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Abstract: - Injection pressure in diesel engines has an important effect on the engine performance and 
soot formation. During performing the experimental work, the measurement of the torque, power, specific 
fuel consumption (SFC) and soot formation values in the diesel engines is a time consuming work and it 
also requires specific tools, an expert. In addition to the difficulties mentioned earlier, some of the 
operating points can be only investigated and evaluated because of difficulties of measuring the 
parameters at the operating conditions.  

In this study, to overcome these difficulties, an artificial neural network (ANN) is used for prediction 
of performance and soot formation in diesel engines. The training data for ANN is obtained from 
experimental measurements. In comparison of performance analysis of ANN, the deviation coefficients of 
torque, power, SFC, and soot formation for the test pressure conditions are less than 1.66, 3.2, 2.89, and 
3.47, respectively. The statistical coefficient of multiple determinations for the investigated cases is about 
0.9934 to 0.9983. The degree of accuracy is acceptable in predicting the parameters of the system. So, it 
can be concluded that ANN provides a feasible method in predicting the system parameters. 
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1 Introduction 
Diesel engines have been penetrating a number of 
markets all around the world because of their 
good fuel economy and high reliability. The 
diesel engines are widely used in heavy-duty 
engine applications such as bus, truck, power 
generation. They are preferred over spark ignition 
engines because they can achieve greater 
efficiencies and higher indicated mean effective 
pressures due to the higher compression ratios 
where they operate [1,2].  

Diesel engines produce lower amounts of HC 
(Hydrocarbon), and CO (Carbonmonoxide) 
emissions than the spark ignition engines because 
of more complete combustion of the air-fuel 
mixture. Soot or particulate emissions occur 
when there is insufficient air to completely burn 

the fuel [3]. And it is well established that these 
emissions from diesel engines may have a 
harmful effect on human health [4]. 

There are several factors that the engine 
designer considers to provide both low emission 
levels and high performance with good fuel 
economy. Some of these factors are the shape of 
the combustion chamber, the injection rate and 
nozzle spray pattern, injection timing, and 
injection pressure [3].  

In recent years, a number of studies have been 
conducted on injection pressure to increase 
engine performance and to decrease exhaust 
emissions in diesel engines [5].  

In these experimental studies, some of the 
operating points of the system have been 
investigated. For this type of experimental works, 
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experts and special equipments are needed.  It 
also requires too much time and high cost [6]. In 
the last decade, ANNs have been widely used for 
many different industrial areas such as control, 
prediction, pattern recognition, classification, 
speech and vision. ANNs have been trained to 
solve nonlinear and complex problems that are 
not exactly modeled mathematically [7]. ANNs 
eliminate the limitations of the classical 
approaches by extracting the desired information 
using the input data. Applying ANN to a system 
needs sufficient input and output data instead of a 
mathematical equation. Furthermore, it can 
continuously re-train for new data during in 
operation, thus it can adapt to changing of the 
system. Also, ANNs can be used to deal with the 
problems with incomplete and imprecise input 
data [8,9].  

In this study, an ANN has been used for 
predicting the performance and soot formation in 
diesel engines. The ANN predicted and 
experimental results are extensively compared 
under different operating conditions. 
 
 
2 Experimental apparatus and 
procedure 
The experiments in the present study were 
conducted by operating a direct injection diesel 
engine. The general specifications of the engine 
are shown in Table 1. A Leclasrege Electriou 
brand electrical dynamometer was used for the 
tests. Soot formation was measured by means of 
VLT 2600 S brand diesel emission device having 
0.01% accuracy. The schematic view of the test 
equipments is shown in Fig. 1.  
 
