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Abstract: - In this paper we compare the performance of several transform coding methods, 
Discrete Fourier Transform, Discrete Cosine Transform, Wavelets Packet and Karhunen-Loeve 
Transform, commonly used in image compression systems through experiments. These methods are 
compared for the effectiveness as measured by rate-distortion ratio and the complexity of 
computation.  
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1 Introduction 
Transform coding methods such as the Discrete 
Fourier Transform (DFT), the Discrete Cosine 
Transform (DCT), the Best Wavelets Packet 
(BWP), and the Karhunen-Loeve Transform 
(KLT) are basic building blocks of compression 
systems. All of these methods map an image into 
a set of N uncorrelated coordinates to reduce 
information in the image representation. For 
DFT, DCT, and BWP, the corresponding bases 
are precise regular signals and independent of the 
image. But for KLT, the bases selected depend on 
the image itself. KLT is optimal in the sense that 
it completely decorrelates a given image in the 
transformed domain and is also a canonical 
transformation that minimizes the Mean Square 
Error (MSE). Unfortunately, the amount of 
computation (~ 2N operations) makes this method 
unpractical, but KLT does provide a benchmark 
against which other transforms may be judged 
[1]. M. V. Wickerhauser [2] observed that at high 
bit-rates (compression ratio 10 or higher) JPEG 
was better than the orthogonal wavelets and the 
best-basis of wavelet packets in the MSE sense, 
and at low bit-rates the wavelet and BWP gave 
better results. Finding the best wavelets packets 
requires more than N2N operations, which is 

computationally prohibitive [3]. For DCT, since 
it is closely related to DFT, DCT can be 
computed by an FFT type algorithm with NlogN 
operations. Besides, DCT has another very 
important property that is its asymptotic 
equivalence to the statistically optimal KLT [1]. 
So DCT can achieve a good compromise between 
computational complexity, and coding 
compression. Therefore, for a fixed 
computational budget, DCT actually outperforms 
KLT.   
      In this paper, we compare the results of image 
approximation with DCT, KLT, BWP, and FFT. 
Two different approaches can be used in the 
selection of the transformed amplitudes. One is 
linear approximation, which projects the image 
over N  vectors chosen a priori. However, better 
approximations can be achieved by choosing the 
N basis vectors based on the image, i.e., nonlinear 
approximation. The MSE of nonlinear 
approximation using wavelet bases is superior 
(with a decay as fast as N-2 for N→ ∞) to that of 
the linear approximation (bounded below N-1 for 
N→ ∞ with the KL bases)[4]. Practically, for a 
smooth image the nearby pixels are correlated, 
which means that the value of a pixel conveys 



information about the likelihood of its neighbors’ 
values. So in the following the nonlinear 
approximation will be utilized in the comparison 
of different transformations for their effectiveness 
as measured by rate-distortion ratio and the 
complexity of computing the transforms. In 
addition, it will always be necessary to involve 
humans in judging acceptable distortion. 
 
 
2 Decorrelation by Transformations 
 
2.1 Discrete Fourier Transform 
The Fourier transform decomposes a signal into 
frequency components for its analysis. The 
Discrete Fourier Transform (DFT) estimates the 
Fourier transform of a signal from a finite 
number of its sampled points. Since sinusoidal 
waves last infinite, DFT has very poor local 
property.  
 
2.2 Discrete Cosine Transform 
The Discrete Cosine Transforms (DCTs) cannot 
be treated simply as a discretized approximation 
of its continuous Fourier cosine transform. DCT 
has shown its superiority in bandwidth 
compression of a wide range of signals such as 
speech, TV signals, and images.  
 
2.3 Discrete Wavelet Transform 
Wavelet transform has emerged as a powerful 
tool for many applications including data 
compression and feature detection in sounds, 
biomedical data and images. The motivation 
behind its development was the search for fast 
algorithms to compactly represent of functions 
and data sets. Compression occurs because pixel 
values are correlated by the smoothness of the 
image [5]. The most dissimilarity between DFT 
and DWT is that individual wavelet functions are 
compactly supported in space and in frequency. 
This localization feature makes the representation 
of image in the transformed domain sparse. This 
sparseness, in turn, results in a number of useful 
applications such as dada compression, detecting 
features in images, and removing noise from 
signals. 
 
