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Abstract: - During the past about thirty-five years, many types of two- or three-dimensional automata have been
proposed and investigated the properties of them as the computational model of pattern processing. On the other
hand, recently, due to the advances in many application areas such as computer animation, motion image process-
ing, and so on, the study of three-dimensional pattern processing with the time axis has been of crucial importance.
Thus, we think that it is very useful for analyzing computation of three-dimensional pattern processing with the
time axis to explicate the properties of four-dimensional automata. In this paper, we propose a four-dimensional
Turing machine and a four-dimensional finite automaton, and show the space complexities necessary and suffi-
cient for seven-way four-dimensional Turing machines to simulate four-dimensional finite automata, where each
sidelength of each input tape of these automata is equivalent.
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1 Introduction

Since M. Blum, et al. showed the relation of au-
tomata and image recognition [1], many researchers
investigated a lot of properties about automata on two-
and three-dimensional tape [6,8].

By the way, recently, due to the advances in many
application areas such as computer animation, virtual
reality systems, motion image processing, and so on,
the study of three-dimensional pattern processing with
the time axis has been of crucial importance. Thus, we
think that it is very useful for analyzing computation
of three-dimensional pattern processing with the time

axis to explicate the properties of four-dimensional au-
tomata, i.e., three-dimenisonal automata with the time
axis. In [9], we proposed a four-dimensional automa-
ton.

In this paper, we introduce a four-dimensional Tur-
ing machine and a four-dimensional finite automa-
ton, and show the space complexities necessary and
sufficient for seven-way four-dimensional Turing ma-
chines to simulate four-dimensional finite automata,
where each sidelength of each input tape of these au-
tomata is equivalent in order to increase the theoretical
interest.



2 Preliminaries

[Definition 2.1.] Let Σ be a finite set of symbols. A
four-dimensional tape overΣ is a four-dimensional
rectangular array of elements ofΣ. The set of all
the four-dimensional tapes overΣ is denoted byΣ(4).
Given a tapex∈Σ(4), for eachj(1≤j≤4), we letlj(x)
be the length ofx along thejth axis. The set of
all x∈Σ(4) with l1(x)=n1, l2(x)=n2, l3(x)=n3, and
l4(x)=n4 is denoted by Σ(n1,n2,n3,n4). When
1≤ij≤lj(x) for eachj(1≤j≤4), let x(i1, i2, i3, i4)
denote the symbol inx with coordinates (i1, i2, i3, i4),
as shown in Fig. 2.1. Furthermore, we define

x[(i1, i2, i3, i4), (i′1, i
′
2, i

′
3, i

′
4)],

when 1≤ij≤i′j≤lj(x) for each integerj(1≤j≤4), as
the four-dimensional tapey satisfying the following
(i) and (ii):

(i) for eachj(1≤j≤4), lj(y)=i′j−ij+1;

(ii) for eachr1, r2, r3, r4 (1≤r1≤l1(y), 1≤r2≤l2(y),

1≤r3≤l3(y), 1≤r4≤l4(y)),

y(r1, r2, r3, r4)

=x(r1+i1−1, r2+i2−1, r3+i3−1, r4+i4−1).
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Fig. 2. 1: Four-dimensional tape.

(We callx[(i1, i2, i3, i4), (i′1, i′2, i′3, i′4)] the [(i1, i2,
i3, i4), (i′1, i′2, i′3, i′4)]-segment ofx.) When a four-
dimensional tapex is given to any four-dimensional
automaton as an input, we assume thatx is surrounded
by the boundary symbol].

[Definition 2.2.] A four-dimensional finite
automaton (4-FA) M has a read-only four-
dimensional input tape with boundary symbols

]’s, a finite control, and an input head. The input head
can move in eight directions−east, west, south, north,
up, down, future, or past−unless it falls off the input
tape.

Formally,M is defined by the 5-tuple

M=(Q, q0, F , Σ, δ),

where

(1) Q is a finite set of states,

(2) q0∈Q is the initial state,

(3) F⊆Q is the set of accepting states,

(4) Σ is a finite input alphabet(]/∈Σ is the boundary
symbol),

(5) δ⊆(Q×(Σ∪{]}))×(Q×{east,west,south,north,up,
down,future,past,no move}) is the next-move
relation.

The action of M is similar to that of one-
dimensional finite automaton, except that the input
head ofM can move in eight directions. That is, when
an input tapex∈Σ(4) with boundary symbols is pre-
sented toM , M starts in its initial stateq0 with the
input head onx(1,1,1,1), and determines the next state
of the finite control and the move direction of the in-
put head, depending on the present state of the finite
control and the symbol read by the input head. We say
that M accepts the tapex if it eventually enters an
accepting state.

