
Scheduling Real Time Parallel Structure on Cluster Computing
with Possible Processor failures

Alaa Amin and Reda Ammar
Computer Science and Eng. Dept.

University of Connecticut

Ayman El Dessouly
Electronics Research Institute

Dokki – Giza, Egypt

Abstract: - Efficient task scheduling is essential for achieving high performance computing applications for
distributed systems. Most of existing real-time systems consider schedulability as a main goal and ignores other
effects such as machines failures. In this paper we develop an algorithm to efficiently schedule parallel task graphs
(fork-join structures). Our scheduling algorithm considers more than one factor at the same time. These factors are
scheduability, reliability of the participating processors and achieved degree of parallelism. To achieve most of these
goals, we composed an objective function that combines these different factors simultaneously. The proposed
objective function is adjustable to provide the user with a way to prefer one factor to the others. The simulation results
indicate that our algorithm produces schedules where the applications deadlines are met, reliability is maximized and
the application parallelism is exploited.

Key-Words: - Scheduling, Cluster Computing, Reliability, Real time, Parallel Structure, Heuristic search.

1 Introduction

Scheduling real time applications in a cluster
environment is a challenging problem. Real time
applications are composed of one or more tasks that
are required to perform their functions under strict
timing constraints (deadlines). These applications have
to meet their deadlines amidst contradicting goals,
while maximizing resource utilization. A task missing
its deadline may result in a domino effect, possibly
causing other tasks to miss their deadlines and
resulting in a system failure. This system failure
changes with the kind of real-time application. For
instance, in hard real-time systems the effect of
violating deadline may be catastrophic which indicate
the necessity to be met. On the other side, in soft real-
time systems, the utility of results produced by a task
with soft deadline decreases over time after deadline
expires which indicate that the system can withhold
deadline violation [1].

There are several advantages of scheduling an
application represented as task graphs instead of
treating it as a single unit [12]. If the application is
scheduled as one unit, it uses the same processor for a
longer time and hence the chance of failure (hardware
or software) increases. If the failure happens, the
application may start over again and hence will not be
able to finish by its deadline. On the other hand, each
task has a shorter time and hence the probability of
failure is smaller. In other words, if the application is

scheduled as a single unit, its reliability is controlled
by the reliability of one processor. Distributing parallel
tasks among different processors may achieve better
reliability and increase the degree of parallelism.
However, there is an advantage of treating an
application as one unit; the communication among its
tasks is eliminated. This is true if the scheduler is
able to find a processor with an enough processing
power to satisfy the application’s deadline. On the
contrary, scheduling individual tasks on different
processors will increase the possibility of having the
required processing power due to their short life times
although this will increase the remote communication
time and may make the application subject to network
failure. Hence scheduling applications’ task graphs
need to include several conflicting factors to find the
best trade-off among these different them and to prove
that it is better than treating an application as a single
unit.

In this paper, we developed a scheduling method

for parallel tasks of real-time applications. The
algorithm achieves better performance than scheduling
each application as a single unit. The paper is
organized as follows. In section 2, related work is
described. The scheduling problem and definitions are
given in section 3. The new scheduling algorithm is
presented in section 4 then followed by example in
section 5. The simulation results are shown in section
6. Finally, section 7 provides the conclusion.

dalia
special ssesion: Advanced information and wireless communication systems
session orginzier: Hesham Eldeeb

2 Related work
 Performance and reliability are considered as
significant requirements for real-time systems. In
general, real-time applications are assumed either as a
task graph [2-4]or as a single unit [5-7]. Most of the
existing algorithms deal with the later kind of
applications. High reliable real-time scheduler can be
achieved by different ways. From the performance
point of view; reliability could be taken into
consideration as a factor when designing the
scheduling algorithm from the very beginning[3, 4].
Another way is to use some techniques such as
primary-backup to tolerate faults and consequently
increase the system reliability [5, 6].
In [5], Manimaran Et.al proposed an algorithm for
dynamically scheduling arriving independent real-time
tasks with resources and primary-backup based fault
tolerant requirements in a multiprocessor system. They
didn’t utilize processors available processing power or
consider the reliability as a design factor.
In [6], Gosh et al. developed a fault-tolerance
scheduling method for real-time systems that tolerate
failure and consequently increase the system
reliability. They took into account the processing
power utilization of the resources. These methods can
be applied on single unit application and it can’t deal
with a task graph application. Also, this method is
designed for hard real-time applications.
In [7], Tsuchiya proposed a fault tolerant task
scheduling techniques for real-time multiprocessor
systems where aperiodic independent tasks arrive
dynamically. Also, they didn’t take the processing
power utilization factor into consideration.
In [4], Qin et al. proposed a scheduling scheme with
which real-time tasks with precedence constraints can
statically be scheduled to tolerate the failure of one
processor in a heterogeneous parallel and distributed
system. They assume a heterogeneous system with
reliable communication. The task model used is the
one with precedence constraints. They used the greedy
scheme EST to create the primary schedule. They
didn’t take processing power utilization into account
and the algorithm is designed for hard real-time
applications only.
In [3], Dogan and Özgüner proposed a reliable
matching and scheduling algorithm. They introduced
a cost function that combines schedulability and
reliability at the same time. During the scheduling
process, the cost function is checked and the
maximum value is selected. The proposed method
didn’t take real-time constraints into consideration.
Another heuristic method to determine an allocation
that attempts to maximize the reliability is presented in
[2]. The method is based on the concept of clustering
(grouping) tasks to allocate tasks for maximizing
reliability. However, they didn’t consider real-time
constraints.