2.4 Wavelet Packets and the best basis 

A further degree of freedom can be obtained by 
choosing the bases adaptively, depending on the 
signal properties. From families of wavelet 
packet bases, a fast dynamical programming 
algorithm is used to select the “best” bases which 
reflect the signal structures. The advantage of this 
method over traditional wavelet transform 
methods is that the bases are chosen 
automatically to best represent the particular 
image. In this sense the transform is highly 
nonlinear [6]. 
2.5 Karhunen-Loeve Transform 
The Karhunen-Loeve Transform (KLT) is a 
preferred method for approximating a set of 
vectors by a low dimensional subspace [1]. This 
subspace is spanned by the eigenvectors of 
corresponding auto-covariance matrix. This 
transform is optimal in that it completely 
decorrelates the signal in the transform domain. 
Practical implementation of KLT involves the 
estimation of the auto-covariance matrix of the 
data sequence, its diagonalization, and the 
construction of the basis vectors. So the basis 
vectors are depended on the signal, which cannot 
be predetermined, and must be completely 
repeated whenever any new data is added. 
Although the high computational complexity has 
made KLT an ideal but impractical tool, it does 
provide a benchmark against which other discrete 
transform may be judged [1]. 
 
 
3. Nonlinear Approximations 
In linear approximation, we can project a signal f 
over N vectors chosen a priori. 
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The accuracy depends on the characteristics of f 
relative to the basis vectorϕ . For instance, if  
ϕ  is the Fourier basis on [0,1] or a wavelet 
basis, [ ]N fε is the L2-norm.  Then the decay of 

)( fNε depends on the smoothness of f in an 
L2-sense. A set of Fourier bases yields efficient 
linear approximation to smooth signals, which 



are projected over the N lower frequency 
sinusoidal waves. For a wavelet basis, the 
signal is projected over the N largest scale 
wavelets, which is equivalent to approximating 
the signal at a coarser resolution. The KL bases 
consist of N linearly independent eigenvectors 
and represent the best approximation of a given 
signal in the MSE sense, for every N. 
     The performance of the linear 
approximation can be improved if we choose 
the N vectors in ϕ  as the most significance N 
terms (as opposed to the linear approximation 
using the first N basis functions). The 
approximation of f with N vectors whose 
indexes are in IN is  
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The approximation error is 
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This error will have a minimum value if the 
set of N vectors in IN have the largest inner 
product amplitude |,| >< Nf ϕ . The set IN 

depends on the signal f, hence the name non-
linear approximation. The difference between 
a linear and a non-linear approximation has 
been illustrated in [2] where examples are 
presented. For the linear transformation, 
Fourier and wavelet bases give similar results 
(the MSEs are also roughly equal for the 
sample images in this paper). In contrast, for 
the nonlinear approximation, wavelet basis 
outperform trigonometric bases. Another 
manifestation of the difference as pointed out 
in [2] is that for stochastic processes, the KL 
basis need not be the basis that minimizes the 
non-linear approximation error. 
 
 
4. Experimental Comparisons 
The transformations described above may be 
compared for their effectiveness as measured 
by rate-distortion ratio and humans vision 
judgment. Nonlinear approximation has been 
applied to three images: (1) a train image – 
Capital – with a lot of edges, (2) an artificial 
image – Ladder – having strong linear 
relationship between pixels, and (3) a picture 

of a woman face – Alicia – a typical 
“piecewise smooth image”.  
     Procedures used in the experiments are 
giving below. 
(i) Apply DCT to an image. We keep the N  

largest coefficients in the  transformed 
domain and set the others to zero. 
Then we apply the inverse DCT to 
reconstructing the image. 

(ii) For an image, calculate the eigenvalues 
and the eigenvectors. We sort the 
eigenvectors according to the values of 
the eigenvalues. Keep only the first N 
eigenvectors as the basis. Then we apply 
the KLT to restoring the image. 