[Definition 2.3.] A seven-way four-dimensional
Turing machine (SV4-TM) M has a read-only four-
dimensional input tape with boundary symbols]’s and
one semi-infinite storage tape, initially blank. Of
course,M has a finite control, an input head which can
move in seven direction - east, west, south, north, up,
down, or future - unless it falls off the input tape, and
a storage-tape head. Aposition is assigned to each
cell on the read-only input tape and to each cell of the
storage tape. Formally,M is defined by the 6-tuple

M = (Q, q0, F, Σ,Γ, δ),

where

(1) Q is a finite set ofstates,

(2) q0∈Q is theinitial state,



(3) F⊆Q is the set ofaccepting states,

(4) Σ is a finite input alphabet (]/∈Σ is the
boundary symbol),

(5) Γ is a finitestorage-tape alphabet (B∈Γ is the
blank symbol), and

(6) δ ⊆ (Q×(Σ∪{]})×Γ)×(Q×(Γ−{B})×{east,
west, south, north, up, down, future, no
move}×{right, left, no move}).

A step of M consists of reading one symbol from
each tape, writing a symbol on the storage tape, mov-
ing the input and storage heads in specified directions,
and entering a new state, in accordance with the next-
move relationδ. Note that the machine cannot write
the blank symbol. If the input head falls off the input
tape, or if the storage head falls off the storage tape
(by moving left), then the machineM can make no
further move. We say thatM accepts the input tape if
it eventually enters an accepting state.

We next consider the another restricted type of SV4-
TM, called aspace-bounded SV4-TM.

[Definition 2.4.] Let L(n): N→R be a function
of a variable n, where N is the set of all posi-
tive integers andR is the set of all nonnegative
real numbers. An SV4-TMM is said to beL(n)
space-bounded if for no input tapex ∈ Σ(4) with
l1(x)=l2(x)=l3(x)=l4(x)=n doesM scan more than
L(n) cells on the storage tape. We denote anL(n)
space-bounded SV4-TM by SV4-TM(L(n)).

A 4-FA [SV4-TM, SV4-TM(L(n))] is also nonde-
terministic in general. In order to distinguish between
determinism and nondeterminism, we denote a de-
terministic 4-FA [nondeterministic 4-FA, determinis-
tic SV4-TM, nondeterministic SV4-TM, determinis-
tic SV4-TM(L(n)), nondeterministic SV4-TM(L(n))]
by 4-DFA [4-NFA, SV4-DTM, SV4-NTM, SV4-
DTM(L(n)), SV4-NTM(L(n))], respectively.

Let M be an automaton on a four-dimensional tape.
We denote byT (M) the set of all the four-dimensional
tapes accepted byM . As usual, we denote, for ex-
ample, by£[4-DFA] the class of sets of all the four-
dimensional tapes accepted by 4-DFA’s. That is,£[4-
DFA]={T |T=T (M) for some 4-DFAM}. £[4-NFA],
£[SV4-DTM], and so on have analogous meanings.

We complete this section by investigating the dif-
ference between the accepting powers of 4-DFA’s and

4-NFA’s. We can get the following lemma by extend-
ing Theorem 1 in [7] to four-dimensions. The proof is
omitted here, since it is similar to that of Theorem 1 in
[7].

[Lemma 2.1.] Let T1={x∈{0, 1}(4)|∃n≥1[l1(x)=
l2(x)=l3(x)=l4(x)=2n+1 & x(n+1, n+1, n+1,
n+1)=1]}. Then

(1) T1 ∈ L[4-NFA], and

(2) T1 /∈ L[4-DFA].

From Lemma 2.1, we get the following theorem.

[Theorem 2.1.] L[4-DFA] ( L[4-NFA]

3 Main Results

We first investigate the space-bound for SV4-
DTM’s to simulate 4-DFA’s.

[Lemma 3.1.] L[4-DFA] ⊆ L[SV4-DTM(n3 log n)].

