
respectively. The actual helicopter height is denoted 
by kw . In fact, the neuro-fuzzy-based altitude model 
has three inputs and one output. Figures 9 shows the 
first two command inputs applied to the altitude 
model. Figure 10 shows the actual output model and 
the desired output for the applied input commands. 
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Fig. 9 Input command data. 

 
As stated before, throw figure 9 it can be seen that the 
collective pitch and throttle commands have identical 
curves because they are mixed into a single collective 
control. 
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Fig. 10 Helicopter altitude model response. 

 
The initial parameter identification of the altitude 
model is obtained using the iterative grid partition 
method described in [8]. 
 
The objective function used in the supervised 
learning process is the root mean square training 
errors that represents the difference between the 
output of the altitude model and the training data 
output at each epoch. 
 
The altitude model has 3 membership functions for 
each input. Figures 11, 12 and 13 shows the input 
membership functions obtained after the learning 
stage. The output surface of the altitude model is 

represented in figure 14. The error of each training 
epoch is showed in figure 15. 
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Fig. 11 Collective Pitch membership functions. 
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Fig. 12 Throttle membership functions. 
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Fig. 13 Previous altitude membership functions. 



 

 
Fig. 14 Output surface of the altitude model. 
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Fig. 15 RMSE using the proposed neuro-fuzzy 

architecture. 
 
The results are compared with the ANFIS method 
implemented in the Matlab and developed by [10]. In 
the ANFIS method it was used 3 membership 
function for each of the three inputs with a 
generalized bell curve. The corresponding root mean 
square error is represented in figure 16. Comparing 
the RMSE obtained by the two methods it can be 
seen that the proposed neuro-fuzzy method has a 
better performance. For 200 epochs, the error 
between the output model and the desired output 
model was higher in the ANFIS method. The RMSE 
after 200 epochs are equal to 0.124 and 0.094 for the 
ANFIS and the proposed neuro-fuzzy architecture, 
respectively. 
 
In figure 15, the initial RMSE value is small because 
the used structure identification method that permits 
to minimize the initial error in the learning stage. 
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Fig. 16 RMSE using the ANFIS method. 

 
 
5   Conclusion 
In this paper was proposed a helicopter behavior-
based model using a supervised neuro-fuzzy 
architecture. The training data was obtained throw the 
development of an avionics box and a terrain data 
acquisition system. Experimental results and 
comparisons with the ANFIS method show the 
effectiveness of the proposed method. 
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