Table 1. General specifications of the test engine 
Item Specification 
Engine type Direct injection, Diesel 
Stroke (mm) 100 
Bore (mm) 98 
Displacement (cc) 754 

Cycle Four stroke 
Max. Power 7 kW at 1800 rpm 
Compression ratio 17:1 

 

 
 

Fig.1. Schematic of the test facility 
 

The experiments were performed at full load 
operating conditions. The engine was loaded by 
the electrical dynamometer. During the 
experiments, engine speed was changed from 900 
rpm to 1900 rpm with 200-rpm intervals. 
Injection pressure was changed from 125 bar to 
250 bar with 25 bar intervals. Injection pressure 
is changed by means of adjusting the injector 
spring tension. During the experiments, the 
average ambient temperature and atmospheric 
pressure were 22oC and 752 mm-Hg, 
respectively. The tests were conducted after the 
engine reached the working temperature of 80oC  

Fig.2 shows the variation of engine torque 
with respect to the engine speed at different 
injection pressures. As the injection pressure 
increases, the engine torque also increases. 
Depending on the increase in injection pressure, 
droplet size becomes smaller and air-fuel mixture 
formation becomes better. An increase in the 
engine torque can be seen as the injection 
pressure at a certain level (225 bar) is taken into 
consideration. After this point the engine torque 
decreases with the increasing value of the 
injection pressure. Furthermore, depending upon 
the air-fuel mixture formation, the engine torque 
decreases drastically at low injection pressures  
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Fig.2. Variation of engine torque as a function of 

engine speed  
 

Fig.3 shows the variation of power output 
with respect to the engine speed at different 
injection pressures. The increase of injection 
pressure causes the engine power to increase at a 
certain level. This trend is similar to of the  
engine torque. Power output decreases at low 
injection pressures. 

 
Fig.3. Variation of power output as a function 

engine speed  
 

Fig.4 shows the variation of SFC with respect 
to the engine speed at different injection 
pressures. As the injection pressure increases, the 
SFC decreases. SFC increases drastically at low 
injection pressures. 

 
Fig.4. Variation of SFC as a function of engine 

speed  
 

Fig.5 shows the variation of soot formation 
with respect to the engine speed at different 
injection pressures. Depending on the increase in 
injection pressure, droplet size becomes smaller 
and air-fuel mixture formation becomes better. A 
considerable reduction in soot formation is 
obtained when the injection pressure is increased. 
Soot formation increases drastically at low 
injection pressures. 

 
Fig.5. Change of soot formation as a function of 

engine speed 
 
 
3 Application of ANN 
There are many types of ANN architectures in the 
literature; however, multi-layer feed-forward 
neural-network is the most widely used for 
prediction. A multi-layer feed-forward neural-
network typically has an input layer, an output 



 4

layer, and one or more hidden layers [10]. In 
multi-layer feed-forward networks, neurons are 
arranged in layers and there is a connection 
among the neurons of other layers. The input 
signals are applied to the input layer, the output 
layer contributes to the output signal directly. 
Other layers between input and output layers are 
called hidden layers. Input signals are propagated 
in gradually modified form in the forward 
direction, finally reaching the output layer. One 
neuron can receive signals from other neuron and 
transfer output signal into other nodes using 
transfer function as an input. A sigmoid function 
is widely used for transfer function [11] whose 
output lies between zero and unity and is defined 
as 
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The function is differentiable throughout its 

domain. During learning, the weights of the 
neurons are adjusted according to the generalized 
delta rule which is the learning algorithm for a 
back-propagation multi-layer feed-forward 
network. The error is the sum of the squares of 
the overall errors of the network and is minimized 
by the generalized delta rule, defined as 
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where pE  is the square errors, p  is the index of 
pattern in the training set, o  is the desired output 
and y  is the calculated output of network. The 
weight modification for a neuron is done in 
proportion to the gradient of pE  with respect to 
the neuron weights [12]. In this way, each 
updated weight in a layer depends on all the error 
terms of the output layer. Thus, the error of the 
output layer is propagated back to each layer. 
Faster learning can be done by changing the 
learning-rate constant, but improper learning rate 
constant may cause the weights to bounce around 
the local minima, thus failing to learn properly.  

A four layers ANN is applied to the system to 
predict of torque, power, SFC, and soot formation 
under different injection pressures. The ANN 

structure used in this application is shown in 
Fig.6.  
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Fig.6. ANN architecture used for estimation of 

torque, power, SFC, and soot formation 
 

The ANN has four layers namely, an input, an 
output, and two hidden layers. The input layer 
consists of two neurons, the output layer consists 
of four neurons, and each of hidden layers 
consists of 15 neurons. The input variables in the 
network are the speed (n) and the pressure. The 
output variables are the torque, the power, the 
SFC, and the soot formation. 