(iii) Use Daub6 (Daubechies 6 wavelets) as  
 the basis functions and search for the 
“best-basis”. We choose entropy as the 
cost function to extract the N largest 
coefficients. Then we apply BWT to 
approximate the original image.  

(iv) Perform the forward FFT and keep the N 
most important terms. Then we carry out 
the inverse FFT to reproduce the original 
image. 

      Distortion measures used in the 
calculation are the Mean Square Error (MSE) 
and the Peak Signal-to-Noise Ratio (PSNR) 
between the original and the approximated 
images [2]. 
       PSNR = 10 LOG10 (2552/MSE)        (5)      
Figure 1 shows the original image and its 
approximations by different transforms with 
7000 coefficients. BWP and DCT produce 
very similar approximations from the human 
vision point of view; however, DCT works 
better in the PSNR sense. KLT performs a 
little bit worse than BWP and DCT. The 
approximation using DFT is unrecognizable 
by human eyes. The original image in Figure 
2 is a very simple and linear one in two 
dimensions. KLT produces almost the same 
image as the original one with only 350 
coefficients. This implies that KLT provides 
the best basis for linear decorrelation. BWP 
(using Daub6) does not perform well at the 
edge. If using Daub 1, the Haar transform, we 
can get a much better “edge approximation”. 
This is because Daub 6 basis functions have 
much larger space support than Daub1.  This 



also tells us wavelets have infinite basis 
functions, but DCT has only one. From the 
Figure 2(e), we can see some sinusoidal 
waves. KLT is the best in this case. In 
Figure3, we use 6000 coefficients to 
approximate the original image. DCT is 
somehow better than BWP. In both cases, the 
details are recognizable. FFT only keeps the 
lower frequency components and omits the 
details (higher frequencies). 
    The above mentioned experiments were 
performed by a PC (HP pavilion 6635 with 
533MHz). The processing time for FFT, 
DCT, KLT, and BWP are 0.55s, 1.32s, 4.06s 
and 107.71s, respectively.  
 
5. Discussion and Conclusions 
From the experiments performed, we obtain 
the following observations: 
(i) If pixels in an image have a strong linear 

relationship, KLT will provide the most    
efficient approximation (See Figure 2).   

(ii) For nonlinear approximation, Discrete 
Cosine Transform provides the best 
results in most our experiments. 

(iii) For nonlinear approximation, Best   
Wavelet Packets Transform (using 
Daubechies 6 wavelets) is not as efficient 
as DCT in most our experiments. 

(iv) For nonlinear approximation, Fourier   
bases are not efficient at all. 

(v) Discrete Cosine Transform and Wavelet 
Packets basis always yield “visually 
pleasant” images.  
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Figure 1 (a) Capital --- Original Image 256X256  

Figure 1. (b) BWP with 7000 coefficients 
PSNR = 26.8 

Figure 1. (c) KLT with 7000 coefficients 
PSNR = 28.8 



 
 

Figure 2. (a) Ladder Original Image 256X256 

Figure 2. (b) BWP with 1000 coefficients 
PSNR = 20.7 

Figure 2. (c) KLT with 350 coefficients 
PSNR = 74.32 

Figure 2. (d) DCT with 1000 coefficients 
PSNR = 33.3 

Figure 1. (d) DCT with 7000 coefficients 
PSNR = 27.3 

Figure 1. (e) FFT with 7000 coefficients 
PSNR = 20.8 
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Figure 3. (a) Alicia Original Image 
 256X256 

Figure 3. (b) BWP with 6000 coefficients 
PSNR = 31.9   db6 

Figure 3. (c) KLT with 6000 coefficients 
PSNR = 32.7   

Figure 3. (d) DCT with 6000 coefficients 
PSNR = 32.7 

Figure 3. (e) FFT with 6000 coefficients 
PSNR = 29.5     

Figure 2. (e) FFT with 1000 coefficients 
PSNR = 19.8 