(Proof) Let M be a 4-DFA. By using the same idea
as in the proof of Proposition 1 in [7], we can show
that there exists an SV4-DTM(n3logn) M

′
such that

T (M
′
)=T (M). (In what follows, the base of loga-

rithms is to be taken as 2.) 2

[Lemma 3.2.] Let T2={x∈{0, 1}(4)|∃n≥1 [l1(x)
=l2(x)=l3(x)=l4(x)=2n & ∀i1, ∀i3 (1≤i1 ≤2n,
1≤i3≤n) [there exists exactly one ‘1’ on [(i1,
2, i3, 1), (i1, 2n, i3, 1)]−segment of x] & ∃j1,
∃j3 (1≤j1≤2n, n+1≤j3≤ 2n) [x(j1, 1, j3, 2n)=1
& ∀k1, ∀k3 (1≤k1≤2n & n+1≤k3≤2n & (k1, 1,
k3, 2n)6=(j1, 1, j3, 2n)) [x(k1, 1, k3, 2n)=0] &
∃r2 (2≤r2≤2n) [x( j1, r2, j3−n, 2n)=x(j1, r2, 1,
1)=1]]]}, and let L(n):N →R be a function such
that limn→∞[L(n)/n3 log n]=0. Then

(1) T2 ∈ L[4-DFA], and

(2) T2 /∈ L[SV 4-DTM(L(n))].

(Proof) (1) We consider the 4-DFAM which acts as
follows. Let x be a four-dimensional input tape with
each sidelength 2n (n≥1) to be presented toM .

(i) By moving in eight directions (east, west, south,
north, up, down, past, and future),M checks, first of
all, if there exists one ‘1’ onx[(i1, 2, i3, 1), (i1, 2n,
i3, 1)], for eachi1 (1≤i1≤2n), i3 (1≤i3≤n). If M



succeeds in this check, then go to (ii). Otherwise, go
to (iv).

(ii) M scansx[(1, 1, n+1, 2n), (2n, 1, 2n, 2n)],
and checks if there exists exactly one ‘1’ there. IfM
succeeds in this check, then go to (iii). Otherwise, go
to (iv).

(iii) Let x (j1, 1, j3, 2n)=1 (1 ≤ j1 ≤ 2n, n + 1 ≤
j3 ≤ 2n). M places its input head onx(j1, 1, j3,
2n) and continues to move the input head two cells
east and one cell up, until the input head reaches the
boundary symbol]. It is easy to see that the input
head reaches the boundary symbol with coordinates
(j1, 2n+1, j3−n, 2n). M then continues to move
the input head west, until it meets ‘1’ for the first
time. From (i), letx(j1, r2, j3−n, 2n)=1 for somer2

(2≤r2≤2n). M then places the input head onx(j1, r2,
j3−n, 2n) and continues to move up against the time
axis until the input head reaches the boundary symbol
]. After that,M moves the input head one cell down
and reads the symbol on the cell, that is,x(j1, r2, 1,
1). If x(j1, r2, 1, 1)=1, thenM enters an accepting
state; otherwise go to (iv).

(iv) M halts in a nonaccepting state.

It is easy to see that the set accepted byM is iden-
tical with T2. This completes the proof of (1).

(2) Suppose that there exists some SV4-
DTM(L(n)) M accepting T2, and that q is the
number of states of its finite control andt is the
number of storage symbols. For eachn≥1, let

V (n)={x∈{0, 1}(4) | l1(x)=l2(x)=l3(x)=l4(x)=

2n & ∀i1, ∀i3, ∀i4 (1≤i1≤2n, 1≤i3≤2n, 1≤i4≤n)

[there exists extactly one ‘1’ onx[(i1, 2, i3, i4), (i1,

2n, i3, i4)]]}.
For eachx in V (n), let

conf(x) , The configuration ofM just after the

input head leftx(4) along the time axis. (For any

Turing machineM ′, we define the configuration of

M ′ to be a combination of the (1) state of the finite

control, (2) position of the input head, (3) position

of the storage head within the nonblank portion of

the storage tape, and (4) contents of the storage

tape.)

Then the following proposition must hold.

[Proposition 3.1.] For any two tapes x, y in
V (n) such that their [(1, 2, 1, 1), (2n, 2n, 2n,
n)]−segments are different,

conf(x) 6= conf(y).

(Proof of Lemma 3.2 (continued)) Let p(n) be the
number of tapes inV (n) such that their[(1, 2, 1,
1), (2n, 2n, 2n, n)]-segment are different. Clearly,
p(n)=(2n− 1)4n3

. On the other hand, letc(n) be the
number of possible configuration ofM just after the
input head left thenth three-dimensional rectangualr
arrays of tapes inV (n). Then we get the inequality

c(n) ≤ q(2n + 2)3L(2n)tL(2n)

Since limn→∞[L(2n)/8n3 log 2n]=0 (by the as-
sumption of the lemma), it follows thatlimn→∞
[L(2n)/4n3 log(2n − 1)]=0, and thusp(n)>c(n) for
large n. Therefore, it follows that for largen there
must be two tapesx, y in V (n) such that their [(1,
2, 1, 1), (2n, 2n, 2n, n)]-segments are different and
conf(x)=conf(y). This contradicts Proposition 3.1,
and thus part (2) of the lemma also holds. 2

From Lemmas 3.1 and 3.2, we can get the following
theorem.