All the above previous work didn’t try to exploit the
degree of parallelism included in the task graph in
addition to satisfying real time constraints and
maximizing reliability. Our algorithm combines these
three factors together.

3 The Scheduling Problem and

Definitions:
The system used for scheduling fork-join structures is
a cluster computing. The cluster consists of a set P =
{p1, p2, ..., pn} of identical processors. The processors
of the cluster are fully connected by a real-time
communication network that offers real-time
communication guarantee [8]. This kind of network
guarantees a reliable message passing system. A set of
real-time applications (jobs) {A1, A2, A3, .., Am}. Each
application can be modeled as control flow graph
(CFG) G =(T, E), where T = {t1, t2, t3.,…tk) is a set of
dependent tasks, and a set of edges E represents
dependency relation among tasks. Each task v is
characterized in terms of three attributes {ti, di, si},
where ti is the task computation cost, di is the task
deadline and si is the submission (start) time
of the task. The starting time parameter determines the
precedence relation among tasks. The tasks in this
paper are parallel, dependent and represented in the
form of a fork-join. Fig.1 shows an example of an
application task graph that contains five parallel tasks
along with their attributes.

Reliability computation: If a processor Pi
executes task (tj,dj,sj), the reliability of the is the
processor is given by:

jiteR λ−= (1)
Where λi = processor i failure (hazard) rate.

tj = task execution time

The failure rate represents how many failures per unit
time could occur for the processor. The value of the
failure rate depends on the processor. In this paper, we
assume that the failure (hazard) rate is constant. This
assumption has been widely used in computer systems
performance and reliability analysis [3, 4, 9].
Using equation 1 we can calculate a single processor
reliability when execute certain task. The goal now is
to calculate the reliability of different structures and
fork join structure in this paper. We use Fault tree

Fig 1 For-Join Example

15/20
T1

10/20
T2

3/20
T3

8/20
T4

17/20
T5

analysis [10] to achieve this goal. Fault-tree analysis is
a deductive methodology for determining the potential
causes of failures and for estimating the failure
probabilities (consequently the reliability). Fault-tree
analysis determines the causes of an undesired event,
referred as the top event, since fault trees are drawn
with it at the top of the tree. We can apply the fault
tree approach to calculate the overall failure rate of a
group of processors when execute a fork-join
application. The following procedure describes the
steps to calculate λp for the fork join structure
application in fig.1.

Construct the fault tree for the application: Assume
the application is assigned to the processors P1, P2, P3,
P4, P5 as indicated in table 1. Each cell [j][i] indicate
weather task i is assigned to processor j or not. Having
x in the table entry indicate the former case, otherwise
it is the later. For example, cell[1][3] = x means task 3
is assigned to processor 1. Once table 1 is created, the
fault tree can be constructed [10].

 T1 T2 T3 T4 T5
P1(λ1) X
P2(λ2) X X
P3(λ3) X
P4(λ4) X
P5(λ5)

In fig.2, Logically OR gate corresponds to a series
system. Series reliability can be obtained from the
following equation [10]:

∏
=

=
n

i iRsR
1

 (2)

where: Ri= The ith component Reliability.
Rs= the series system reliability.
n = the number of components.

When components failure times follows
exponential failure laws becomes

∑ =
−=

n

i is ttR
1

)(exp)(λ (3)

4 The New Scheduling Algorithm
In this section, we describe a scheduling method,
which is based on introducing an objective function
that combines the different scheduling goals. This

objective function is used to guide the search
algorithm to find a feasible solution.