The back-propagation algorithm has been 
implemented to calculate errors and adjust 
weights of the hidden layer neurons. In order to 
avoid long training time or network being trapped 
in local error minima, various learning rate 
constants are tried. The ANN structure and 
number of neurons in each of hidden layers have 
been selected by using an evolutionary algorithm. 
All of the data have been normalized in the range 
of [0, +1]. Sigmoid function is chosen for transfer 
function, with 0.5-threshold value as defined, 
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Figs.2-5 show a parity plot between 

experimental and computed data by ANN for 
torque, power, SFC, and soot formation. The 
predictions have R2-values equal to 0.9964 for 
torque, 0.9983 for power, 0.9934 for SFC, and 
0.9976 for soot formation. It can be clearly seen 
from Figs.7-10, the developed ANN gives a very 
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accurate representation of R2-values over the all 
range or working conditions.  
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Fig.7. Comparison of measured and predicted 

values for the engine torque 

Power
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Fig.8. Comparison of measured and predicted 

values for the power 

SFC
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Fig.9. Comparison of measured and predicted 

values for the SFC 

Soot Formation
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Fig.10. Comparison of measured and predicted 

values for the soot formation 
 

Since experimental results are very close to 
the calculated values that can be obtained by 
using ANN, those cannot be graphically shown 
together. For this reason, the following equations 
(Eqs.4-7) are used to calculate the deviation 
values, and these values have been shown 
graphically.  
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The standard deviations for torque, power, 
SFC, and soot formation are illustrated in 
Figs.11-14. 
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Fig.11. Variation of the dTorque as a function of 

speed at different injection pressures 
 

 
Fig.12. Variation of the dPower as a function of 

engine speed at different injection pressures 
 

 
Fig.13. Variation of the dSFC as a function of 

speed at different injection pressures 
 

 
Fig.14. Variation of the dSoot Formation as a 

function of speed at different injection pressures 
 

 
According to the results, maximum deviations 

in torque (dTorque) is 1.66%, in power (dPower) 
is 3.2%, in SFC (dSFC) is 2.89%, and in soot 
formation (dSoot formation) is 3.39%. 

Table 2 shows the minimum and maximum 
deviations for each of the output. These results 
prove that the proposed ANN can be used 
successfully for the prediction of performance 
and soot formation in diesel engines. 
 
Table 2. Maximum and minimum deviations of 
torque, power, SFC, and soot formation 
Output Min/ 

Max 
n 

(rpm)
)

Pressure 
(bar) 

Deviations 
(%) 

Experimental 
Value 

Torque Min 1900 225 0.042196  32.1 

Torque Max 1300 225 1.665270  39.6 

Power Min 1900 250 0.014502  6.42685 

Power Max 1300 250 3.204691  5.41837 

SFC Min 1700 125 0.000865  322 

SFC Max 1300 175 2.898515  233 

Soot 
formation Min 1500 125 0.151989  57 

Soot 
formation Max 1900 250 3.390556  57 

 
 
4 Conclusions 
In this study, an artificial neural network is   used 
for prediction of performance and soot formation 
in diesel engines. Engine performance and soot 
formation are measured for stroke single cylinder, 
754cc direct injection diesel engine. 
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Measurements are conducted for each of the 
injection pressures 125, 150, 175, 200, 225, and 
250 bar. 

The deviations for torque, power, SFC, and 
soot formation for different injection pressures 
are obtained by using ANN. The maximum 
deviations for all pressures are 1.66% for torque, 
3.2% for power, 2.89% for SFC, and 3.47% for 
soot formation. The statistical coefficients are 
above 0.99. This degree of accuracy shows that 
the proposed ANN can be used for obtained the 
experimental engine performance and soot 
formation. To sum up, this study is considered to 
be helpful in predicting the performance of the 
diesel engine.  
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