[Theorem 3.1.] n3 log n space is necessary and
sufficient for SV 4 − DTM ′s to simulate 4 −
DFA′s.

We next investigate the space bound for SV4-
DTM’s to simulate 4-NFA’s. By using the same ideas
in [5,10], we can get the following propositions.

[Proposition 3.2.] For any function L(n) : N→R
such that L(n)≥n4 (n≥1),

L[SV 4−DTM(L(n))] = L[4−DTM(L(n))].

[Proposition 3.3.] For any function L(n) : N→R

such that L(n)≥log n (n≥1),

L[4−NTM(L(n))] ⊆ L[4−DTM([L(n)]2)].

From Propositions 3.2 and 3.3, we can get the follow-



ing lemma.

[Lemma 3.3.] L[4-NFA] ⊆ L[SV4-DTM(n4)].

(Proof) From the definitions,L[4-NFA] ∈ L[4-
NTM(0)] ∈ L[4-NTM(log n)], and by Proposition
3.3,L[4-NTM(log n)] ⊆ L[4-DTM([log n]2)] ⊆ L[4-
DTM(n4)]. Furthermore , it follows by Proposition
3.2 thatL[4-DTM(n4)]=L [SV4-DTM(n4)], and thus
the lemma holds. 2

[Lemma 3.4.] Let T3={x∈{0, 1, 2}(4) | ∃n≥1
[l1(x)=l2(x)=l3(x)=l4(x)=2n & [x(1, 1, 2n, 2n)=2
& ∀(q, r, s, t) ( 6=(1, 1, 2n, 2n))[x(q, r, s, t) ∈ {0, 1}]
& x[(2n, 2, 1, 1), (2n, 2n, 1, 1)]6=x[(1, 2, 2n, 2n), (1,
2n, 2n, 2n)]]]}, and let L(n) : N→R be a function
such that limn→∞[L(n)/n4]=0. Then

(1) T3 ∈ L[4−NFA], and

(2) T3 /∈ L[SV 4−DTM(L(n))].

(Proof) (1) We consider the 4-NFAM which acts as
follows. Let x be a four-dimensional input tape with
sidelength2n (n≥1) to be presented toM .

(i) M checks first of all if there exists exactly one
‘2’ on the last plane of the last three-dimensional rect-
angular array. IfM succeeds in this check, then go to
(ii), and otherwise, go to (iii).

(ii) Let x(1, 1, 2n, 2n)=2. M places its input
head onx(1, 1, 2n, 2n) and continues to move the
input head one cell east and one cell up, until the in-
put head reaches the boundary symbol], andM then
continues to move the input head one cell west and
one cell south after moving one cell down, until the
input head reaches the boundary symbol]. (This ac-
tion is making a zigzag of 45◦-direction from(1, 1,
2n, 2n) to (1, 2n, 1, 2n).) Similarly, M continues to
move, by making a zigzag of 45◦-direction from bot-
tom three-dimensional rectangualr array to top three-
dimensional rectangular array, thatx has exactly2n
three-dimensional rectangular arrays. It is easy to see
that the input head reaches the boundary symbol with
coordinates(2n, 0, 1, 1). M then continues to move
the input head east. During this action,M chooses
somei (2≤i≤2n) nondeterministically, picks upx(2n,
i, 1, 1), and stores it in the finite control. ThenM
continues to move input head down and north. Each
time the input head reads a northmost symbol of each
plane which is different from the symbolx(2n, i, 1,
1) stored in the finite control,M nondeterministically

chooses the action (a) or action (b) below :
(a) M continues to move the input head down and

north.
(b) M continues to move input head west, and

checks that input head meets the symbol ‘2’. IfM suc-
ceeds in this check (note thatx[(2n, 2, 1, 1),(2n, 2n,
1, 1)] is not identical withx[(1, 2, 2n, 2n), (1, 2n, 2n,
2n)] in this case).M enters an accepting state. Other-
wise, go to (iii). If M continues to choose the action
(a) and the input head reaches the boundary symbol,
then go to (iii).