4.1 Fitness objective function
The main goal of the scheduling problem is to allocate
the fork-join structure to the processors of the system
where the following are satisfied:

1- The deadline constraints
2- The reliability of the system is maximized.
3- The degree of parallelism is also maximized.

Each factor is represented by one term in the objective
function. The first term reflects the meaning of real
time applications. Real-time systems are defined as
those systems in which the correctness and
performance of the system depends not only on the
logical results bust also on the time at which the
results are produced. So the first term represents the
effect meeting or violating the application deadline.
The value of this term indicates how much the task
deviates from its stated deadline. The second term
represents the effect of processor reliability when we
execute a certain task. The last factor indicates how
much parallelism is achieved. The proposed objective
function is represented by:

F = Rdj * Rfi * R3 (4)
Now we explain the details of each of these terms:
• When an application is submitted, the participating

processors are searched for processors that can run
the tasks forming the application. The available
processing power of the selected processors PPj
should be greater than the required processing
power of the tasks (t/d). The value t represents the
total execution time of a task or a group of tasks
on processor j and d is the total deadline of the
same group of tasks.
This term is calculated as follows:

)/(jdj PPdtmisR −= (5)

Otherwise
xifx

xmiswhere
0

1
1

)(:
>



 −

=

As x increases the value of Rdj decreases and
consequently the total objective function
decreases. In other words, it measures how far the
task is from achieving its deadline. The solution
with large x is not desired.

• The second part of the overall goal is to assign the
tasks to the most reliable processors and
consequently increase the overall system
reliability. Based on that , the second term
represents the reliability of a processor when
executing a task or a group of tasks on that
processor. The reliability of this group of tasks is
calculated from equation (1).

),(jnRR fj = (6)

T

T1

λ2 λ4 λ3 λ1 λ2

T2 T3 T4 T5

Fig 2 Fault Tree structure for (Fig 1)

Table 1 Fault Tree Table

The total reliability of the fork-join structure can e
calculated from (3).

• The last factor reflects the effect of the parallelism

on the overall schedule. Either the number of
branches or the number of processors bound the
value of this term.. Rpj can be represented as
follows:

nm
mnif

n
m

Rpj >
>





= (7)

Where m = number of processors in the system

n = number of branches of the fork-join
application

Since Rf varies in a small range, consequently the
effect of the processor reliability change will be
dominated by the group size effect. We use the
natural logarithm to expand this range from [α,1)
to [β,0) where β is a small negative value [11]. Rf
will be modified to:

),(ln/ jnRKR fj −= (8)

The final objective function is as follows:

jfjdj RRRjnF *)(*)(),(= (9)
In order to obtain a feasible solution, this objective
function should be maximized.

4.2 Scheduling Method (BFTG):
In this section we describe our scheduling algorithm,
Best Fit using Objective Function (BFTG). The
scheduling algorithm consists of the following steps:
i) Calculating the required processing power for
each task in the application.
Required processing power for a specific task is
defined as the ratio between the expected execution
and the task target deadline [12]. For a single CPU, the
value of the processing power is less than or equal to
1. Equation 10 indicates the required processing power
ωi of a task ti is the ratio between the expected
execution and the task target deadline di. To allow
acceptable performance tolerance, safety factor σ may
be added to the average execution time where σ
represents the execution time variance.

i

i
i d

E στ
ω

+
=

][
 (10)

ii) Constructing the schedule table ζ
The scheduling table has two dimensions (m×n) where
m (vertical dimension) is the number of processors and
n (horizontal dimension) is the number of tasks for a
certain application. In case of parallel structure, all
tasks participating has the same priority to be
scheduled. However, in constructing the scheduling
table, the horizontal dimension elements (tasks) are

sorted in deceasing order of its required processing
power. In other words, we start with tasks that have
larger required processing power. The content of each
cell [i][j] of the table shows the objective function
value calculated from equation (9).

iii) Finding a feasible solution
Given the scheduling tableζ, we describe an algorithm
that finds a schedule with maximum accumulated
objective function value Fig.3. Assume F is the overall
objective function value for the application scheduling
solution, which is initially set to 0. Starting from the
first column, the algorithm explores the each column
vertically searching for the cell with maximum value.
Once it is found, Update the total objective function F
and the Output Schedule. The procedure is continued
for the next columns until the full schedule is
achieved.

5 An Illustrative Example:
In this example, the distributed computer system
consists of 8 nodes. Assume a fork-join Application
with 8 Tasks. The first step is to calculate the required
processing power for each task. Table (1) indicates the
required processing power for different tasks for the
application.

Task # Task Time Task Deadline Rpp[i]
1 5,109 10,663 47.91
2 4,711 10,663 44.18
3 4,281 10,663 40.15
4 4,138 10,663 38.81
5 3,886 10,663 36.44
6 2,612 10,663 24.50
7 2,172 10,663 20.37
8 492 10,663 04.61

Second step, is to construct the scheduling table:

 T1 T2 T3 T4 T5 T6 T7 T8
P1 264.4 266.5 269.1 270.0 271.7 282.7 288.0 266.5
P2 257.3 259.4 261.9 262.8 264.4 275.2 280.3 325.2
P3 257.3 259.4 261.9 262.8 264.4 275.2 280.3 325.2
P4 248.8 250.8 253.2 254.1 255.7 266.0 271.0 314.4
P5 249.3 251.3 253.7 254.6 256.2 266.6 271.5 315.0
P6 252.4 254.5 256.9 257.8 259.4 269.9 275.0 319.0
P7 256.8 258.9 261.4 262.2 263.9 274.6 279.7 324.5
P8 256.6 258.7 261.2 262.1 263.7 274.4 279.5 324.3

Input scheduling table ζ
Output Schedule [n];
Begin

Obtain the scheduling table ζ
F = 0;
While there are tasks in ζ do

 i = 1;
Start at column # i.
Pick the entry with maximum value cell[j][i]
Update F = F+ cell[j][i]
Update Schedule [i] = j

 i = i+1
End While

 End

Table 1 required processing power for each task

Finally, by searching the scheduling table the schedule
solution is:
Task No. : 01 02 03 04 05 06 07 08
Processor: 01 01 02 02 03 03 03 01

6 Simulation Results
In the simulation program, a randomly workload is
generated and applied on a simulated multi-computer
system. Throughout the simulation we assume the
system consists of a fully connected 8 machines
(processors). Each machine has a buffer that hold the
tasks ready to be scheduled by that machine. The
failure of the machines are assumed to be uniformly
distributed between 0.001 and .0001 failure/hr.
The simulation studies proceed as follows:

1. Generate exponentially distributed
applications (task graphs). The average
execution time of each task is 3 sec.

2. The applications (task graph) arrived at the
machine terminal are following Poisson
distribution.

3. The inter arrival rates are ranged from 10 to
100 sec. We assume homogenous system.
Therefore, that tasks execution times are the
same on any machine. The total number of
applications is 1000 per node.

4. Number of tasks in each application is
uniformly distributed between (10 and 15) or
(3 and 8).

Given the same workload and system parameters,
three simulation studies are performed:

1. Apply Best-Fit for Task Graph (BFTG)
algorithm.

2. Apply “First Match for Task Graph” FMTG.
In (FMTG): application tasks are assigned to
the first processor that satisfies the deadline
required by the task.

3. Apply “First Match for Single Unit” FMSU.
In FMSU, the application is treated as single
unit task and it is assigned to the first
processor that matches the deadline
requirements of the application.

To evaluate these studies, three metrics are used. The
first metric is the acceptance rate measure. The
acceptance rate is defined as the ratio between the
number of accepted application by all machines and
the total number of applications arrived on all the
machines input buffers. The second metric is the
system reliability. System reliability is defined as the
probability that the system can execute tasks without
failure. The last one is the average parallelism degree.
Parallelism degree is defined as the max number of

branches (or processors) used in the scheduling
method.
Fig.3 shows the simulation study that indicates the
effect of the proposed scheduling method on the
system acceptance rate. The results shown is the
average of the data obtained in 1000 experiments per
node. According to the simulation results, the
performance of BFTG is better than both FMSU and
FMTG in different cases. These cases are based on
the amount of violation allowed by the system. For
example in case of no violation allowed, BFTG
outperform the others. As a logic result, BFTG will
outperform the other algorithms in case of allowing a
deadline violation. From that we can conclude that, by
controlling the parameters of the objective function,
BFTG can be suitable for either had real-time or soft
real time with an outstanding performance.

0

0.2

0.4

0.6

0.8

1

1.2

No Violation

5% Violation

10%

20%

30%

40%

50%

FMTG

FMSU

InterArrival Rate

Acceptance rate

In Fig.4, we measure that the reliability performance
when we consider only applications accepted by the
three algorithms. According to the simulation results,
the average performance of BFTG in all cases is better
than FMTG and FMSU. This is due to the fact that,
assigning the whole application to the same processor
means that the processor will run the application for
longer time which increase the probability of having a
failure. In case of task graph applications, the situation
is different. Small tasks are assigned to processors and
consequently the processor will run for shorter period
of times and that decreases its probability of failure.