(iii) M halts in a nonaccepting state. It will be ob-
vious thatT (M)=T3. This completes the proof (1).

(2) : Suppose that there exists some SV4-
DTM(L(n)) M acceptingT3, andq is the number of
states of its finite control andt is the number of storage
symbols. For eachn≥1, let

V (n)={x ∈ {0, 1, 2}(4) | l1(x)=l2(x)=l3(x)=

l4(x)=2n & x[(1, 1, 1, 1), (2n,2n, 2n, n)] ∈ {0,

1}(4)}.
and for eachx in V (x), let

conf(x) , the configuration ofM just after the

input head left the nth three-dimensional rectang-

ular array.

Then the following proposition must hold.

[Proposition 3.4.] For any two tapes x, y in
V (n) such that their [(1, 2, 1, 1), (2n, 2n, 2n,
n)]−segments are different,

conf(x) 6= conf(y).

(Proof of Lemma 3.4 (continued)) Now letp(n) be
the number of tapes inV (n) such that their [(1, 2,
1, 1), (2n, 2n, 2n, n)]-segments are different. It
is clear that p(n) = 24n2(2n−1)n=28n4−4n3

. On the
other hand, letc(n) be the number of possible con-
figurations ofM just after the input head left thenth

three-dimensional rectangular arrays of tapes inV (n).
Thus we get the inequality

c(n) ≤ q(2n + 2)3L(2n)tL(2n).

Sincelimn→∞[L(2n)/16n4]=0 (by the assumption
of the lemma), it follows thatlimn→∞ [L(2n)/(8n4−
4n3)]=0, and thusp(n)>c(n) for largen. Therefore,



it follows that for largen there must be two tapesx,
y in V (n) such that their[(1, 2, 1, 1), (2n, 2n, 2n,
n)]-segments are different and conf(x)=conf(y). This
contradicts Proposition 3.4, and thus part (2) of the
lemma also holds. 2

From lemmas 3.3 and 3.4, we can get the following
theorem.

[Theorem 3.2.] n4 space is necessary and
sufficient for SV 4 − DTM ′s to simulate 4 −
NFA′s.

We next investigate the space bound for SV4-
NTM’s to simulate 4-DFA’s or 4-NFA’s.

[Lemma 3.5.] L[4-NFA] ⊆ L[SV4-NTM(n3)].

(Proof) As shown in Lemma 4.1 in [4], the class
of sets accepted by two-dimensional nondeterminis-
tic on-line tessellation acceptors. By using the same
idea as in the proof of this fact, we can show thatL[4-
NFA] ⊆ L[4-OTA], where 4-OTA denotes the four-
dimensional nondeterministic on-line tessellation ac-
ceptor (see [2,3] for the definition of this acceptor),
andL[4-OTA] denotes the class of sets accepted by 4-
OTA’s on four-dimensional input tapes. On the other
hand, it is easy to see from the definition of 4-OTA’s
thatL[4-OTA] ⊆ L[SV4-NTM(n3)]. Therefore, it fol-
lows that L[4-NFA] ⊆ L[SV4-NTM(n3)], and thus
the lemma holds. 2

The following lemma is an extension of lemma 3.1
in [5] to four dimensions. The proof is omitted here,
since it is similar to that of lemma 3.1 in [5].

[Lemma 3.6.] Let T4={x in {0, 1}(4)|∃n≥2
[l1(n)=l2(n)=l3(n)= l4(n)=n & x(4)1=x(4)2},
and let L(n) : N→R be a function such that
limn→∞[L(n)/n3]=0. Then

(1) T4 ∈ L[4-DFA], and

(2) T4 /∈ L[SV4-NTM(L(n))].

From Lemmas 3.5 and 3.6, we can get the following
theorem.

[Theorem 3.3.] n3 space is necessary and
sufficient for SV 4 − NTM ′s to simulate 4 −
DFA′s or 4−NFA′s.

4 Conclusion

In this paper, we investigated the space complexities
for simulation of four-dimensional finite automata by
seven-way four-dimensional Turing machines, where
each sidelength of each four-dimensional input tape is
equivalent. We conclude this paper by giving Table
4.1, which show the space complexities for simulation
of 4-FA’s by SV 4-TM ’s.

SV4-NTMSV4-DTM

4-NFA

4-DFA
3( log )n nΘ

3( )nΘ

4( )nΘ
3( )nΘ

X
Y

Table 4. 1: Necessary and sufficient space for Y’s
to simulate X’s, where each sidelength of each four-
dimensional input tape isn.
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