Average Reliability

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

Inte ra rriva l ra te

BF

FMTG

FMSU

In Fig.5 we measure that the reliability performance
when we consider only applications accepted by both
BFTG and FMTG. Also, in this case BFTG
outperforms FMTG.

Fig.4: The reliability performance

1 2 3 4 8

1 2 3

5 6 7

1

Fig.3: The acceptance rate performance

Average Reliability

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

Interarrival rate

BFOF

FMTG

Fig.6 shows the third simulation study that investigates
the effect of the proposed scheduling method on the
parallelism degree. According to the simulation
results, the performance of BFTG is better than FMTG
and FMSU. This result indicates that having the
parallelism term in the objective function leads to an
improvement in the average parallelism degree
achieved by the scheduler.

Average Parallelism

0

0.5

1

1.5

2
2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

Interarrival Rate

Input Par al l el i sm

BF

FM T G

Also, Fig.7 shows the relation between the parallelism
degree and the frequency of having that degree for a

specific inter-arrival rate. The study shows that BFTG
outperforms FMTG (FMSU is excluded since it has no

parallelism at all).

Paralellism (Inter-rate = 20)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8

parallelism degree

BFOF

FM

As a general conclusion even though the acceptance
rate of our algorithm slightly outperforms the FMTG,
we validate another parameters at the same time such
as reliability and degree of parallelism.

7 Conclusions
In this paper, we presented a new algorithm for
scheduling parallel structures of a real-time application
into a cluster of processors with possible failures. We

developed an objective function to guide the searching
process to find the best task assignment that
simultaneously achieve the required deadline and
maximize both of the reliability and the degree of
parallelism. Simulation results indicate that the new
algorithm generates a schedule with much better
performance.

References
[1] K. G. S. a. P. Ramanathan, "Real-Time

Computing: A New Discipline of Computer
Science and Engineering," Proc. IEEE, vol. 82, pp.
6-24, 1994.

[2] N. K. J. S. Srinivasan, "Safety and Reliability
Driven Task Allocation in Distributed Systems,"
IEEE Transaction on Parallel and Distributed
Systems, vol. 10, 1999.

[3] F. O. Atakan Dogan, "Matching and Scheduling
Algorithms for Minimizing Execution Time and
Failure Probability of Applications in
Heterogenous Computing," TEE Transactions on
Parallel and Distributed Systems, vol. 13, 2002.

[4] H. J. Xiao Qin, C.S. Xie, and Z.F. Han,
"Reliability-driven scheduling for real-time tasks
with precedence constraints in heterogeneous
distributed systems," Proc. of the 12 th
International Conference Parallel and Distributed
Computing and Systems, pp. 617-623, 2000.

[5] G. M. a. C. S. R. Murthy, "A Fault-Tolerant
Dynamic Scheduling Algorithm for Multiprocessor
Real-Time Systems and Its Analysis," IEEE
Transactions On PARALLEL AND
DISTRIBUTED SYSTEMS, vol. 9, 1998.

[6] R. M. a. D. M. S. Ghosh, "Fault Tolerance
Through Scheduling of aperiodic Tasks in Hard
Real-Time Multiprocessor Systems," IEEE Trans.
On Parallel and Distributed Systems, vol. 8, pp.
272-284, 1997.

[7] Y. K. a. T. K. Tatsuhiro Tsuchiya, "Fault-Tolerant
Scheduling Algorithm for Distributed Real-Time
Systems," WPDRTS '95, 1995.

[8] I. P. Pascal Chevochot, "An Aproach for Fault-
Tolerance in Hard Real-Time Distributed
Systems," SRDS, 1998.

[9] J. W. a. M. G. S.M. Shatz, "Task Allocation for
Maximizing Reliability of Distributed Computer
Systems," IEEE Transaction on Computers, vol.
41, 1992.

[10] E.E.Lewis, "Introduction to Reliability
Engineering," John Wiley & Sons, 1987.

[11] S. W. a. S. Gokhale, "Exploring Cost and analysis
Tradeoffs in Architectural Alternatives using
Genetic Algorithms," ISSRE 99, pp. 104-113,
1999.

[12] A. A. Alhamdan, "Scheduling Methodss for
Efficient Utilization of Cluster Computing
Enviroments," PhD. Thesis, 2003.

Fig.5: The reliability performance for BFTG and
FMTG

Fig.6: The average parallelism performance

